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Optimal Hydropower Reservoir Operation with Environmental Requirements 
Abstract 

Engineering solutions to the environmental impacts of hydropower operations on 
downstream aquatic ecosystem are studied using revenue-driven optimization models.  

Peaking hydropower operations affect stream ecosystems by abruptly changing 
flow conditions. Operations are often restricted by minimum releases to a sensitive 
stream and maximum rates of change, or ramping rates, of releases. These constraints 
potentially reduce the economic value of daily generation by reducing operational 
flexibility. A linear programming model for the hourly operation of a reservoir-afterbay 
hydropower complex was formulated and solved for parametrically varying levels of 
environmental constraints. Consistent with the short time scale, the model assumes 
constant head and perfect knowledge of energy prices. Results indicate that 
environmental restrictions on releases can reduce revenues by 15% without an afterbay. 
Optimally operated, an afterbay reduces this cost considerably, even by half. Several 
alternative release patterns to the stream were identified for a given revenue level.  

To bridge the gap between hourly operations and planning models, this work 
develops a method to incorporate information on hourly energy prices into revenues for 
hydropower reservoir optimization models with larger time steps (weekly, monthly, etc). 
The method, which derives a simple equation for revenue, assumes a known frequency 
curve for hourly prices during the period of interest and an operational strategy that 
allocates water release in order of decreasing hourly price, as in peaking operations. The 
estimated revenue was compared with the optimal revenue obtained from the solution of 
the hourly optimization problem. Results show a very small approximation error (less 
than 1%) when a price frequency curve with fine resolution is available. The method was 
extended to the case with minimum instream flow requirements and the approximation 
proves to be as good as in the unconstrained case.  

Thermal stratification during summer is a condition typically observed in 
hydropower reservoirs. The operational problem is usually the early exhaustion of the 
cold water present in the reservoir because water is released from the lower depths of the 
reservoir throughout the season. This causes warm releases through the rest of the season, 
when air temperatures are typically highest and aquatic ecosystems are at highest risk. A 
model was developed for the optimal operation of a reservoir with selective withdrawal 
aimed to make operations more flexible during the summer. Operational decisions are 
releases from the cold and the warm water pool during each week in the stratification 
season. Environmental constraints are represented by minimum required releases to the 
stream and maximum allowed temperature of releases. Hydrologic uncertainty is 
modeled through an ensemble of 25 series of weekly net inflows to the reservoir. The 
dynamics of the thermal structure of the reservoir was simplified by considering two 
pools, a warm upper layer and a cold lower layer, with exogenous temperature. The 
model is solved by an implicit variant of Sampling Stochastic Dynamic Programming 
(SSDP) with continuous approximation of the value function by Chebyshev polynomials. 
Selective withdrawal allows for cold water hedging from early in the stratifications 
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season towards the end, when the upper layer of the reservoir is warmest. To avoid a 
myopic behavior, the value of carryover storage at the end of the summer was estimated 
by application of value iteration in a dynamic programming model. The state of the 
reservoir was represented by the total storage and the cold water storage. At each week of 
the season, given a total storage and its percentage of cold water, the model solves for 
optimal release from each of the two pools by trading off the immediate benefit of power 
generation and the future value of leaving water in storage, both warm and cold. Results 
show a much stronger effect of total storage than cold water storage on the economic 
performance and operational pattern of the reservoir. As expected, total hydropower 
generation and revenues increase with total storage. Cold water storage affects operations 
and therefore revenues only when it is at its minimum feasible level (i.e. only the 
minimum flow can be released at the appropriate temperature) or when energy prices are 
very high. No effects are observed early in the season, when the upper layer is still cooler 
than the temperature target. Future enhancements are proposed to overcome the 
limitations imposed by the approximation scheme adopted for the future value function.     

 This dissertation shows that engineering solutions, in concert with optimized 
operational decisions, can effectively add flexibility to hydropower operations under 
environmental constraints, reducing the compliance cost.    
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CHAPTER 1 

INTRODUCTION: THE CONFLICT BETWEEN 
HYDROPOWER OPERATIONS AND ECOSYSTEM 
MAINTENANCE 

 
Water resources management often must deal with several conflicting water uses 

under highly uncertain conditions. Conflicts between traditional uses like hydropower, 
and domestic and irrigation water supply have been resolved at least partially in the past. 
The situation changes drastically when no common performance measure can be 
established for conflicting objectives. This is the case of environmental impacts 
associated with reservoirs built to support traditional water uses like irrigation, urban and 
industrial water supply, and hydropower. Dams are a physical barrier in the river system, 
whose effects, besides the obvious change from a stream to a lake environment in the 
reservoir itself, are related to the change in the flow regime (at different time scales), 
water diversion from the river channel, blockage of downstream flows of nutrients and 
sediments, change in water temperatures and oxygen levels, and impeding fish and 
wildlife migration (Petts, 1989).  

Hydropower is a relatively cheap source of electricity, with variable operational 
costs in the order of 5 $/MWh, as compared to 20 $/MWh of fossil fuel steam plants, and 
28 $/MWh for gas turbine peaking units (Harpman, 1999). However, the effects of 
construction and operation of hydropower reservoirs on downstream aquatic/terrestrial 
ecosystems are a major concern (Richter and Thomas, 2007). Due to its ability to quickly 
and inexpensively respond to short-term changes in demand, hydropower reservoirs often 
are operated to provide power during periods of peak demand. This operation scheme, 
known as hydropeaking, contrasts with the lack of flexibility associated with thermal 
units which cannot respond as quickly to ramping requirements (Svoboda et al., 1997). 
Base load is provided by the least expensive thermal units, but at some demand levels, 
the marginal costs of thermal generation become very high, and hydropower units are 
required. Peaking operations cause large abrupt flow variations downstream of 
powerhouses, which can harm river and streamside ecosystems. The effects of short-term, 
hydropeaking operations on aquatic ecosystems are not well understood, although 
reduction in native species richness has been observed (Vehanen et al., 2005).  
Hydropeaking also can conflict with downstream cold water fisheries (Krause et al. 
2005). A key aspect of the problem is the spatial and temporal scales involved. 
Hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and 
operations at each level affect different environmental processes. The increased 
variability associated with hydropeaking does not help to mitigate the loss of hydrologic 
variability at larger time scales, which controls the diversity of aquatic fauna (Moyle and 
Mount, 2007). 

Due to these conflicts, hydropower operations are regulated to reduce or mitigate 
negative impacts. The regulatory framework for the operation of hydropower facilities 
varies throughout the world. In Sweden, licenses to build and operate dams are perpetual, 
although operating conditions may be reviewed in accordance with regulations 
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(Svensson, 2000), and operational changes involving production losses up to 5% are 
enforced without compensating the hydropower operator. In the United States, the main 
regulatory instrument is the licensing system administrated by the Federal Energy 
Regulatory Commission (FERC). Licenses are granted for 30 to 50 years and establish, 
among other aspects, operational restrictions on the generator. These restrictions seek to 
consider the effects of hydropower operations on activities or interests that might be 
affected, including commercial and recreational fisheries, recreation, and ecosystem 
conservation. Traditionally, environmental considerations are included in the licenses in 
the form of minimum releases to a sensitive stream, bounds on flow changes, and specific 
water quality requirements in the reservoir itself and downstream. These operational 
restrictions limit the ability of the system to follow the pattern of energy prices and can 
reduce the economic value of energy generation. 

Environmental constraints impose a cost on hydropower producers. Harpman 
(1999) estimated a reduction of 8.8% in the short-run economic value of hydroelectricity 
under specific flow constraints on Glen Canyon Dam on the Colorado River. More 
recently, Kotchen et al. (2006) carried out an ex post benefit-cost analysis of a dam 
relicensing agreement in Michigan and found that the social benefits more than double 
the producer costs. In Sweden, a constant flow of 1 cubic meter per second can be worth 
about 41,000 US$/year. The magnitude of economic losses in terms of hydropower 
production from minimum releases led to the exploration of alternative means other than 
water releases from reservoirs to achieving an ecosystem goal, including changes in 
channel structure, defined as biotype adjustments (Svensson, 2000).  

Engineering solutions can reduce the burden on producers, and therefore the 
conflict between environmental and economic performance, by adding operational 
flexibility. For example, Richter and Thomas (2006) suggest the use of a water storage 
facility downstream of a power house to re-regulate the release pattern. Such an 
alternative typically exists in cascade hydropower systems, where the most downstream 
reservoir can serve this purpose. In some systems, afterbays have been created for this 
purpose. When temperature management in the reservoir and releases is relevant, a 
temperature control device (TCD) can be introduced. The most practical and widely 
adopted method for the case of a stratified reservoir is selective withdrawal, which 
consists of strategically located outlets to allow releases from different zones of the 
reservoir (Cassidy, 1989). Computer models allow evaluation of the performance of such 
engineering solutions in economic and environmental terms.  

The complexity that needs to be captured in models increased since many 
countries in the world have established electricity markets. Before energy market 
liberalization, the problem was formulated as cost minimization by a central utility 
planner (Jacobs and Schultz, 2002).  With energy markets and decentralization of 
electricity generation authority, revenue maximization has become the driver for 
operations. However, little effort has been devoted to develop an appropriate 
representation of energy prices, the main outcome of energy markets, for modeling 
purposes. Some work has been directed to developing statistical price forecasting models 
(e.g. Nogales et al., 2002) and explicit economic models of electricity markets, including 
optimal bidding strategies for generators under perfect competition (Pritchard et al. 2005) 
and duopolistic models (Scott and Read, 1996). Unfortunately, the water resources 
community still relies on simplistic representations of energy prices for planning models, 



 3

assuming either an average price for each decision period or a two-part (peak/off-peak) 
approximation of the price variability.  

The objective of this dissertation is to study, through the use of revenue-driven 
optimization models, the effects of some engineering solutions as mitigation for the 
negative impacts of hydropower reservoir operations on downstream ecosystems. 
Emphasis is on the economic and environmental performance of solutions, as well as 
operational insights. This dissertation has six chapters, structured as follows: 
- Chapter 2 includes background on four topics that conform the basis for the 
following chapters, 
- Chapter 3 presents the study of hourly hydropower operations during a typical 
summer day for a reservoir-afterbay system. This chapter includes the formulation and 
solution of a deterministic linear programming model, which relies on the assumption of 
constant head. Discussion includes hydropower revenues, afterbay operational insights, 
and resulting instream flow patterns, 
- Chapter 4 employs a duration curve of hourly energy price and the hydropeaking 
assumption to derive a closed form expression for hydropower revenues realized at 
coarser time scales. The approach is extended for the cases of variable head and when a 
minimum release requirement is imposed, 
- Chapter 5 includes development of a dynamic programming model for the 
operation of a thermally stratified reservoir with selective withdrawal. Release 
temperature control is aimed to support a cold water fishery during the summer under 
hydrologic uncertainty, 
- Chapter 6 summarizes the most relevant insights and conclusions of this 
dissertation. Future work and possible enhancements are also identified.  

Each chapter is self-sustained and includes its own references and conclusions.  
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CHAPTER 2 

 RELEVANT BACKGROUND 
The relevant literature presented herein includes four main topics. The first 

subsection introduces models for the optimal operation of hydropower reservoir systems. 
It describes in detail how optimization techniques have been used to assist reservoir 
managers and operators on how much power to produce, or equivalently, how much 
water to release from a reservoir, at a given point in time. The second subsection 
describes different methods utilized to quantify the effects of river regulation, particularly 
due to hydropower operations, on downstream ecosystems. These approaches include the 
establishment of minimum instream flows, determination of the degree of hydrological 
alteration with respect to the unimpaired flow regime, and the use of fish population 
models when aquatic species conservation is the main goal. The third topic includes 
current knowledge on the ecosystem effects of hydropower operations. The final 
subsection discusses examples of studies where tradeoffs between ecosystem and other 
water uses are explicitly explored. Each subsection includes a final summary and 
identification of critical issues to be faced in the proposed study. 

 
2.1 Optimal Operation of Hydropower Reservoirs 

An extensive literature exists on the application of optimization techniques to the 
operation of hydropower reservoir systems. Studies vary in several ways, including the 
objective optimized, time horizon for optimization (long- vs. short-term), system size and 
configuration, and the representation of uncertainty. These factors determine the 
optimization techniques most suitable for each case. This review focuses on studies 
where hydropower generation is the primary objective to be optimized. This focus still 
includes multi-purpose reservoirs whose primary purpose is water supply and 
hydropower, where hard constraints are imposed to satisfy non-hydropower 
requirements. 

Before market liberalization, power generation was typically controlled by a 
centralized public agency, with the objective of meeting demand at minimum cost. Under 
those conditions, operations planning represented a large-scale optimization problem, 
usually involving several alternative power sources. In general, the water resources 
literature focuses on planning studies rather than short-term scheduling, with monthly or 
weekly decision intervals, to minimize the total cost of alternative power sources. 
Sometimes, a penalty for unmet demand is included, i.e. power demand is modeled as a 
soft constraint of the problem. Constraints include physical infrastructure capacity and 
operational restrictions resulting from the regulatory framework.  

Hydrologic conditions (particularly inflows) and power demand (or price, after 
market reform) are the two main sources of uncertainties, the latter often neglected in the 
water resources literature. When hydrologic uncertainty is considered, optimization 
techniques are used to determine operating rules which suggest the optimal releases at 
each decision period as a function of the information available, most notably reservoir 
storage level.  

Generation-related objectives take different forms, depending on the spatial and 
temporal scales considered. For large-scale hydro-thermal systems with centralized 
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decisions, the objective is usually expressed as minimizing penalties from demand unmet 
by the hydro plants (e.g. Turgeon, 1980, 1981a; Pereira and Pinto, 1991; Saad et al., 1994 
and 1996; Tejada-Guibert et al., 1995). These penalties can involve both the cost of 
thermal generation and losses from power outages.   

The two most widely used techniques applied for long-term models are linear 
programming (LP) and dynamic programming (DP) (Yakowitz, 1982; Labadie, 2004). 
DP is particularly suitable when dealing with sequential decision processes (Bellman, 
1957; Bertsekas, 1976) and presents several advantages, including its capability to handle 
nonlinear objectives and complex constraint sets, and its assurance of globally optimal 
solutions (Bertsekas, 1976). The method relies on Bellman’s Principle of Optimality 
which asserts that “…an optimal policy has the property that, whatever the initial state 
and optimal first decision may be, the remaining decisions constitute an optimal policy 
with regard to the state resulting from the first decision” (Bellman, 1957 pp. 83). Based 
on this principle, a multistage optimization problem is divided into a sequence of single-
stage sub-problems. In the case of hydropower reservoirs the problem is stochastic and 
can be highly nonlinear (Yakowitz, 1982) so DP is the appropriate choice. Moreover, 
dynamic programming presents the unique feature (only shared by optimal control 
theory) to provide optimal feedback policies (Bertsekas, 1976; Labadie, 2004). 

Single reservoir, deterministic models are the simplest. The deterministic 
assumption relies upon the certainty equivalence principle (Bertsekas, 1976; Yakowitz, 
1982). This principle assumes the expected value of the performance criterion can be 
obtained by assuming that random variables take their expected values. However, this 
assumption often leads to suboptimal solutions that can be far from the optimum 
(Bertsekas, 1976; Philbrick and Kitanidis, 1999). A typical DP approach is to discretize 
the state and decision variables (storage and release, respectively) and solve the Bellman 
equation (i.e. optimize at each time step) for each discrete value at each stage. This 
involves, at each stage and for each state value, a search over all possible discrete 
releases. Nonlinear search techniques cannot be applied in this setting and the problem is 
essentially an exhaustive search. Finer discretization increases the computational effort.   

Hydrologic stochasticity has been incorporated in different ways. At its simplest, 
temporally uncorrelated probabilities can be assigned to inflows. When hydrologic 
persistence is considered, hydrologic state variable(s) need to be included, with the 
previous stage inflow the most typical choice (Little, 1955). Recent applications consider 
forecasts as a hydrologic state variable (Kelman et al. 1990; Karamouz and Vasiliadis, 
1992; Kim and Palmer, 1997; Faber and Stedinger, 2001). The version of dynamic 
programming which explicitly incorporates expectation over random variables is called 
stochastic DP (SDP), and its performance under alternative choices of hydrologic state 
variables was studied by Tejada-Guibert et al. (1995). They concluded that more 
complete hydrologic information yields to better performance in cases where severe 
penalties are applied to shortages. The value of long-term forecasts has been studied in a 
Bayesian programming framework by Kim and Palmer (1997), and with simulation by 
Hamlet et al. (2002).  

Multireservoir problems are much more complex (Labadie, 2004). These 
complexities include its higher dimensionality and spatial correlations of inflows when 
stochasticity is explicitly represented. In that case, only discrete-state DP can be 
successfully applied to determine optimal operating policies (Yakowitz, 1982). The 



 7

number of discrete searches increases exponentially with the number of reservoirs 
considered. The exponential growth of computational effort has been widely recognized 
and defined as the curse of dimensionality by Bellman (1957). This shortcoming typically 
limits the application of discrete dynamic programming to problems with 3 or 4 state 
variables.  

An approach to avoid the curse of dimensionality in dynamic programming 
consists in approximating the original multivariate problem to reduce the number of 
searches. Techniques include aggregation (Masse, 1946; Turgeon, 1980; Saad et al., 
1994, 1996; Turgeon and Charbonneau, 1998), successive approximation DP (Turgeon, 
1980), decomposition (Turgeon, 1981a), and principal component analysis (Saad and 
Turgeon, 1988; Saad et al., 1992). The aggregation/disaggregation approach is the most 
widely used and consists of solving a problem for a hypothetical composite reservoir, 
representing the entire system. Then, disaggregating procedures are applied to determine 
the optimal operation of each individual reservoir.    

After an optimal operating policy is determined, its performance can be simulated 
for a given time period. In the case of discrete SDP, optimal policies are represented by 
tables containing the optimal release for a finite number of discrete values of the state 
variable. In real operation, however, the system can be at a state not included in the 
discretization, and therefore approximations must be made to decide how much to 
release. A direct choice is to simply interpolate between two states for which the optimal 
release is know. The other alternative is to reoptimize at each time step, which requires 
interpolation of the future value function, either in a linear (Pereira and Pinto, 1991) or a 
nonlinear fashion (Johnson et al., 1993; Tejada-Guibert et al., 1993). A similar approach 
was proposed by Braga et al. (1991), where a deterministic DP is used to estimate the 
future value functions, and then a forward procedure finds the optimal release from each 
reservoir at the beginning of each month.  

The water resources literature for short-term scheduling of hydropower is 
relatively scarce compared with long-term scheduling, with a few exceptions (Turgeon, 
1981b; Georgakakos et al., 1997a, 1997b, 1997c; Wang et al., 2004). However, extensive 
work exists in the field of electric power systems. Most studies consider the optimal 
short-term operation of hydropower reservoirs as part of a large-scale hydro-thermal 
system optimization problem, with deterministic power demands. The role of hydro 
plants depends on their relative capacity with respect to the thermal units. If the system is 
predominantly thermal, hydro units are scheduled only for peaking. If the system is 
hydro-dominated, these plants also contribute to the base load (Wang and Shahidehpour, 
1993).  

Two general approaches can be identified to deal with hydro-thermal systems. 
The first approach is to separate the problem into a stochastic long-term hydro-thermal 
problem and deterministic short-term scheduling. This approach establishes generation 
(or release) targets for each hydropower plant. This approach is what Masse (1946) calls 
decomposition into ‘strategic’ and ‘tactical’ problems. Hourly scheduling optimizes 
week-ahead hydro generation, taking into account head variations and flow routing to 
meet the target set by the long-term optimization. Turgeon (1981) used the principle of 
progressive optimality to minimize total production cost (including power imports and 
exports) of a multi-reservoir system. Yi et al. (2003) used a successive approximation DP 
algorithm to maximize a surrogate for the basin-wide daily operating efficiency. Wang et 
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al. (2004) applied a direct search method to minimize the total energy generation over the 
time horizon given the initial and final reservoir storages. 

The second approach is to solve the integrated short-term hydro-thermal problem, 
often called the ‘unit commitment problem’ in power systems jargon. The scheduling of 
thermal units involves the use of binary variables which establish the state (on-off) of 
each thermal unit at each time step and are used to include start-up and shut-down costs. 
This approach can yield better solutions than when hydro and thermal generation are 
optimized separately (Baldick, 1995). This integrated approach represents a situation 
when a single operator owns several plants (both hydro and thermal) and important gains 
can be obtained by coordinated operations. The objective is to minimize the total 
production cost (including thermal generation and net purchases for interconnected 
systems) over the horizon (day or week). Studies differ in the level of detail for 
representing different constraints (e.g. hydro system, thermal ramp constraints, spinning 
reserve). Solution techniques include linear programming (Piekutowski et al., 1994), 
network flow (Wang and Shahidehpour, 1993; Heredia and Nabona, 1995), dynamic 
programming (Ouyang and Shahidehpour, 1991), mixed integer linear programming (e.g. 
Chang el at., 2001), Lagrangian relaxation or decomposition (Ruzic and Rajakovic, 1991; 
Ohishi et al., 1991; Rakic and Markovic, 1994; Baldick, 1995; Guan et al., 1997), 
evolutionary algorithms (Kazarlis et al., 1996; Orero and Irving, 1998; Rudolf and 
Bayrleithner, 1999; Wu et al., 2000), artificial neural networks (Naresh and Sharma, 
2000), or a combination of techniques (Cheng et al., 2000).  

With the liberalization of the power sector, power markets started to play a role, 
defining the value of energy by the spot price and therefore the possible power exchanges 
among different companies. Markets have been explicitly incorporated in the optimal 
short-term scheduling problem by Scott and Read (1996), Lino et al. (2003), and 
Pritchard et al. (2005).    

In summary, long-term operating policies under hydrologic uncertainty can be 
advantageously derived by stochastic dynamic programming (SDP). Approximations are 
needed for large-scale systems to overcome the curse of dimensionality. The most 
suitable techniques for short-term hydro scheduling depend on the particular nature of the 
problem at hand, including the complexity of the hydro system, the interconnection of the 
power system, and the existence of power markets. No simple models have been 
proposed to analyze short-term (hourly) scheduling of hydropower reservoir systems. 
Also, power demands, or alternatively, energy prices, have traditionally been assumed as 
deterministic, even in long-term planning models. This assumption is not appropriate in 
the face of power markets, which particularly influence short-term operations. 
Uncertainty on energy prices should be incorporated in long-term models.  

 
2.2 Instream Flows and Ecosystem Effects of River Regulation 

Reservoir releases determine to a great extent instream flows at dowstream 
locations. Consequently, the main environmental effect of river regulation in general and 
hydropower reservoir operations in particular is the alteration of the stream flow regime 
at various time scales, including seasonal, monthly, daily and hourly. These alterations in 
turn affect the associated aquatic and riparian ecosystem mainly through habitat quantity 
and quality, and substrate availability (Valentin et al., 1996; Scruton et al., 2005). One 
traditional approach has been to recommend minimum instream flows to be supported by 
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reservoir releases. Another alternative is to compare the altered flow regime with the 
unimpaired one, and to establish admissible levels of alteration. When fish species are the 
main concern, flow regimes can be compared using sophisticated habitat-based 
population models. Knowledge of these approaches will allow us to define which 
approach is most suitable to be incorporated in our optimization model.  

A variety of methodologies have been proposed to establish minimum instream 
flow requirements (Jowett, 1997). Methods are based on historic hydrology (e.g. 
Hydrologic Records and Tennant Method), hydraulic considerations (e.g. Wetted 
Perimeter technique), and flow-based habitat suitability. Hydrologic and hydraulic 
methods require less understanding of the ecosystem processes and goals, and are less 
data-intensive than habitat suitability approaches. Incremental flow methods seek to 
answer the question of what happens to an ecologically relevant parameter, e.g. aquatic 
habitat, when flow changes (Stalnaker et al., 1995).  

Among incremental flow methods, the most widely applied is the Instream Flow 
Incremental Methodology (IFIM) created by the U.S. Fish and Wildlife Service (Bovee, 
1982). The IFIM, a data intensive approach, relies on the simulation module PHABSIM, 
which relates hydraulic conditions in the stream, typically depth and velocity, with 
habitat suitability for target fish species through two analytical components: stream 
hydraulics and life stage-specific habitat requirements (Milhous et al., 1984). The stream 
hydraulics component calculates water depth for a given flow and predicts velocities in 
the cross section. The habitat component assigns habitat suitability to each cell in the 
cross section and then calculates the weighted usable area (WUA) as a function of 
discharge. 

Unfortunately, IFIM fails to include a temporal dimension in the analysis, missing 
a link between extreme hydrologic and habitat events (Hickey and Diaz, 1999). It also 
fails to include the effects of short-term flow fluctuations in the stream (Hunter, 1992), 
which is a major effect associated with the operation of load-following hydropower  
systems. To improve applicability of this method, Armour and Taylor (1991) pointed out 
the need to investigate habitat-population relationships.  

Several authors have argued that flow regime aspects other than minimum 
instream flows be considered, particularly those related with hydrologic variability at 
different time scales (Richter et al., 1996; Poff et al., 1997). Hydrologic variability 
controls geomorphological processes that affect aquatic ecosystems in the long run. Dams 
alter geomorphology by changing the relationship between sediment supply and transport 
capacity. When the lack of high flows leads to fine sediment accumulation downstream, 
the action of natural floods to remove fine sediments can be mimicked by controlled 
reservoir releases, or flushing flows (Wilcock et al, 1996). Hill et al. (1991) proposed 
consideration of channel maintenance flows, riparian flows and valley maintenance. 

An alternative approach to study the effect of river regulation on the flow regime 
is to compare pre- and post-dam hydrologic conditions. Richter et al. (1996) proposed to 
compare 32 ecologically significant hydrologic attributes grouped in five categories, 
including magnitude of monthly flows, magnitude and duration of annual extreme water 
conditions, timing of extreme water conditions, frequency and durations of high and low 
pulses, and rate and frequency of water condition changes. An application of this method 
considers the definition of flow management targets based on small variations around the 
values of the 32 parameters in natural flow regime (Richter et al. 1997). Similarly, Poff et 
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al. (1997) propose that the ecological integrity of the system is controlled by five 
components of flow regime: flow magnitude, frequency of high and low flows (and other 
ecologically significant flows), flow duration, flow timing, and rate of change between 
flow magnitudes. A somewhat narrower approach explores the role of disturbances, 
defined as extreme, low-frequency events on the ecosystem, and time scale differences 
between disturbances and life spans of target species (Resh et al., 1988).  

Hydropower operations can affect several components of flow regime. In 
particular, short term load-following affects the rate and frequency of changes in flow 
magnitude. On the other hand, the relevance of each flow regime attribute depends on the 
specific ecosystem under consideration. For instance, in the Lower Roanoke River, where 
riparian wetlands constitute a primary concern, the duration of high water episodes is 
critical (Pearsall et al. 2005). Unfortunately, a sound selection of the essential features of 
flow variation to be included in impact studies is complicated due to the lack of 
quantitative relationships between parameters of hydrologic variability and its effect of 
river health (Jager and Smith, 2008). 

The temporal dimension of instream flows and its effect on fish habitat was 
studied by Stalnaker et al. (1996). They emphasized seasonal and interannual flow 
variability, and the effect of alternative regimes on the frequency and timing of habitat 
bottlenecks. The authors propose to develop flow-based habitat time series and to 
perform statistical analysis, including the development of habitat duration curves. 

One step beyond habitat models are habitat-based quasi-population models of fish 
species. All these models rely on habitat-flows relationships. Simple versions derive 
populations estimates based on physical habitat conditions and few empirical parameters 
(e.g. Harpman et al., 1993, Cardwell et al., 1996) and can be viewed as a direct extension 
of habitat-based models. More sophisticated, dynamic models have also been proposed, 
but their calibration relies heavily on long-term and intensive monitoring efforts. 
Examples of these models are SALMOD (Bartholow et al., 1993), which simulates 
salmonid population at weekly level, considering multiple habitat types and fish life-
stages; and the ORCM (Jager et al., 1997) which simulates Chinook salmon during one 
biologic cycle (from spawning to out-migration) and relies on similar inputs as 
SALMOD. 

In summary, no method is universally accepted by the scientific community to 
determine instream flow requirements for ecosystem purposes, and therefore to prescribe 
desirable reservoir release patterns. This is in part due to the dependence on particular 
conditions and objectives, and also because of the high degree of uncertainty that remains 
regarding the effects of flow regulation on ecosystems (Castleberry et al., 1996; 
VanWinkle, 1997; Jager and Smith, 2008). In practice and despite its drawbacks, the 
most widely used method is PHABSIM, which simply establishes minimum instream 
flows. 

 
2.3 Effects of hydropower operations on ecosystems 

The effects of hydropower operations on aquatic and riparian ecosystems have 
been studied by comparison of regulated and non-regulated rivers (e.g. Bain et al., 1988), 
or by exploring a limited set of operation schemes through simulation (e.g. Krause et al., 
2005; Scruton et al., 2005).  
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The effects of short-term, hydropeaking operations on aquatic ecosystems are not 
well understood, although reduction in native species richness has been observed 
(Vehanen et al., 2005). Experimental studies in real settings have concluded that 
hydropeaking affects movement patterns of fish, and that hydraulic refugia availability 
are crucial for fish to withstand flow and habitat fluctuations (Valentin et al., 1996; 
Scruton et al., 2005).  

In some cases a hydropower reservoir can create coldwater fisheries, although a 
hydropeaking operations work against that purpose (Krause et al. 2005). Moyle and Light 
(1996) concluded that flow regime controls the success of species invasion in California 
streams. The thermal effects of alternative flow scenarios to enhancing a trout fishery in 
eastern US were studied by Krause et al. (2005). They concluded that different flow 
regimes perform better with respect to various specific temperature-related objectives, 
like maximizing the occurrence of optimal grow temperatures or minimizing temperature 
fluctuations.  

To summarize, studies agree that hydropower operations have a negative effect on 
fish population, especially native species. No universally accepted predictive tools exist 
to quantify the effects of hourly flow changes on the ecosystem, particularly on fish 
populations. This relationship is crucial for the application of an optimization model for 
hydropeaking operations, because the effects of reservoir releases on the ecosystem 
define both the dynamics of the ecosystem state and also the value of possible ecosystem 
performance indicators. Beyond static habitat approaches (like PHABSIM), little 
agreement exist regarding what tools to use. Therefore, the traditional and robust 
approach of setting simple environmental constraints, like minimum releases to a stream, 
maximum rates of change in short-term operations, and maximum temperature of releases 
is adopted in this dissertation. Presumably, complexity can be added as part of future 
work. 

   
2.4 Tradeoffs between human and ecosystem objectives 

Due to the evident difficulty to relate hydropower operations with specific 
ecosystem performance indices, few studies have explicitly incorporated environmental 
objectives into water management decisions. In the case of optimization models for 
hydropower, environmental objectives are assumed as constraints, usually in the form of 
minimum releases. 

Hickey and Diaz (1999) integrated several software packages to explore the 
tradeoffs between economic benefits and fish population for five alternative flow 
regimes. The model includes a water allocation, temperature, habitat and salmonid 
population (SALMOD) modules.  A contingent valuation method was used to convert 
fish population into dollars.    

Multiobjective optimization methods identify optimal decisions when conflicting 
objectives are explicitly incorporated. These methods identify non-inferior solutions, i.e. 
points at which it is not possible to improve one objective without worsening another. 
The set of points representing the value of each objective for each of those alternative 
solutions is called a tradeoff curve or Pareto front (Ko et al., 1992).  

Cardwell et al. (1996) considered the objectives of minimizing water supply 
shortages and maximizing the number of fish outmigrants that could be supported by a 
given flow during a month (Cardwell et al., 1996). The authors determine habitat area 
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available at different flow levels using the IFIM methodology. Those values are then 
combined with habitat needs of various life stages (spawning, fry and juvenile) and 
translated into habitat capacity, an index representing the maximum number of fish that 
could be supported at the corresponding instream flow. For each choice of the relative 
importance of the objectives, four sets (one per each hydrologic year type) of monthly 
minimum inflows are generated. Suen and Eheart (2006) developed a multiobjective 
model where ecosystem objectives are represented by fuzzy membership functions based 
on the intermediate disturbance hypothesis. This allows consideration of several 
parameters of flow regime, similar to those included in the Index of Hydrologic 
Alteration.   

There is an important difference in the interaction between environmental flow 
requirements and human needs for agricultural, domestic, and industrial uses and 
hydropower production. In the former, water diverted from the reservoir for water supply 
does not contribute to environmental flows, whereas water diverted for hydropower 
production returns to the river at a point downstream the reservoir. Therefore, conflicts 
between instream flow needs and hydropower production include not only the amount of 
water available, but also the timing of releases. This issue is less critical when the 
reservoir is used for water supply, because water deliveries from a reservoir do not need 
to match demands in real time.    

In summary, few studies have explored tradeoffs between ecosystem and other 
beneficial water uses. Multiobjective optimization techniques have been applied to water 
resources systems. However, ignorance regarding the effect of different operational 
schemes on desirable ecosystem outcomes prevents us from representing ecosystem 
considerations as objectives. 
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CHAPTER 3 

RE-REGULATION OF HOURLY HYDROPOWER 
RESERVOIR OPERATIONS 

 
3.1 Introduction 

Hourly operations of hydropower reservoirs often involve sudden changes in 
releases associated with the hourly fluctuations in energy prices. This release pattern, 
known as hydropeaking, affects stream ecosystems by changing flow conditions on short 
time scales (Flug, 1997). Within the Federal Energy Regulatory Commission (FERC) 
licensing process in the United States, operations are often restricted by limiting rates of 
change of reservoir releases and by setting minimum releases to the stream. Although 
more sophisticated approaches to instream flow regime alteration have been recently 
developed (Richter et al., 1997), the relationship between flow alteration features and 
river health still lacks a quantitative characterization (Jager and Smith, 2008). 
Consequently, simpler approaches like the one considered here are still the most widely 
used for regulatory purposes.  

These operational restrictions limit the ability of the system to follow the pattern 
of energy prices and potentially reduce the economic value of daily generation. This 
effect can be alleviated if a water storage facility downstream of the power house re-
regulates the release pattern (Richter and Thomas, 2006). Such an alternative typically 
exists in cascade hydropower systems, where the most downstream reservoir can be used 
for this purpose. In some systems, afterbays have been created for this purpose.  

 
It is important to distinguish between re-regulation facilities whose sole purpose 

is to mitigate hydropeaking operations by an upstream reservoir, and those used for the 
double purpose of re-regulation and power generation. In the first case (Fig.3.1), which 
typically corresponds to a regulation facility at the downstream end of a hydropower 
reservoir system, all releases from the re-regulation facility are discharged into the 
stream. In this case, the re-regulation facility has to mitigate the hydropeaking operations 
and provide lower and upper bounds to instream flows.  

 
 

RtRt QtPower 
house

Reservoir

Afterbay

RtRt QtPower 
house

RtRt QtPower 
house

Reservoir

Afterbay

 
Figure 3.1: End-of-system afterbay schematics 

 
In the second case, which will not be studied here, water releases from the re-

regulation storage facility can be allocated either for power generation in a downstream 
plant or for instream flow in the downstream reach. Here, besides buffering ramping 
effects, the downstream facility ensures water is allocated to the stream at all times so the 
MIF requirement is met.  
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This chapter begins with the mathematical formulation of end-of-system afterbay 
operations as an optimization problem, a linear program. A model with hourly decisions 
is developed for a typical summer day in California. The behavior of solutions to this 
problem are then explored numerically and discussed in terms of hydropower and 
instream flow performance, afterbay capacity and operations, and turbine capacity. 

 
3.2. Mathematical formulation 

For daily operations on an hourly time-step, reservoir storage and elevation head 
can usually be considered fixed (for small rates of daily release relative to water stored 
and inflows for the immediately-upstream reservoir).  Linear program formulations for 
maximizing the economic value of hydropower subject to capacity and minimum release 
and ramping constraints are developed for cases with and without an afterbay. 

 
3.2.1 No afterbay 

As a first step, the effects of minimum instream flow (MIF) and maximum 
ramping rate (MRR) requirements will be examined for a simple system, where 
hydropower releases are directly discharged into the stream.  

The objective is to maximize the total daily value of hourly energy generation 

∑
=

⋅=
24

1t
tt EpzMax          (3.1) 

 
Where  is the energy price and  is the energy generated at time t.  tp tE

tt RhE ⋅⋅⋅= γη          (3.2) 
 
Where η  is the combined turbine and generation efficiency, γ  is the specific 

weight of water,  is the (constant) water head, and  is the water release through the 
turbines at time t.  

h tR

 
Hydropower operations are constrained by physical and regulatory restrictions. 

First, hydropower releases are bounded by turbine capacity.  
MAXt RR ≤            (3.3) 24,...,1=t
 
The mass balance in the hydropower reservoir can be simplified at this time scale 

by defining a total daily target release volume. This eliminates the need to consider 
inflows to the reservoir. Therefore, the total daily hydropower release is constrained by 
the total daily release target: 

TOT
t

t RR ≤∑
=

24

1

            (3.4) 

 
The regulatory constraints on stream releases are: 

Minimum instream flow       (3.5) MINt QR ≥

Maximum up-ramping rate       (3.6) UP
tt QRR ∆≤−+1

Maximum down-ramping rate        (3.7) DOWN
tt QRR ∆≤− +1
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This formulation can be summarized through the following linear program: 

∑
=

⋅⋅⋅⋅=
24

1t
ttR

RhpzMax
t

γη  

ts.     MAXt RR ≤     24,...,1=t  

TOT
t

t RR ≤∑
=

24

1

 

MINt QR ≥    24,...,1=t  
UP

tt QRR ∆≤−+1   24,...,1=t  
DOWN

tt QRR ∆≤− +1   24,...,1=t  
0≥tR   24,...,1=t  

 
3.2.2 With afterbay (Re-regulation reservoir) 

This formulation corresponds to the case of an end-of-system afterbay, whose sole 
purpose is to re-regulate the operations of an upstream hydropower reservoir. The 
problem is to operate both the hydropower reservoir and its re-regulation facility hourly 
to maximize total daily economic value of energy subject to constraints on the releases to 
the stream. A one-day time horizon is considered.  

The operational decisions are the hourly releases from each storage facility 
(hydropower reservoir and afterbay) during the day.  

The operational objective, turbine capacity constraint and daily water availability 
constraint are those of Eqs. (1.1) through (1.4). 

The mass balance in the afterbay, neglecting evaporation for such short time 
periods, is: 

( ) tQRSS tttt ∆⋅−+=+1   24,...,1=t      sec600,3=∆t    (3.8) 
 
Where  is the storage at the beginning of hour t and  is the flow discharge 

from the afterbay during period t. 
tS tQ

The following constraints (3.9a, 3.9b, 3.9c, and 3.9d) set storage bounds without 
imposing a timing phase or hour of minimum storage on the drawdown-refill cycle. First, 
initial storage is set as a large positive number: refSS =1     (3.9a) 

Then define the maximum and minimum reference storages:  
MINt SS ≥  and         (3.9b) MAXt SS ≤

Restrict storage range by afterbay reservoir capacity:  
CAPMINMAX SSS ≤−         (3.9c) 

Real storages can be recovered by substracting the lower bound:  
MINt

REAL
t SSS −=         (3.9d)  

To ensure temporal continuity in the problem, the final storage must be equal to 
the initial storage: ( ) 1242424 StQRS =∆⋅−+       (3.10) 

The regulatory constraints on stream releases are now imposed on the releases 
from the afterbay: 
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Minimum instream flow       (3.11) MINt QQ ≥

Maximum up-ramping rate       (3.12) UP
tt QQQ ∆≤−+1

Maximum down-ramping rate        (3.13) DOWN
tt QQQ ∆≤− +1

 
The mathematical formulation of the problem is summarized in the following 

linear program:  

∑
=

⋅⋅⋅⋅=
24

1, t
ttQR

RhpzMax
tt

γη  

ts.     MAXt RR ≤     24,...,1=t  

TOT
t

t RR ≤∑
=

24

1

 

( ) tQRSS tttt ∆⋅−+=+1  24,...,1=t  
       MINt SS ≥ 24,...,1=t  

MAXt SS ≤    24,...,1=t  

CAPMINMAX SSS ≤−  
   refSS =1  

( ) 1242424 StQRS =∆⋅−+      
    MINt QQ ≥ 24,...,1=t  

UP
tt QQQ ∆≤−+1   24,...,1=t  

DOWN
tt QQQ ∆≤− +1   24,...,1=t  

0,0 ≥≥ tt QR   24,...,1=t  
 

3.3 Model parameters 
Model parameters define infrastructure and instream flow regulatory constraints, 

daily hydropower release targets, and energy prices. Turbine capacity ( ) was set at 
50 m3/s. Afterbay storage capacity ( ) values of 180,000 m

MAXR

MAXS 3 and 360,000 m3 will be 
modeled, besides the No Afterbay case. These capacities are equivalent to a continuous 
flow of 50 m3/s (turbine capacity) during one and two hours, respectively. Other fixed 
parameters are: 100 ,  =h m =η  0.80, and 8.9=γ 3/ mkN . Hourly energy prices  are 
based on average August 2005 for the California ISO system (Fig.3.2). In general, higher 
energy prices are between noon and midnight. The lowest prices are between 3 AM and 8 
AM. Ordinal numbers on top of each column represent the rank of each hour in order of 
decreasing price. 

tp
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Figure 3.2: Hourly energy price August 2005 (Source: Cal-ISO) 

 
Values of regulatory-constraint parameters and daily hydropower release targets 

originate from various policy scenarios for hydropower operations. These scenarios are 
described in the next section. 
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3.4 Regulatory scenarios 
Different regulatory scenarios can be explored by changing the parameters , 

, and . The two ramping parameters will be assumed equal for ease of 
analysis and lack of evidence of its relative effect on the downstream ecosystem. Daily 
operational scenarios can be defined through different daily hydropower release targets, 

. Ranges for these parameters can be defined based on the fixed turbine capacity, 
, through the following inequalities.  

MINQ
UPQ∆ DOWNQ∆

TOTR

MAXR
Total daily hydropower release must be within the range defined by turbine 

capacity times hours of the day: MAXTOT RR ⋅≤≤ 240 . 
Minimum instream flow must be within the range defined by the average hourly 

release target: . 24/0 TOTMIN RQ ≤≤
Ramping rates ranges are defined by the difference between turbine capacity and 

minimum flow:  and . MINMAX
UP QRQ −≤∆≤0 MINMAX

DOWN QRQ −≤∆≤0
 

3.5 Model results 
The results of the optimization models under different scenarios allow for analysis 

of several economic and operational aspects of the system. The effects of regulatory 
policies (i.e., instream flow constraints) on hydropower revenues and on how the system 
is operated are examined. Operational results include the optimal daily pattern of 
hydropower releases and releases to the stream.  The economic value of expanding 
turbine capacities under each scenario also is of interest.  

 
3.5.1 Effects of instream flow constraints on hydropower revenues 

The unconstrained case defines a base for comparison. Figure 3.3 shows the 
optimal revenue for the relevant range of total daily hydropower releases, with no 
constraints on releases to the stream. The curves are identical, therefore 
undistinguishable, for all three afterbay storage capacities (including the No Afterbay 
case). Expectably, a re-regulation facility has no economic value if hydropower 
operations are not constrained by instream flow restrictions. The daily revenue the system 
can generate when it operates at full capacity the entire day is about $56,000.  The 
revenue from increasing daily release is somewhat non-linear, with preference given to 
maximizing release during hours when energy prices are highest.  With limited turbine 
capacities, larger daily release target volumes force larger releases during off-peak times, 
when energy prices are lower. The marginal revenue (slope of the curve) therefore 
decreases as larger mounts of water are available. 
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Figure 3.3: Optimal daily hydropower revenues with unrestricted instream flow 

 
The effects of varying minimum instream flow (MIF) levels with no ramping 

constraints are shown in Fig. 3.4, for the afterbay storage capacity of zero, and storage 
capacities equivalent to one and two hours of operation at turbine capacity, respectively. 
Series represent daily hydropower release target as a percentage of the maximum usable 
level, defined 24 hours operating at turbine capacity.  For all three storage capacities 
revenues decrease as the MIF requirement increases. However, the effect is clearly milder 
as storage capacity increases. For example, for a daily release target set to 50% of 
maximum daily release, with no afterbay the revenue decreases from $32,685 to $27,923, 
equivalent to 15%. With an afterbay, revenues fall to $29,614 and $30,743, equivalent to 
9% and 6%, for the smaller and bigger capacity, respectively. The reductions in revenue 
losses—$1,691 and $2,820 for the smaller and larger, respectively in this example—
represent the economic value of afterbays for the system. Another interesting observation 
is that the slope of each curve tends to become more negative as the MIF requirement 
increases. In other words, the marginal decrease in revenues increases with the minimum 
flow requirement. This can be explained by the fact that as the MIF increases, more of the 
available water is spent during hours with low energy price. 

The effects of ramping constraints on revenues are shown in Fig. 3.5. Each curve 
represents a daily hydropower release target as a percentage of the level defined by 24 
hours operating at turbine capacity, and afterbay capacity levels. As the maximum 
allowed ramping rate increases, operations are less constrained and therefore revenues 
increase, eventually reaching unconstrained levels. The reduction in revenues due to 
restricted ramping is greater for the case with no afterbay. For a daily hydropower release 
target of 50% of total capacity, a 17% reduction in daily revenue occurs between the 
unconstrained and zero ramping case. The reduction is 10% and 6% for afterbay storage 
capacity equivalent to one and two hours operating at turbine capacity, respectively.    
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Figure 3.4: Effect of MIF on daily revenues for different levels of daily release and afterbay size  

 
The effect of ramping constraints on revenue is strongest for intermediate daily 

water availability levels. Ramping rate constraints have little effect when very little or 
very much water is available for the day. For those curves where revenues are affected by 
ramping constraint levels, the marginal effect of limiting ramping rates decreases as 
higher ramping rates are allowed. Thus, the reduction in revenues due to ramping 
constraints is steepest for relatively small ramping rates. When higher ramping rates are 
allowed, the revenue approaches rapidly that of the unconstrained case. The range of 
ramping rates affecting the revenues is influenced by the existence and size of the re-
regulation reservoir. Without re-regulation, revenues are affected within a wide range of 
allowed ramping rates. The unconstrained revenue levels are reached only for ramping 
rates beyond 90% of turbine capacity per hour. Afterbay capacity limits the range of 
ramping rates which affect revenues. For an afterbay able to store an hour of operation at 
turbine capacity, revenues are only affected when allowed ramping rates are below 15% 
of turbine capacity per hour. This range decreases to 10% for an afterbay twice as large. 
This is the range where a conflict exists between the goals of avoiding sudden streamflow 
fluctuations and maximizing hydropower revenues. Restrictions outside this range will 
not affect revenues. Identifying this range is important for FERC licensing negotiations.  
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Figure 3.5: Effects of ramping constraints on daily revenue for different levels of daily release and 

afterbay size  
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Figure 3.6: Combined effect of MIF and ramping constraints on revenues with maximum ramping 

rate of 10% of turbine capacity 
 
The combined effect of minimum flow and ramping constraints on hydropower 

revenues is show in Fig. 3.6. The graph shows how the optimal daily revenue changes for 
different levels of minimum release to the stream, when ramping rates are restricted to be 
less than 10% the turbine capacity per hour. The effect is similar to that observed in Fig. 
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3.4, although in this case the curves without an afterbay are further apart from those with 
afterbay, in particular for low MIF requirements. This is due to the additional effect of 
the MRR. This situation, with relatively low MIFs (compared with turbine capacity) and 
relatively stringent ramping rates, will likely be encountered during FERC licensing 
negotiations for hydropower systems in the California Sierra Nevada. Without an 
afterbay, revenue levels are lower for all daily hydropower release target (series) and for 
small required instream flow. As the MIF increases, the revenue becomes closer to (even 
coincides with) that with MIF but unconstrained ramping. So, when large MIFs are 
required, ramping rates can be as stringent as 10% of turbine capacity per hour, without 
additional effect on revenues. This is reasonable, since increasing MIFs reduces the range 
of physically possible ramping rates, as seen in the ranges defined in Section 3.4. With a 
re-regulation reservoir, the curves practically coincide with those obtained when ramping 
is unconstrained. In this case, limiting ramping rates to 10% of the turbine capacity per 
hour has no additional effect on revenues to that attributed to minimum required releases 
to the stream. Again, the existence of an optimally operated afterbay reduces the degree 
of conflict between hydropower generation and instream flow goals. 

 
3.5.2 Hydropower generation pattern 

Daily hydropower generation is expected to follow the pattern of energy prices. 
Thus, in the unconstrained case, the water available for the entire day would be allocated 
for generation when energy is most valuable, and then allocated to less valuable hours as 
turbine capacity is reached.  This would continue until the day’s allocation of water to 
release was exhausted, leaving no discharge in any remaining off-peak hours. MIF and 
ramping rate constraints reduce the flexibility of the system to allocate water this way. If 
no re-regulation reservoir is available, such constraints are imposed directly on the 
hydropower generation pattern. In this case, releases to the stream coincide in magnitude 
and timing with those of hydropower generation. All the results shown in this section are 
for a daily hydropower release target equal to 50% the maximum usable daily water 
volume, as defined by turbine discharge capacity. In other words, the daily release target 
is enough to operate during 12 hours (50% of the day) at turbine capacity, although the 
actual allocation can consider intermediate releases (less than capacity) during some 
hours.  

Fig. 3.7 shows the effect of a MIF requirement on the hydropower release pattern. 
Each series represents an hour during the day. For the case without an afterbay (top 
graph), under no minimum flow requirement the hydropower release equals turbine 
capacity for twelve hours in the day (those when energy price is highest) and zero for 
those hours when energy is least valuable. This is expected, since the daily hydropower 
release equals 50% of the maximum volume defined by turbine capacity. As the required 
release to the stream increases, hydropower releases during less valuable hours make up 
the required MIF and, since only a fixed amount of water is available for the day, 
hydrogeneration decreases during some of the more valuable hours (in order of increasing 
energy price). The MIF is first allocated to every hour in the day and the remaining water, 
if any, is allocated is order of decreasing energy price. When the MIF matches the 
average hourly water availability (50% of turbine capacity in this case), hydropower 
releases are steady all day. 
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Figure 3.7: Hydropower release pattern under MIF for daily hydropower release of 50% of 

maximum 
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With an afterbay, the unconstrained hydropower release pattern, i.e. generation at 
turbine capacity during the twelve more valuable hours and zero during the rest of the 
day, is observed when relatively small instream flows are required. For instream flow 
requirement up to 9% of turbine capacity, hourly hydropower generation releases are the 
same as if no minimum release to the stream was imposed. This MIF level up to which 
revenues are not affected increases to about 18% for an afterbay twice as large. Beyond 
this range, generation gradually increases during the off-peak hours and decreases during 
the peak hours. With re-regulation storage capacity, even when MIF is the highest 
possible, hydropower releases are uneven during the day, with some (most valuable) 
hours generating at turbine capacity, and no generation at times when energy prices are 
lowest. Interestingly, hydropower releases during hours 20 and 22 go from turbine 
capacity to zero as the MIF requirement increases. Also, releases during hour 12 remain 
at turbine capacity for all MIF levels, whereas generation during hours with higher 
energy prices is less than capacity starting at some MIF levels. With re-regulation, the 
operational pattern departs from the simple one described for the case without an 
afterbay. Hydropower releases can be less than the MIF, and water is not necessarily 
allocated in order of decreasing price. The sequence of hydropower releases is such that 
the MIF can be released by the afterbay, which has a limited regulation capacity, at all 
times. In this case, the sequence of energy prices plays role as it will be clear from the 
daily sequence of afterbay storage. From Fig. 3.2, it is clear that prices in hours 20 and 22 
share a unique feature. Those are both hours of relatively high energy prices, but are 
preceded and followed by higher prices. On the contrary, hour 12 is between two hours 
when energy price is smaller.   
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Figure 3.8: Hydropower release under ramping constraints for daily hydropower release of 50% of 

maximum 
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Figure 3.9: Hydropower release under combined constraints for ramping rate 10% of turbine 

capacity and daily hydropower release of 50% of maximum 
The effect of ramping constraints on hydropower releases is shown in Fig. 3.8. 

Without an afterbay, hydropower releases are steady and unchanging if no ramping is 
allowed. As allowable ramping rates are increased, releases tend to increase during the 
most valuable hours and decrease when energy is cheapest, as expected. The oscillation 
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observed in the releases can be attributed to the small fluctuations observed in energy 
prices during peak times. Unlike the case of MIF alone, the effect of ramping rate 
constraints depends on the timing of prices. A similar behavior is observed when 
hydropower releases can be re-regulated by an afterbay. However, as the ramping 
constraint’s effects are dampened or eliminated, releases reach the optimal unconstrained 
zero-100% pattern (twelve hours operating at capacity and the other twelve with no 
generation), even with more stringent MRRs. This optimal pattern can be achieved with 
ramping rates greater than 18% and 12%, for the smaller and larger afterbay, 
respectively. Constrained ramping affects the revenue only for smaller allowable ramping 
rates. Similar to what was observed for MIFs, releases during hours 20 and 22 can vary 
from zero to turbine capacity as the restriction becomes less stringent, in this case as 
allowed ramping rates increase. This can be explained because under ramping 
constraints, release at a given hours constrains the releases in the previous and next hours. 
Since energy prices are very high in hours 19, 21, and 23, releases in hours 20 and 22 
must be sufficiently high to allow operation at turbine capacity during hours when energy 
is very valuable. 

The combined effect of minimum flow and ramping constraints on hydropower 
release decisions is shown in Fig. 3.9, for a MRR of 10% of turbine capacity per hour. 
Without re-regulation, the MRR eliminates the possibility of zero-100% generation 
releases. Even if no minimum flow is required, hydropower releases cover the entire 
spectrum (from zero to 100%), with increases of 10% of turbine capacity (allowed MRR) 
between hours. This is in contrast with the corresponding result in Figure 7, where the 
zero-100% release pattern was observed when no MIF was required. Of course, more 
water is released during hours of high energy price. When releases are re-regulated 
through an afterbay, for low MIFs the system operates at full capacity during some hours, 
at intermediate levels during others, and not at all at other times. For an afterbay twice as 
large, the hydropower releases follow a pattern closer to that with unconstrained ramping. 
If no minimum flow is required, the zero-100% pattern is observed. For relatively high 
required releases to the stream, the patterns observed in this case almost coincide with 
those observed in Fig. 3.7, without a ramping constraint. 

 
3.5.3 Instream flow pattern 

The instream flow pattern is important for the ecosystem (Moog, 1993). This 
section presents the time series of releases to the stream for a daily hydropower release 
target of 50% the maximum usable water defined by turbine capacity. Fig. 3.10 shows the 
sequence for MIF requirements between 0% and 50% (maximum feasible in this case) 
and unconstrained ramping. With no afterbay (top graph), releases to the stream coincide 
with hydropower releases and therefore are constrained by turbine capacity. Only the 
minimum releases occur during the 11 PM to 11 AM off-peak period. During the rest of 
the day, water is allocated to the hourly periods when water is more valuable, within the 
total daily release volume. For example, with no minimum required release, releases to 
the stream are zero during hours 1-11, and 13. Releases are equal to turbine capacity 
during all other times. If the MIF requirement increases to 10% of turbine capacity, 
releases to the stream are equal to the turbine capacity during hours 12, 14-19, and 21-23. 
Only the minimum is released during hour 24 whereas during hour 20 only 70% of 
turbine capacity is discharged to the stream. For a required minimum flow equal to 50% 
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turbine capacity (the same as our daily release volume), the same flow is released to the 
stream during the entire day. A similar pattern occurs with releases to the stream from an 
afterbay. However, during the peak period strong hourly fluctuations are observed, which 
can be explained by the lesser peaks in energy prices. The peak instream flows during the 
peak period reach values of twice the turbine capacity for small MIFs, probably to ensure 
the afterbay empties before the next day’s peak period. This behavior is interesting, since 
the existence of low minimum flow constraints with no restriction on ramping rates seem 
to cause these high releases to the stream in presence of an afterbay. Besides, the highest 
peaks occur for cases when low or no MIF is required. Maximum releases to the stream 
were not imposed in the original version of the model.   

The effects of ramping constraints with no MIF on the hourly instream release 
pattern are presented in Fig. 3.11. Without an afterbay, releases to the stream are those of 
hydro-generation. Except when no ramping is allowed, releases to the stream tend to be 
small (even zero) during the night and morning, and high during the afternoon and 
evening, when turbine capacity is reached. For allowed ramping rates up to 40% of 
turbine capacity per hour, releases to the stream are zero somewhere during the off-peak 
period, and tend to reach turbine capacity during on-peak hours, with a linear behavior in 
between. When ramping beyond 50% of turbine capacity is allowed, a peak streamflow is 
observed at noon. This can be explained due to the very high price of energy between 11 
AM and noon, compared to its preceding and following hours. Under constrained 
ramping, the sequence of price matters. With an afterbay, a similar pattern is observed for 
off-peak hours. However, considerably more fluctuations than without an afterbay 
(although within the acceptable ramping ranges) are observed during the on-peak period. 
Instream flows reach 200% of turbine capacity when generation is most valuable. Once 
again, it seems that when the unconstrained case is approached, large releases to the 
stream are induced. As with MIF requirement, the highest peaks occur when the 
restriction is less stringent. 

Fig. 3.12 shows the pattern of releases to the stream for a combination of MIFs 
and a maximum ramping rate of 10% the turbine capacity per hour. In this case, a similar 
pattern is observed for all three afterbay sizes. In general, the instream flow equals the 
minimum requirement during off-peak hours, and it reaches about turbine capacity during 
the on-peak period. As the required release to the stream increases, the maximum 
released observed during on-peak hours decreases, because only a finite amount of water 
can be released in total during the day. Interestingly, unlike the case without ramping 
constraints (Fig.3.10) releases to the stream barely exceed turbine capacity during on-
peak hours. Imposing a restriction on ramping also limits the maximum flows releases to 
the stream. These results show that combinations of MIF and MRR restrictions can 
induce very regular patterns of releases to the stream. 
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Storage Capacity = 2 hours of operation at turbine capacity
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Figure 3.10: Instream flow hourly pattern under different levels of MIF 



 36
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Storage Capacity = 1 hour of operation at turbine capacity
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Storage Capacity = 2 hours of operation at turbine capacity
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Figure 3.11: Instream flow hourly pattern under different levels of ramping rates 
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Storage Capacity = 1 hour of operation at turbine capacity
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Storage Capacity = 2 hours of operation at turbine capacity
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Figure 3.12: Instream flow hourly pattern under combined constraints  

 

The very high instream flows observed with afterbays when imposing MIF or 
MRR alone seem counterintuitive. The existence of an afterbay optimally operated 
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should result in better instream flow patterns than those obtained without re-regulation. 
Moreover, the flow pattern obtained without re-regulation is always feasible with an 
afterbay in place. Evidently, the problem is caused by the fact that instream flows are 
only controlled by constraints, but they play no role on the objective function. Therefore, 
there exist numerous alternative patterns of releases to the stream that will result in the 
same hydropower revenue, including the pattern obtained without an afterbay. In other 
words, among those instream flow patterns meeting all the constraints, including MIF and 
MRR, more desirable solutions can be found without affecting the level of revenues. To 
probe this point, the formulation was slightly modified by introducing persuasion 
penalties on undesirable outcomes in the objective function, i.e. subtracting small 
penalties from the total hydropower revenue so that instream flow releases are forced to 
take the more desirable values among all possible feasible combinations. Penalties were 
applied on the maximum instream flow observed in the day, and on the total magnitude 
of daily fluctuations, expressed as the sum of all hour-to-hour fluctuations (in absolute 
value). This approach to finding alternate optima is based on a similar procedure 
suggested by Revelle (1999).  

Alternative instream flow patterns under MIF alone with the smaller afterbay are 
shown in Fig. 3.13. The sequences in the top graph were obtained by imposing a penalty 
of total daily fluctuations. The center graph shows instream flow sequences obtained 
when the maximum release to the stream is penalized. Results obtained for a combination 
of both penalties are shown in the bottom graph. The penalties did not affect the optimal 
daily revenue or hydropower releases and constitute alternate optima with the original 
formulation. All the flow patterns in Fig 3.13 are alternative to those in the center graph 
of Fig. 3.10. Much more regular patterns are observed with the introduction of persuasion 
penalties. With a penalty on the maximum release, turbine capacity is never exceeded 
during the day. The decision regarding which of these instream flow patterns is more 
desirable for the downstream ecosystem can be solved in practice during the negotiations 
considered within the licensing process for hydropower plants. More scientific 
knowledge is still required for a conclusive answer when faced to this choice (Jager and 
Smith, 2008).    

Similarly, Fig. 3.14 includes three alternative patterns of releases to the stream 
with the larger afterbay under MIF constraints. Again, much more regular patterns than 
those observed in the bottom graph of Fig. 3.10 were identified. Patterns are very similar 
to those observed with the smaller afterbay (Fig. 3.13). 

The alternative flow patterns under MRR constraints are presented in Figs. 3.15 
and 3.16, for the smaller and larger afterbay, respectively. When contrasted with the 
results in the center and bottom graphs in Fig. 3.11, differences are evident. Expectably, 
more regular patterns are observed when fluctuations are penalized. Releases to the 
stream do not exceed turbine capacity when a penalty on the maximum daily release is 
introduced. With the larger afterbay, the instream flow patterns obtained with penalized 
maximum release and combined penalty are identical.  
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Storage Capacity = 1 hour at turbine capacity
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Storage Capacity = 1 hour at turbine capacity

Penalty on Maximum Instream Flow
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Storage Capacity = 1 hour at turbine capacity
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Figure 3.13: Alternative instream flow patterns for smaller afterbay under MIF 
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Storage Capacity = 2 hours of operation at turbine capacity
Penalty on Total Daily Fluctuations
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Storage Capacity = 2 hours of operation at turbine capacity
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Figure 3.14: Alternative instream flow patterns with larger afterbay under MIF 
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Storage Capacity = 1 hour of operation at turbine capacity
Penalty on Total Daily Fluctuations
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Storage Capacity = 1 hour of operation at turbine capacity

Penalty on Maximum Instream Flow
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Storage Capacity = 1 hour of operation at turbine capacity
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Figure 3.15: Alternative instream flow patterns with smaller afterbay under MRR  
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Storage Capacity = 2 hours of operation at turbine capacity
Penalty on Total Daily Fluctuations
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Storage Capacity = 2 hours of operation at turbine capacity

Penalty on Maximum Instream Flow
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Storage Capacity = 2 hours of operation at turbine capacity
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Figure 3.16: Alternative instream flow patterns with larger afterbay under MRR 
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3.5.4 Re-regulation reservoir storage 
This section shows the storage cycle in the re-regulation reservoir for a daily 

water availability of 50% the maximum usable. Fig. 3.17 shows the results for the case 
with MIF and no constraint on ramping. In general, for an afterbay size equivalent to one 
hour of operation at turbine capacity, the afterbay is full by midnight and empties during 
the morning, then it shows a couple of drawdown cycles during the on-peak period. The 
afterbay empties faster in the morning as the MIF requirement increases. For MIF=10% 
the afterbay starts empting at 1 AM and finishes by 11 AM. In contrast, when the 
minimum flow requirement is most stringent (50%), the afterbay takes only an hour to 
empty. Immediately after noon, the storage increases to about 50% of its capacity and 
then the behavior differs depending on the MIF level. For MIF=10% the afterbay never 
empties during peak hours, the lowest observed storage is about 30% capacity. When a 
minimum release equal to 50% of turbine capacity is enforced, the afterbay is empty 
between 1 PM and 3 PM, and then it fills to reach storage capacity by 5 PM. From there 
storage fluctuates between full and 50% until midnight. In the unconstrained case 
(MIF=0%), the reservoir is full during two short periods right after the hours when 
energy is most expensive, and remains empty the rest of the day. Interestingly, when no 
minimum release is required, the afterbay is irrelevant for hydropower revenues and 
therefore an alternative storage pattern would be to bypass it and keep it empty the entire 
day. This is consistent with the several alternative instream flow patterns shown in the 
previous section. Patterns in the releases to the stream are directly related to operational 
patterns for the afterbay.  

For an afterbay twice as large, the morning drawdown takes longer than with a 
smaller storage capacity, for all MIF levels. However, the afterbay is never full for MIFs 
below 20% the turbine capacity. Moreover, during peak hours the afterbay only reaches 
capacity for the most stringent release requirement, under which its behavior is similar to 
that observed for the smaller afterbay.     

The effect of maximum ramping rates on the storage sequence with no minimum 
release requirement is presented in Fig. 3.18. The smaller re-regulation reservoir tends to 
fill at least twice during the on-peak period, but it only reaches full capacity when the 
smallest or the largest ramping rates are allowed. Except when no ramping is allowed and 
consistent with the results in the preceding section, maximum storages tend to decrease as 
the ramping constraint becomes more stringent. This seems counterintuitive, since use of 
re-regulation capacity is expected to decrease as more flexible operations are allowed. 
For most MRR levels, highest storage levels are observed between 2 PM and 3 PM, and 
between 9 PM and 10 PM. An afterbay with capacity to store a volume equivalent to two 
hours of hydropower releases at turbine capacity, only reaches full capacity when no 
ramping or 10% of turbine capacity is allowed. In all other cases, the afterbay reaches at 
most 50% of its capacity during the on-peak hours, with highest storages between 5 PM 
and 6 PM, and between 9 PM and 10 PM. It seems that, under ramping rate constraints 
alone, a rather small afterbay is needed unless very little ramping is allowed. This is 
consistent with the revenue results (Fig. 3.5), where the effect of the afterbay only differs 
between both capacities for allowed ramping rates smaller than 10% the turbine capacity.  

Fig. 3.19 shows the storage cycles under various MIFs and ramping rates 
restricted to 10% turbine capacity per hour. Unlike the previous cases, a clear pattern is 
followed for all MRR levels. The pattern is similar for both storage capacities. As in the 
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case with MIF alone, a drawdown occurs during the off-peak hours and the reservoir fills 
up during on-peak hours. The afterbay reaches full capacity for all MIF levels.  

Storage Capacity = 1 hour of operation at turbine capacity
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Storage Capacity = 2 hours of operation at turbine capacity
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Figure 3.17: Re-regulation reservoir storage under MIF 
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 Storage Capacity = 1 hour of operation at turbine capacity
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Storage Capacity = 2 hours of operation at turbine capacity
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Figure 3.18: Re-regulation reservoir storage under ramping constraints 
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Storage Capacity = 1 hour of operation at turbine capacity
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Storage Capacity = 2 hours of operation at turbine capacity

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

St
or

ag
e 

(%
 S

to
ra

ge
 C

ap
ac

ity
)

MIF=0%
MIF=10%
MIF=20%
MIF=30%
MIF=40%
MIF=50%

 
Figure 3.19: Re-regulation reservoir storage under MIF and 10% maximum ramping rate 

 
Afterbay storage cycles for the alternative instream flow patterns presented in the 

previous sections are shown in Figs. 3.20 through 3.23. For the case of MIF alone with 
smaller afterbay (Fig.3.20), a much more regular pattern is followed for all MIF levels 
during the peak hours. Observed storages are highest after hours of high prices. Similar 
patterns are observed in Fig. 3.21, for a larger afterbay under MIF constraints.  

Under ramping constraints alone, no clearer patterns than those observed for the 
original results are identified, although more storage tends to be used when total 
fluctuations are penalized as compared to the original results for the larger afterbay (top 
graph on Fig.3.23).  



 47

Storage Capacity = 1 hour of operation at turbine capacity
Penalty on Total Daily Fluctuations
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Storage Capacity = 1 hour of operation at turbine capacity

Penalty on Maximum Instream Flow
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Storage Capacity = 1 hour at turbine capacity

Combined Penalty
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Figure 3.20: Alternative storage patterns for smaller afterbay under MIF 
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Storage Capacity = 2 hours of operation at turbine capacity
Penalty on Total Daily Fluctuations
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Storage Capacity = 2 hours of operation at turbine capacity

Penalty on Maximum Instream Flow
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Storage Capacity = 2 hours of operation at turbine capacity
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Figure 3.21: Alternatives storage patterns for larger afterbay under MIF  
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Storage Capacity = 1 hour of operation at turbine capacity
Penalty on Total Daily Fluctuations
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Storage Capacity = 1 hour of operation at turbine capacity

Penalty on Maximum Instream Flow
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Storage Capacity = 1 hour of operation at turbine capacity
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Figure 3.22: Alternative storage patterns for smaller afterbay under MRR 
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Storage Capacity = 2 hours of operation at turbine capacity
Penalty on Total Daily Fluctuations
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Storage Capacity = 2 hours of operation at turbine capacity

Penalty on Maximum Instream Flow
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Storage Capacity = 2 hours of operation at turbine capacity
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Figure 3.23: Alternative storage patterns for larger afterbay under MRR 
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3.5.5 Marginal value of turbine capacity (MVTC) 
The value of a unit increase in turbine capacity is an important economic indicator 

of the system. It helps guide decisions on capacity expansion. Fig. 2.24 shows the effect 
of MIF requirements on the marginal value of turbine capacity, for selected levels of total 
daily water availability. No ramping constraint is imposed in this case. As expected, the 
MVTC decreases as the required release to the stream increases, because less water can 
be optimally allocated to hydropower generation. The value increases as does the daily 
hydropower release target, because more water is available and then additional generation 
capacity is more valuable. Without an afterbay, the MVTC reduces to zero when the 
required release to the stream approaches the average water availability. At that point, 
even if turbine capacity was increased, the minimum flows make it impossible to allocate 
more water for generation during the most valuable hours. With an afterbay, the decrease 
in MVTC due to MIF requirements is less pronounced. The afterbay dampens or 
eliminates the connection between hydropower release and streamflow. This effect is 
slightly stronger for an afterbay twice as large. 

The effects of restricted ramping rates with no required minimum flow are shown 
in Fig. 3.25, where each series represent a level of daily hydropower release target. For 
all target release levels and afterbay sizes, the MVTC increases as higher ramping rates 
are allowed, i.e., as ramping becomes less constrained and more flexible operations are 
possible. With an afterbay, the MVTC reaches its unconstrained level after ramping rates 
of about 18% and 10% of turbine capacity. This is consistent with the range of ramping 
rates where the optimal daily hydropower revenue was affected. 
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Figure 3.24: Effect of MIF on the marginal value of turbine capacity 

 
Finally, the MVTC as a function of MIF requirement for a maximum ramping rate 

of 10% is shown in Fig.18. Clearly the MVTC’s in this case are lower than those with 
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MIF requirement alone. Without an afterbay, the MVTC is zero for daily water 
availability at or under 40% of the maximum, for all feasible levels of required releases to 
the stream. Comparing the results for the two afterbay sizes, the larger afterbay has larger 
MVTC’s, especially when required releases to the stream are large.  
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Figure 3.25: Effect of ramping constraint on the marginal value of turbine capacity  
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Figure 3.26: Combined effect of MIF and maximum ramping constraint on the marginal value of 

turbine capacity  
3.6 Conclusions 

This chapter presented the results of an optimization model that simulates the 
operation of a reservoir-afterbay hydropower complex, under regulatory constraints 
defining minimum releases to the stream and the maximum rates of release change 
between two consecutive hours. The linear programming formulation solves the problem 
for periodic operations without specifying timing on the drawdown-refill cycle. 

Tradeoffs between economic benefits and instream flow requirements were 
explored. Constraints on releases to the stream have an economic impact on hydropower 
revenues. However, a re-regulation reservoir can mitigate this effect by dampening the 
connection between hydropower generation flows and releases to the stream. Stringent 
MIF requirements alone can reduce revenues by 15% when no re-regulation capacity is in 
place. If a re-regulation reservoir is introduced, the revenue reduction is 9% and 6% for 
afterbay capacities equivalent to one and two hours of operation at turbine capacity, 
respectively. Similar effects where observed for restricted ramping rates alone. However, 
it was observed that, for the cases with afterbay, only very stringent ramping rates, below 
15% of turbine capacity, affect hydropower revenues. Differences in revenues between 
both afterbay sizes are only observed for allowed ramping rates below 10% of turbine 
capacity. Both afterbays perform equally well in terms of revenues for less stringent 
ramping constraints. When higher hourly fluctuations of instream flows are allowed, 
revenues reach the unconstrained levels. The effect of combined minimum flow and 
ramping constraints was studied for a maximum ramping rate of 10% turbine capacity 
and varying levels of minimum required releases to the stream. The results are very 
similar to those obtained for MIF alone. Therefore, limiting ramping rates to 10% of the 
turbine capacity per hour has no additional effect on revenues to that attributed to 
minimum required releases to the stream. 
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The magnitude and timing of hydropower generation flow decision were also 
studied. In general, hydropower releases tend to follow the price pattern characterized by 
high prices during the PM hours and lower prices during the rest of the day. These two 
periods can be considered on-peak and off-peak, respectively. Constraints on releases to 
the stream restrict the ability of the system to follow the daily pattern of energy prices. 
Minimum required releases to the stream force the system to generate electricity during 
less valuable hours, when no afterbay is available. With an afterbay, operations are not 
affected for MIFs up to 10% and 20% of turbine capacity, for the smaller and larger 
storage capacity, respectively. Constraints on ramping rates cause more uniform hourly 
releases. As larger ramping magnitude is allowed, more generation is observed during on-
peak hours. When re-regulation is possible, only very severe constraints on ramping (less 
than 20% of turbine capacity) have an impact on hydropower release decisions.  

Releases to the stream match the minimum required during off-peak hours, and 
are higher and more fluctuating during on-peak hours, even doubling turbine capacity 
when re-regulation is available. The afterbay tends to empty during the off-peak period 
and it fills up, often more than once, during on-peak hours. Several alternative instream 
flow patterns were explored by introducing penalties on the sum of daily fluctuations 
and/or the maximum hourly release during the day. All alternative solutions gave the 
same optimal revenue, revealing the existence of several alternative operational patterns 
for the afterbay.  

Afterbay storage results show a drawdown during the morning off-peak hours and 
some refill cycles during peak hours. Storages are highest after hours of high energy price 
(and therefore high hydropower generation).   

Finally, modeling has proven a useful tool to study a reservoir-afterbay complex 
under parametrically varying instream flow constraints and daily hydropower release 
targets. 
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CHAPTER 4 

REPRESENTATION OF ENERGY PRICES IN LONG- AND 
MEDIUM-TERM OPTIMIZATION OF HYDROPOWER 
RESERVOIR OPERATIONS 

 
4.1 Introduction 

Optimization models are commonly used for hydropower reservoir operations at 
different time scales, ranging from seasonal operation planning to daily, hourly, and real-
time operations. Before energy market liberalization, the problem was formulated as cost 
minimization by a central utility planner (Jacobs and Schultz, 2002).  With energy 
markets in place and decentralization of electricity generation authority, revenue 
maximization has become the driver for operations. Since price is a market output, this 
process involves an increase in the uncertainty facing power operators.  

In short-term models, with an hourly time step and time horizon of a few days, 
using an average price during each time step should work well, because it matches the 
time frame of market clearing prices developed by the Independent System Operator 
(ISO). However, at longer time scales, assuming a single representative price for each 
time step (week, month, etc) can be misleading, especially if the average or median of the 
full historical record for the period in question is considered. Using an average price most 
likely underestimates revenues, because the actual average price does not necessarily 
include all the hourly prices during the period in question, but only those corresponding 
hydropower generation times. Including prices at every hour does not recognize the 
nature of peaking operations. Generally, reservoir releases will be allocated for 
generation during hours with higher energy prices. Unfortunately, using average energy 
prices has been the common in the water resources literature. Efforts to improve this 
simplification have used peak and off-peak prices, with an upper bound on the number of 
hours of generation at peak energy price (e.g. Grygier and Stedinger, 1985; Trezos and 
Yeh, 1987). California’s PGE scheduling system SOCRATES (Jacobs et al. 1995) 
divides each weekly or monthly period into 4 sub-periods, which distinguishes between 
peak and off-peak generation during weekdays and weekends.  

Instead of a complete representation of energy prices, research has focused on 
development of efficient algorithms for multi-reservoir systems (e.g. Turgeon and 
Charbonneau, 1998; Pereira and Pinto, 1985), and incorporation of hydrologic 
uncertainty (Kelman et al., 1990; Tejada-Guibert et al., 1995). Little consideration has 
been given to uncertainty in the energy prices, which drive operational decisions in 
decentralized systems. Within the energy systems literature, work has been directed to 
developing statistical price forecasting models (Nogales et al., 2002) and explicit 
economic models of electricity markets, including optimal bidding strategies for 
generators under perfect competition (Pritchard et al. 2005) and duopolistic models (Scott 
and Read, 1996). 

This chapter develops a method to incorporate hourly price and operational 
information into revenue functions at coarser daily, weekly, or monthly modeling time 
scales. The proposed method approximates the results that would be obtained by an 
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embedded hourly optimization procedure, simplifying the computational implementation 
of optimization models for operations at the coarser time scales. The method assumes the 
reservoir operator has a perfect foresight of a duration or frequency curve of hourly prices 
for the relevant time scale. This extends and develops the work of Madani and Lund 
(2008), who considered hydropower systems with constant head, to storage-dependent 
head and releases constrained by minimum instream flows.  

 
4.2 Price duration curve and optimal operating rules  

A common objective for hydropower operations is to maximize the total revenue 
obtained from generation during a time horizon T , typically discretized into smaller 
decision periods T∆ .  Time horizons of one year with weekly or monthly decision are a 
common choice.   

In general, the total revenue due to energy sales during a period T∆  is given by: 

∫
∆+

⋅⋅=
Tt

t

dttWtPB
0

0

)()(          (4.1) 

Where  is the energy price at time t and is the power generation during 
time t given by: 

)(tP )(tW

)()()( thtQtW ⋅⋅⋅= γε ,        (4.2) 
 

Where ε  is the generation efficiency andγ  is the specific weight of water.  
and  are the release rate and head at time t, respectively.  
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Embedding (4.2) into (4.1) we have: 
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Discretizing T∆  into N sub-periods t∆ (e.g. one hour), (4.3) becomes: 

( ) ∑
=

∆⋅⋅⋅⋅⋅=
N

i
iiiiii thQPhQPB

1

,, γε                    

A precise representation of the intra-period problem would involve the 
maximization of B  subject to operational constraints on release flows at each hour. The 
problem also would be subject to an initial storage and total water availability for the 
operational period T∆ .  

Without constraints other than turbine flow capacity and total water release 
allocation during T∆ , the optimal operational rule is straightforward.  Releases are 
allocated to hours during the operational period in the order of decreasing price until 
water allocation is exhausted.  Given a total volume V of water available for generation 
and turbine flow capacity C  (Volume/hour), the total number of hours of operation at 
full capacity is . Then the percentage of hours of operation is: CVNV /=

100(%) ⋅
∆

=
T

Nf V
V  

The duration curve for hourly energy prices during a given period relates a 
given price level 

T∆
P with the fraction of T∆ during which prices have equaled or 

exceeded P . The key concept of the method is to relate this fraction to the percentage of 
the total energy that could be generated if the plant was generating at capacity during the 
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entire operational period.  This allows the actual average price to depend on the level of 
total generation or proportion of hours generated.  The operator cannot influence the 
market price. Hourly prices are exogenous to the optimization, but perfect foresight of the 
duration curve by the operator is assumed.  Therefore, for peaking generation, the 
average price realized depends on the portion of the price duration curve covered by the 
operations, beginning with the highest-priced hours. 

Given an energy price duration curve , the optimal operating rule is to 
generate at turbine capacity during all hours when the price . This is illustrated 
in Fig. 4.1, which also shows a typical peak/off-peak price structure approximation. Since 
operational decisions are made at the beginning of every hour, our approach assumes the 
operator has a perfect 1 hour-lead price forecast, which is almost the case in the field, as 
well as a perfect knowledge of the price duration curve. 
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Figure 4.27: Price duration curve and 2-block price approximation 
 
With the operational scheme just described, the total revenue during the period 

T∆  can be obtained as a function of the turbine capacity, the total volume allocated 
and the head at each period: V

( ) ∑
∈

∆⋅⋅⋅⋅⋅=
)(

,,
VfIi

iiiV thCPhfCB γε        (4.4) 

Where  is the set of hours when the price is higher than , obtained 
from the price duration curve. Fig. 4.2 shows the set  within a weekly time series 
for selected values.  

)( VfI ( VfP )
)( VfI

Vf
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Figure 4.28: Example price time series including selected percentiles 

 
4.3 Approximation of optimal revenues 

From this perspective and assumptions, an optimal revenue function can be 
estimated for various conditions. 

 
4.3.1 Constant head 

When changes in storage do not significantly change total head, one can assume a 
constant head.  This occurs when V is small relative to total storage or when most head is 
produced by a very long penstock where large changes in reservoir stage do not greatly 
affect total head. Using this approximation, (4.4) becomes: 

( ) )()(,,
)(

VVVV
VIi

iV fPEfPNthCPthChfCB ⋅=⋅⋅∆⋅⋅⋅⋅=∆⋅⋅⋅⋅= ∑
∈

γεγε   (4.5) 

where is the total energy that can be generated with a volume V  of water at constant 

head and 
VE

)( VfP  is the average of all prices greater than ( )VfP .  With constant head, the 
revenue depends only on the total volume of water available but not on the reservoir 
storage level.  

Given a representative decreasing sorted sample of prices for the duration curve, 
the function )( VfP  can be calculated as the moving average of prices up to ( )VfP . Fig. 
4.3 shows the moving average curve corresponding to the duration curve shown in Fig. 
4.1.  
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Figure 4.29: Moving average curve as a function of percentage of hours of generation  
 
Given the turbine flow capacityC and the constant head , the revenue curve as a 

function of the percentage volume allocation  can then be obtained from (4.5). Fig. 4.5 
shows the revenue curve corresponding to the price curve in Fig. 4.4 for hypothetical 
values of the turbine capacity and head. It shows decreasing marginal revenues. 
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Figure 4.30: Revenue curve given turbine capacity and head 

 
4.3.2 Storage-dependent head 

When total head depends markedly on reservoir storage level, the estimation of 
total revenue becomes more complicated, because one hour of operation will result in 
different energy generation depending on the reservoir level during each hour.  In other 
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words, the step from (4.4) to (4.5) cannot be done.  However, the operational rule remains 
valid, only the estimation of total revenue becomes more complicated as it depends on 
the price-storage pairs that are realized during operations.  Fortunately, upper and lower 
bounds for revenues can be calculated assuming the best and worst case scenarios for 
price-storage pairs, respectively.  In the best case scenario, high prices perfectly match 
high storage (head) levels.  The contrary is assumed in the worst case scenario, with most 
releases occurring in the lower storage (head) times.  Estimation of these bounds only 
requires that we know the increase or decrease in reservoir volume of the operational 
period, and that the net rate of change in storage be approximately steady of the 
operational period.  For these cases, Eq.4.4 becomes: 

∑
∈

⋅⋅∆⋅⋅⋅=
)(VIi

ii hPtCB γε         (4.6) 

In reality, the revenue will be somewhere between those two bounds.  The result 
will depend on the price sequence effectively seen by the operator and on how the storage 
evolves through time.  The latter will depend on the balance between releases and inflows 
to the reservoir.  However, as shown in Fig.4.4, the sequence of price values during 
generation hours tend to be periodic, for any frequency level. These sequences are 
obtained from the truncated total time series obtained for each generation frequency level 
as shown in Fig.4.2. In this particular series, lower peak prices are observed at the 
beginning of the sequence.  This is explained because the week started on a weekend, 
which is an off-peak period. Other than that, no marked bias on price levels seems to 
exist during weekdays.   

The hourly storage sequence is determined by water balance: 
( ) tiiii etQISS −∆⋅−+=+1         (4.7) 

Where  and are the inflow to and evaporation from the reservoir during the itI te th 
hour of the week, respectively.  Assuming the operational scheme previously described 
we have: 
During hours of generation (4.7) becomes: ( ) tiii etCISS −∆⋅−+=+1  
During hours without generation (4.7) becomes: tiii etISS −∆⋅+=+1  
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Figure 4.31: Example price sequence during hours of operation for different frequency levels 

(No release takes place in hours between price bars) 
 
Thus, reservoir storage will increase or decrease depending on the hydrologic and 

atmospheric conditions during the operational period.  In California’s Sierra Nevada 
mountains, spring has large inflows due to snowmelt and moderate evaporation, so 
reservoirs tend to refill overall.  During summer, evaporation increases and inflows 
decrease, so refill during non-generation hours cannot be guaranteed. In other words, the 
net inflow, along with the release decision at every period, determines the change in 
storage. 

Since the objective of this chapter is to develop simple estimates of the total 
revenues during weeks or months, a detailed analysis of hourly inflow and evaporation 
series is beyond our scope. A simple estimate can be obtained using (4.5) with the 
average between the initial and final head during the period, which requires only the 
initial and final storage for each period T∆ .  The final storage can be calculated from the 
initial storage and net inflow during the entire period.   
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4.3.3 Environmental Constraints on Releases 
Often, environmental constraints take the form of minimum instream flows 

(MIFs) and maximum ramping rates (MRRs).  When these restrictions are imposed, the 
optimal operational strategy departs from the simple one described above.  In the case 
with MIF alone, the approach can be slightly modified in that the total volume V cannot 
be freely allocated by the operator.  However, the described procedure remains valid if 
the “effective” volume available for discretionary release is considered, i.e. the volume 
that can be allocated by the operator during hours of high price. This volume includes the 
minimum release in those hours.   

Given a total volume V  available for the entire period and a minimum flow , 
the percentage of the time  that operation at full capacity can take place is given by: 

minQ

EFFf
 

)1(min EFFEFFMINEFF fTQfTCVVV −⋅⋅+⋅⋅=+=       (4.8) 
 

Solving for , with EFFf CQ ⋅=αmin  we obtain: 
)1(
)(

α
α

−
−

= V
EFF

f
f   (4.9) 

Similar to (4.4), the total revenue is given by: 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅⋅+⋅⋅∆⋅⋅⋅= ∑
∈ ∉)( )(

,,,
eff effVIi VIi

iiV PCPCthhfCB αγεα ∑     (4.10) 

Eq. (4.10) simply separates the revenues between those hours when discretionary 
release over the MIF is allocated and those when only the MIF is released. 

 Defining the excess turbine capacity over the MIF as )1( α−⋅=CQex , after 
some algebra (4.8) becomes: 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅⋅+⋅−⋅⋅∆⋅⋅⋅= ∑ ∑
∈ =)( 1

)1(,,,
effVIi
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i
iiV PCPCthhfCB ααγεα  

In terms of the average prices: 
( ) ( )PNCPfNCthhfCB EFFEFFV ⋅⋅⋅+⋅⋅⋅−⋅⋅∆⋅⋅⋅= ααγεα )1(,,,   (4.11) 

 
Where )( EFFEFF fPP =  and P is the average price for the entire period of interest. 
Substituting (4.9) in (4.11) we obtain: 

( ) ( )ααγεα ⋅+−⋅⋅⋅∆⋅⋅⋅⋅= PfPNtChhfCB VEFFV )(,,,     (4.12) 
 
Rearranging and expressing in terms of energy and prices we obtain: 

( ) ( ) PEPEEhfCB MINEFFMINVV ⋅+⋅−=,,,                                (4.13) 
Where : energy generated with minimum release MINE
            : total energy generation  VE
The effect of a minimum release on revenues is clear if we compare Eq.(4.13) 

with the expression in Eq.(4.5). With minimum flows, since the MIF must be released at 
all times, the value of energy associated with the MIF is equal to the average price over 
the period. 
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The energy in excess of the minimum energy is sold at a higher price, determined 
by the allocation of excess water to each hour in order of decreasing energy price.   

With MRRs the optimal strategy is not very straightforward.  However, as shown 
in the previous chapter, the effect of MRRs on revenues can be easily determined for any 
system based on a normalized approach.  This provides the percentage reduction of 
revenue relative to the unrestricted optimum, for given MIFs and MRRs expressed as a 
percentage of turbine flow capacity.  This exercise will not be done in this chapter and is 
a possible extension of the method presented here.   

 
4.4 Numerical Example 

A numerical example is used to illustrate the concepts and equations developed 
above. 

 
4.4.1 System description  

The method for storage-dependent head is applied to a relatively small reservoir 
with a capacity of 75 TAF and the storage-head curve shown in Fig.4.6.  The curve can 
be approximated analytically. At very low storage values the relationship is linear.  For 
the rest of the storage range, the curve can be approximated by a quadratic polynomial.  
The power house is 50 ft below the reservoir. 
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Figure 4.32: Storage-head curve for example application 

 
Two different weeks will be considered to test the method: one in winter (10th 

week of the calendar year) and the other in summer (30th week of the year).  Table 4.1 
summarizes the information used in this example.  Based on historical records for the 
California Sierra Nevada, for the summer week the net inflow (inflow minus losses) is set 
to zero. This means that losses, mainly due to evaporation offset the likely small natural 
inflows entering the reservoir. Initial storages are about 13% and 47% of storage capacity 
for weeks 10 and 35, respectively. 

Hourly energy prices for the year 1999 were obtained from the California PX data 
(available at http://www.ucei.berkeley.edu/). The corresponding Price Duration (PD) and 
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Moving Average (MA) curves are shown in Fig. 4.6 at 5% frequency intervals. The 
“exact” MA for each percentile was calculated from the actual sample of prices. The 
“approximated” MA is obtained directly from the PD curve by averaging the 
corresponding price percentiles at 5% intervals.  This approximation can result in errors 
of about 10% with respect to the exact MA. 

 
Table 4.1: Summary of data 

Storage Capacity (TAF) 75 
Turbine Flow Capacity (cfs) 1000 
Max. Release (TAF/week) 13.88 
  Week 10 Week 35 
Initial Storage (TAF) 30 50 
Net Inflow (cfs) 180 0 
Average Price ($/MWh) 17.3 41.6 
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Figure 4.33: Price information year 1999 (Cal-ISO) 

 
4.4.2 Approximation results without MIFs 

The purpose is to estimate the optimal revenue during each week as a function of 
the initial and final storage,  and , respectively, and the total volume of water 
allocated for generation during the week .  Storage information is necessary for head 
calculation. 

tS 1+tS

tV

For both weeks, the exact nonlinear optimization problem was solved using the 
CONOPT solver in GAMS, assuming perfect foresight of energy price and net inflow to 
the reservoir.  For the proposed approximation, the total revenue for each week was 
calculated as described in section 4.3.2.  The total revenues for each method are shown in 
Fig. 4.7 for the entire range of possible weekly release as a function of turbine capacity.  
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When the proposed method is applied using the actual sample MA, it matches the optimal 
results almost perfectly. With the approximated MA, the quality of the approximation 
depends on the week.  As shown in Fig. 4.8, for week 10 the approximated MA is very 
close the exact one and therefore both revenues approximations almost coincide.  For 
week 35, the errors introduced by approximating the MA result in a much worse 
approximation than that with the exact MA.  The difference between the optimal and the 
estimated revenues increases with the total weekly release, reaching values as high as 
10%. This is due to the greater price variability during week 35, having a much larger 
price range than week 10, as shown in the price duration curve in Fig. 4.7. 
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Figure 4.34: Effect of MA calculation on estimated revenues without MIF 

 
4.4.3 Comparison with peak/off-peak price scheme 

For comparison, we developed a method to design an optimal two-block 
(peak/off-peak) price scheme. A two-block price scheme will be optimal if the 
corresponding revenues have the least squared deviations from the optimal revenues for 
the whole range of total release. The design consists in finding the parameters  , 

 , and  as shown in Fig.4.1. Formally stated, the optimization problem is 
PEAKP

OFFP PEAKf

( )
2

/

,, ∑ −
V

VV
PEAKOFFPEAK f

OP
f

OPT
ffPP

BBMin   

where the revenue calculated with the peak/off-peak structure is given by: 
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  (4.13) 

This problem requires a three-dimensional search.  However, a condition can be 
imposed that relates the peak price  and the frequency , namely that the peak PEAKP Vf
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price matches the moving average price at that frequency, i.e. ( PEAKPEAK fPP = ) .  With 
this condition, the search becomes two-dimensional.  The optimal values found for each 
week are presented in Table 4.2.  For both prices, the corresponding exceedance 
percentile in the price duration curve is included in parenthesis.  For week 10, given the 
flatness of the duration curve, the obtained percentiles differ somewhat from the common 
definition of peak/off-peak prices.  The percentiles seem higher than expected for both 
peak and off-peak price.  This shows that the common definition used in this kind of 
pricing scheme approximation does not necessarily results in revenues being closest to 
the actual ones. No alternative design would give a better representation of actual 
revenues than the optimal one presented here.   

 
Table 4.2: Optimal peak/off-peak price scheme  

($/MWH and corresponding % of generation capacity) 
Week PEAKf  PEAKP  OFFP  

10 54% 21.02 (23%) 14.78 (73%) 
35 16% 98.10 (4%) 34.70 (41%) 

 
The revenues were calculated using (4.13) with the parameters from Table 4.2.  

Fig. 4.9 shows how the estimation based on the optimal peak/off-peak scheme compares 
to the optimal revenue and to the estimation obtained with our method.  The results for an 
alternative two-block pricing, where the peak price is defined as the 5% exceedance 
percentile, the off-peak as the 50% percentile, and a frequency of 20%, are presented for 
comparison.  The optimal two-block pricing scheme used the exact MA for estimating the 
peak price for each . PEAKf

The results in Fig. 4.9 clearly show that our method, when applied with the exact 
MA, outperforms the peak/off-peak price approximation.  Also, the optimized two-block 
pricing scheme is a better approximation than the standard two-block pricing.  This was 
expected since the optimal design minimizes the deviation from the optimal revenues.  



 67

Optimum
Proposed (exact MA)

Optimum
Proposed (exact MA)

Week 35

Optimal P/Off-P

Optimal P/Off-P

Common P/Off-P

Week 10

Common P/Off-P

0

10,000

20,000

30,000

40,000

50,000

60,000

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

Total Release (% turbine capacity)

To
ta

l R
ev

en
ue

 ($
/w

ee
k)

 
Figure 4.35: Comparison between the proposed method and two-block pricing approximation 

 
A summary of the results, in the form of relative error, for the case without MIF 

appears in Table 4.3.  The proposed method has the least error (less than 1%) when 
applied with the exact MA.  The performance of the proposed method with the 
approximated MA depends on the week.  For week 10, where the approximated MA is 
close to the actual MA, the proposed method still outperforms the two-block pricing 
scheme.  Interestingly, for week 35, when applied with the MA approximated from the 
price duration curve at 5% intervals, this inexact implementation of the proposed method 
has more error than the two-block pricing.  Both two-block pricing schemes use the exact 
MA; where the exact MA estimation is used, the proposed method has less error.  

 
Table 4.3: Summary results without MIF 

Relative error Method Week 10 Week 35 
Proposed (exact MA) 0.4% 0.7% 

Proposed (approx. MA) 0.9% 9.2% 
Optimal Peak/Off-peak 2.5% 4.2% 
Common Peak/Off-peak 5.8% 6.9% 

 
4.4.4 Approximation results with MIFs 

In general, MIFs decrease revenues by allocating more releases to hours with 
lower energy prices.  We extended our approach to the cases with MIFs ranging from 5% 
to 50% of turbine capacity.  The results are presented in terms of the ratio between the 
exact and approximated weekly revenue.  In Fig. 4.10, each point corresponds to an 
average over the range of MIF requirements.  Results are consistent with those without 
MIF.  When applied with the exact MA, the proposed method approximates the optimal 
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revenues within 1%.  When a coarse approximation of the MA is used, errors can reach 
7% for a week with high price variability like week 35.   

±

 

Week 10 (exact MA)

Week 35 (exact MA)

Week 10 (approx. MA)

Week 35 (approx. MA)

0.96

0.98

1.00

1.02

1.04

1.06

1.08

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

Total Release (% turbine capacity)

A
pp

ro
xi

m
at

io
n 

R
at

io

 
Figure 4.36: Ratio between approximated and optimal revenue (Average over MIF values)   

 
Fig. 4.11 shows the average approximation ratios over total weekly water 

allocation for different levels of MIF. When the exact MA is used, our method 
underestimates the revenues by less than 1%. With MA approximated from the price 
duration curve at 5% intervals, the magnitude of the error depends on how close it 
approximates the exact MA.  Again, the approximation for week 35 can be as large as 9% 
for small MIFs.  In week 10 our method with approximated MA gives errors slightly 
higher than 1%.  Interestingly, as the MIF requirement increases, the error due to the 
approximated MA decreases, reaching 3% and 0.5% for weeks 35 and 10, respectively.  
This can be explained from (4.12), where the benefit estimation is proportional to a 
weighted sum of the weekly average price and the MA price for the effective frequency.  
As the MIF increases, the weight on the MA price decreases and so its error has less 
influence on revenue estimation.  
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Figure 4.37: Ratio between approximated and optimal revenue  

(Average over total weekly releases) 
 

4.5 Conclusions 
A simple method is proposed to employ hourly price information to develop 

hydropower revenue functions for longer periods of time.  The method is based on the 
hourly price duration curve and is meant to avoid the hourly optimization within longer-
period scheduling or operational planning models.  A key element of the method is the 
availability of a good estimate of moving average price over the duration range and 
perfect price forecasts one hour ahead.  The method was applied to estimate the weekly 
revenues for two weeks, one in summer and the other in winter.  With the exact MA, our 
method has errors smaller than 1% for both weeks.  The exact MA can be closely 
matched with an approximation based on the duration curve at 1% intervals.  When a 
coarser approximation of the MA is used, the errors increase considerably for the week in 
summer, which has a high price variation.  

Our results were compared with the traditional two-block price structure 
approach.  An optimal peak/off-peak price scheme was designed to minimize deviation 
from the optimal revenues.  This optimal approximation results in relative errors of 2.5% 
and 4.2%, much higher than the 0.4% and 0.7% obtained with our method using the exact 
MA.   

The method was extended for the case with environmental constraints in the form 
of minimum instream flows and for the case with storage-dependent head and storage 
varying over the operational period.  Similar results were obtained.  
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CHAPTER 5 

HYDROPOWER RESERVOIR OPTIMIZATION WITH 
DOWNSTREAM TEMPERATURE MANAGEMENT 

5.1  Introduction 
The previous chapters evaluated the optimal operations of a hydropower reservoir 

incorporating basic environmental flow requirements on releases, expressed in terms of 
minimum flows and ramping rates during peaking operations. This present chapter 
introduces requirements on the temperature of reservoir releases. Release temperature 
control is an interesting problem for reservoir operations management during the 
summer, particularly for reservoirs with thermal stratification. Temperature plays a key 
role in stream ecosystem maintenance. Besides its direct effect on living organisms, it 
affects many physicochemical processes in the environment which define the quality of 
physical habitat available for species. Jackson et al. (2007) evaluated the effect of flow 
and temperature variations on invertebrate community structure, and found poor and 
uneven distribution in a regulated river as compared to an unregulated stream. Instream 
flow methods based on habitat suitability explicitly include temperature as a factor 
(Jowett, 1997). Cardwell et al. (1996) explicitly incorporate temperature effects on a 
habitat capacity index as part of a deterministic multiobjective analysis of water supply 
and downstream conditions for fish. Jager and Smith (2008) claim that water quality, 
considerably controlled by temperature, relates more strongly to fish health than 
hydraulic habitat, except for very low flows. 

When fish live downstream the reservoir, the release temperature greatly affects 
the abundance and quality of fish. Warm water fish can be affected by cold water releases 
from the deepest portions of the reservoir. In the case of cold water fish, the problem is 
usually the early exhaustion of the cold water stored in the reservoir, what results in 
warm releases made through the rest of the season. Later in the summer, a combination of 
low flows and high temperatures leads to stress, particularly for salmonids and other cold 
water fish species. In both cases, selective withdrawal can be achieved by using a 
temperature control device (TCD). Optimal operations of selective withdrawal system for 
the deterministic case were studied by Fontane et al. (1981). This device allows selective 
choice of the temperature of water released from the reservoir.  

This chapter includes development of an optimization model for the operation of a 
reservoir with a TCD. Release temperature control is aimed to support a cold water 
fishery during the summer under hydrologic uncertainty. A hypothetical application for a 
relatively small reservoir is included and results are analyzed in terms of operating 
policies, hydropower generation and revenues, and released temperature. 

 
5.2 Preliminaries and model assumptions 

Consider a two-layer stratified hydropower reservoir as shown in Fig.5.1. Water 
in the upper layer has a higher temperature than water in the lower layer. Releases for 
hydropower generation can come from either layer, or both. The temperature of the 
combined release is given by the simplified thermal balance: 
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where  and  are the water temperature in the upper and lower layer, respectively, 
and  and  are the releases from the upper and lower layer. 
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Figure 5.38: Schematic representation of a stratified reservoir 
 
 Releases have to comply with a maximum temperature target downstream. 

Depending on the particular system under study, the temperature at the point of interest 
can be affected by tributaries and local flows. To make this formulation as general as 
possible, it will be assumed that a maximum temperature target   on the combined 
reservoir releases can be derived from the particular conditions. The problem consists of 
finding the optimal releases from each pool that maximize hydropower revenues and 
comply with the temperature requirement. 

A detailed representation of the thermal dynamics in a stratified reservoir is fairly 
complex and beyond the scope of a hydropower planning model. Therefore, the following 
assumptions are considered: 

A1) Temperature of releases from each layer is exogenous. This means that 
release decisions do not affect the temperature of water in each pool. 

A2) The lower layer does not refill during the stratification season. This assumes 
that inflows to the reservoir are warmer than water in the cold water pool. Inflows refill 
the upper layer (warm water pool).   

A3) Temperature in the lower layer is constant during the season, i.e. cold water 
does not warm during the summer. 

A4) Water temperature in the upper layer increases linearly during the summer. 
A5) Dynamics between layers can be represented by a deepening rate of the upper 

layer. This effect reduces the volume of cold water during the season augmenting the 
warm-water pool, even if no water is released from the cold water pool. 

Given these assumptions, the temporal evolution of the storage of each pool 
during a period of length  is defined by the following water balances: 
 
Upper layer (warm water pool):   ( ) t

U
tt

U
t

U
t DtRQSS +∆⋅−+=+1    (5.2) 

Where: 
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U
tS 1+  : storage content in the upper layer at the beginning of period t+1 

tQ  : inflow rate to the reservoir during period t   
 : release rate from upper layer during period t U

tR

tD  : volume associated with deepening of the warm pool during period t, which can be 
obtained from a deepening rate and the head-storage curve for the reservoir. 
 
Lower layer (cold water pool):       (5.3) t

L
t

L
t

L
t DtRSS −∆⋅−=+1

Where: 
 : storage content in the lower layer at the beginning of period t+1 U

tS 1+

tQ  : inflow rate to the reservoir during period t   
 : release rate from lower layer during period t U

tR
 : volume associated with deepening of the warm pool during period t tD

The temperature of releases from each layer varies exogenously according to: 
tTT UU

t ⋅+= γ0           (5.4) LL
t TT 0=

Where   and  are the initial temperature of releases from the upper and 
lower pool, respectively. The warming of the upper layer is parameterized in terms of 

UT0
LT0

γ  , 
a constant warming rate per time. A typical case for all relevant temperatures during the 
summer season is depicted in Fig. 5.2.  
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Figure 5.39: Temperature in the upper and lower layer compared to temperature target 

 
Equations (5.2)-(5.4) describe the system at any point in time during the summer. 

In other words, all the information available to make release decisions is, for each pool, 
storage and temperature of releases. 
5.3 Optimization formulation 

In this section, the formulation of the optimization problem is developed in detail, 
including the definition of the objective, constraints and uncertain parameters.  

 
5.3.1 Objective function 
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It is assumed that revenue maximization drives hydropower operations throughout 
the stratified season. If the season is divided into decision periods, the total revenue is the 
sum of revenues over these periods. Revenues in each period can be calculated using the 
expression (4.13) derived in chapter 4, which considers the effects of hourly-varying 
prices and minimum release requirement: 

( ) PEPEEB MINEFFMINV ⋅+⋅−=         (5.5) 
Where 

MINE  : energy generated with minimum release 

VE : total energy generation  

EFFP : average energy price for energy during hours of peaking generation (higher than 
period average). 
P  : average energy price during the period 

 
The energy generated by a release R with head h during a period of length ∆t can 

be calculated as: 
( ) thRhRE ∆⋅⋅⋅⋅= γε,         (5.6) 

The total revenue over N periods is:                             (5.7) ∑
=

=
N

t
tTOT BB

1

To avoid a myopic and unrealistic behavior in which the reservoir would be 
emptied at the end of the stratification season, an additional term representing the value 
of storage at the end of the season is included. Then, the non-myopic objective to be 
maximized is: 

)(
1

ENDEND

N

t
tENDTOT SVBB +=∑

=
+         (5.8) 

Estimating the carryover storage value is a difficult task that often relies on 
significant assumptions. The carryover storage value for a water supply reservoir has 
been studied extensively, ranging from a multireservoir study by Gal (1979) to a more 
recent analytic study by Draper and Lund (2004). Since in this case the only purpose of 
the carryover storage value is to avoid empting the reservoir at the end of the season, one 
way to proceed would be a trial-and-error approach in which a reasonable functional 
form for the value of ending storage is calibrated until it produces the desired effect of the 
resulting ending storage. Economic theory establishes that the value of a stock should 
have decreasing marginal returns, particularly if the value in each period, in this case 
hydropower revenue, is a concave function.  

In the case of hydropower reservoirs, it is customary to use the value of the 
potential energy equivalent as a proxy for carryover storage value. This approach, 
however, poses some technical problems and does not represent the condition of 
decreasing marginal returns for the value of a resource stock. Considering variable head, 
the total energy stored in a reservoir can be calculated as the integral of the power 
generated at each reservoir storage level while draining the reservoir up to the minimum 
storage. Mathematically, the total potential energy associated with a storage level  S  is: 

=)(SE ∫ ⋅⋅
S

SMIN

dSSh )(γε    
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Where ε  and γ  are the powerhouse efficiency and the specific weight of water, 
respectively. Since the head increases with storage, the energy stored is a convex function 
of the water storage. More formally, after applying the Leibniz’s rule to calculate the first 
derivative, the second derivative of the energy as a function of stored water is 

)(')('' ShSE ⋅⋅= γε  , which is strictly positive since head strictly increases with storage. 
The economic value obtained as the product of stored energy times a single 

energy value is also a convex function. Therefore, this approach would result in a 
carryover storage value with increasing marginal returns. Moreover, if a nonlinear 
optimization technique is to be used, the resulting objective function can be non-concave 
and therefore have local optima. This can prevent the algorithm from finding the global 
optimum of the problem. The origin of this problem is that a single unit value is 
considered for all the energy stored in the reservoir. With variable energy prices, not all 
the energy is sold at the same price.      

The carryover storage value can be derived more rigorously and economically by 
considering the infinite horizon problem of determining the value of water for all seasons 
in the year, one of these coinciding with the stratified season. This procedure, called 
value iteration relies on dynamic programming, and solves the optimization problem 
sequentially for several years until the value of water storage converges.  

For the value iteration component of the model, the year was divided in three 
periods: pre-stratification, stratification, and post-stratification. The objective is to 
maximize total hydropower revenues in the steady state defined by the convergence of 
the economic value of reservoir storage over the years. Decisions in this model are total 
water release from the reservoir in each of the three periods. No distinction is made 
regarding temperature of releases since it can be assumed that no year-to-year 
relationship exists regarding the stratification of the reservoir. In other words, the 
proportion of warm and cold water at the end of the stratification period in one year does 
not affect stratification next year. Bartholow et al. (2001) found that for Shasta Lake in 
California, the total annual carryover storage influences the reservoir thermal structure 
more strongly than the use of a TCD. Nickel et al. (2004), performed a statistical analysis 
of the causes of reduced cold water storage in Shasta, and found that cold water storage 
during spring and early summer were negatively correlated with the hypolimnetic 
releases during late summer in the previous year. This year-to-year correlation can be 
explained by the large storage capacity of Lake Shasta, which allows for interannual 
regulation. The present study focuses on smaller reservoirs, without year-to-year 
correlation of reservoir thermal structure.   

The problem is solved through a nested optimization procedure. First, the value of 
storage at the end of the stratification season is estimated via value iteration and then the 
intra-season problem is solved for the stratification season using the carryover storage 
value previously obtained. This two-step sequence is shown schematically in Fig.5.3.  
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 First Step:
Solve inter-season to obtain the value of 
storage at the beginning of pre-stratification, 
stratification and post-stratification seasons.

Second Step:
Solve intra-season problem for stratification 
season using the value of storage at the 
beginning of the post-stratification season as 
the terminal value for the stratification 
season.

First Step:
Solve inter-season to obtain the value of 
storage at the beginning of pre-stratification, 
stratification and post-stratification seasons.

Second Step:
Solve intra-season problem for stratification 
season using the value of storage at the 
beginning of the post-stratification season as 
the terminal value for the stratification 
season.  

Figure 5.40: Inter- and intra-season problem sequence 
 
 5.3.2 Constraints 

Several restrictions define the feasible range of releases from each layer of the 
reservoir during each time period. Constraints due to physical infrastructure limits 
include reservoir storage capacity and turbine flow capacity. Operational constraints 
include minimum required levels of storage and environmentally related requirements 
like minimum releases and maximum release temperature. The problem is also 
constrained by water balance in each layer and the entire reservoir. Each of these 
constraints can be mathematically represented by an equation or an inequality for each 
decision period : t

Water balance for the upper and lower layer is represented by Eqs. (5.2) and (5.3), 
respectively.  
Maximum total storage level:         (5.9) MAX

L
t

U
t SSS ≤+

Minimum total storage level:          (5.10) MIN
L
t

U
t SSS ≥+

Maximum total release:        (5.11) MAX
L
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Minimum total release:        (5.12) MIN
L
t

L
t RRR ≤+

Maximum combined release temperature:  MAXL
t

U
t

L
t

L
t

U
t

U
t T
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RTRT

≤
+

⋅+⋅   (5.13) 

 
5.3.3 Uncertainty 

Several uncertainties are present in the problem, the most relevant being the 
amount and temperature of inflows to the reservoir, and energy prices. Other potential 
sources of uncertainty include weather and mixing conditions in the reservoir, which 
determine the stratification structure. An accurate representation of the stratification 
dynamics, including uncertainty, is beyond the scope of this work and therefore a 
deterministic approximation is used. The temperature of water released from each layer 
will vary exogenously as presented in Eq. (5.4) and is considered a parameter of the 
problem. Uncertainty in energy prices will be dealt with as presented in Chapter 4, which 
assumes the operator knows the price duration curve for energy and can make peaking 
decisions accordingly.  For this formulation, the only source of uncertainty that will be 
explicitly modeled, i.e. considered as a random variable, is the inflows to the reservoir at 
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each decision period, . Specifically, the probability distribution of inflows will be 
represented by the empirical distribution defined by an ensemble of inflows.  Each inflow 
sequence represents a possible hydrologic scenario. Using an implicit stochastic 
approach, the optimization will be solved for each scenario. An explicit stochastic version 
of the model is currently under development.  

tQ

 
 

5.3.4 Formulation as a mathematical program 
All the above aspects of the formulation can be summarized in the following set 

of equations, which is called a mathematical program. The decision variables of the intra-
season problem are the releases from each pool at each time period during the 
stratification season. The objective function is to maximize the average value of total 
revenues over M hydrologic scenarios plus the terminal value of storage.  is the 
inflow in period t under the hydrologic scenario m. 

m
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The carryover storage value  is obtained solving the mathematical 

program for the inter-season problem, which considers an infinite horizon and three 
periods per year. Decisions in this case involve total release from the reservoir during 
each season. The objective to be maximized is the discounted sum over an infinite 
number of years of the yearly hydropower revenue, which results from the aggregation of 
revenues in each season: 
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Where β is an annual discount factor (less than 1). 
The problem is subject to capacity constraints of storage and releases, and 

nonnegativity. 
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5.4 Solution Method 
Both the inter- and intra-season problems are solved by implicit variants of 

sampling stochastic dynamic programming (SSDP), as suggested by Kelman et al. 
(1991). The present version does not consider a forecast or hydrologic state variable, and 
therefore the only (endogenous) state variables are total storage, and storage in the warm 
and cold water pool for the inter- and intra-season problems, respectively. The method 
consists of a backward solution of the Bellman equation (Kelman et al. 1991). For each 
time period, starting at the ending period, we solve the following optimization problem 
for a discrete set of state variables. In the inter-season problem, with the state represented 
by total storage  and decisions on total release under each scenario , we solve: tS m

tR
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Note that this implicit stochastic version is equivalent to solving m separate 
deterministic problems, one for each hydrologic scenario. It assumes perfect hydrologic 
foresight by the operator. 

Given the optimal set of releases  that solve (5.14), the value function is 
updated for each scenario separately: 
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Where  is the revenue achieved in period t for an initial storage 
, and optimal release under scenario m, and  is the future value function, 

which represents the economic value of starting period 

),,( 1
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m
tt SSRB +

tS *m
tR )( 11 ++ t

m
t Sf

1+t  with a storage  under 
inflow scenario m. This value is discounted by a factor 

1+tS
β  to account for intertemporal 

preferences by the decision maker. This version differs from the one suggested by 
Kelman et al. (1991) in that we obtain a different release for each inflow scenario, 
whereas the original version calculated a single target release for a relaxed version of the 
problem (without reservoir storage bounds), and then calculated the “actual” release by 
adjusting for feasibility. In that sense, the present version of the model employs an 
implicit stochastic approach.   

Here, at each time period, given an initial storage we obtain the set of releases that 
optimizes the average over the inflow scenarios of the sum of immediate benefits 
(hydropower revenue) and future value associated with the resulting storage at the end of 
the period, which is the initial storage for the next period. 

A well known drawback of dynamic programming techniques is the exponential 
increase of the computational burden with the dimensionality of the problem, what 
Bellman (1962) called the curse of dimensionality. Numerous approaches have been 
explored to alleviate the computational burden, including aggregation of states (e.g. 
Turgeon and Charbonneau, 1998), and approximation of the value function based on 
Benders decomposition (Pereira and Pinto, 1985).  

In the traditional discrete DP approach, both decisions and states are discretized. 
For each discretized state, optimization is achieved using a discrete search procedure over 
decision space. This procedure normally requires some kind of interpolation of the future 
value function between discrete states. This approach has several problems. Besides the 
well known limitations related with dimensionality, it introduces significant interpolation 
errors if the state discretization is not sufficiently fine. The basic idea DP with value 
function approximation is to avoid discretization of the decision space and alleviate the 
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discretization of the state space. With this approach, the optimal decision vector for 
selected state nodes is obtained in general by nonlinear programming techniques.        

More recently, diverse forms of continuous approximations of the value function 
have been explored. Sharon et al. (1993) demonstrated the superior performance of cubic 
spline interpolation over tensor product linear interpolants with application to a multi-
reservoir system. The present work employs a continuous approximation of the value 
function using Chebyshev polynomials, a family of orthogonal polynomials, as suggested 
by Howitt (unpublished manuscript). Judd (1998) shows that approximations based on 
Chebyshev polynomials outperform splines with the same number of parameters for 
smooth and regular functions. Moreover, when approximating a concave function with a 
singular point, only Chebyshev polynomials preserve concavity (Judd, 1998 pp. 229). 
This concavity-preserving feature is crucial to find the global optimum when nonlinear 
optimization methods are to be used. For the inter-season problem, where the state of the 
reservoir is represented by total storage, the problem reduces to a one-dimensional 
approximation of the value function.  

   The algorithm for the inter-season problem, based on value iteration of SSDP 
with Chebyshev approximation of the value function, is schematically presented in 
Fig.5.4, modified from Howitt (unpublished manuscript). The discrete values of storages 
at which the optimality equation is solved are carefully chosen to optimize the quality of 
the approximation. We use the so-called Chevyshev nodes (Judd, 1998 pp. 222). The 
main features of this node scheme are selected points are closer together towards the 
extremes of the feasible range and that the lower and upper bound are not included as 
nodes, the method selects very close points instead.  

In the intra-season problem, the reservoir has two state variables, representing 
storage in the warm and cold water pool. The basic equation is an extended version of 
(5.14), with two storages and two releases. A limitation of multidimensional Chebyshev 
polynomial approximation, which is shared by all multidimensional approximation 
methods based on tensor product of one-dimensional approximations, is that it requires 
the function to be defined on a rectangular domain. In our case, the domain is not 
rectangular but triangular. More specifically, it is a simplex defined by the storage 
capacity constraint. To overcome this, the problem can be redefined by a change of 
variables. Instead of representing the state of the reservoir by upper and lower layer 
storage, we use total storage  and proportion of cold water to total storage tS t

L
t SS=α . 

Storage in each pool can be calculated from these two state variables and therefore they 
contain the same information. 



 80

Initialization: Infrastructure parameters, energy prices, revenue functions, 
Chebyshev nodes j, inflow scenarios 

Define storage nodes on [-1,1] interval for each Chebyshev node j

Periodic value iteration loop

year =year+1

For each season, starting from the post-stratification and moving backwards.

Solve for   each storage node j:

Update value function for each inflow scenario m:

Calculate Chebyshev coefficients for each order, season, and inflow scenario:

Error =                                                       smaller than tolerance?

NO YES
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Figure 5.41: Inter-season algorithm 
 
The new state variables define a rectangular domain for the value function, i.e. 

bounds for each one do not depend on the value of the other. These bounds are: 
 and MAXtMIN SSS ≤≤ 1, ≤≤ αα MINt  . The lower bound MINt ,α  for the proportion of cold 

water is obtained from the minimum volume of cold water available at a given period 
such that the minimum flow can be released at the target temperature and a minimum 
cold water volume is kept in storage for the next period. Such lower bound for feasible 
cold water storages is calculated recursively starting from the last period and includes the 
loss in cold water due to deepening of the upper reservoir layer. Then the minimum 
proportion MINα  of cold water is obtained dividing the minimum volume by the lower 
bound on total storage. In reality, MINα  depends on the value of storage and therefore the 
adopted approximation leaves a part of the feasible region out of consideration. This is a 
price paid for the requirement of a rectangular domain. More clearly, if the minimum 
feasible cold water volume at a given period is 1 TAF and the lower bound on total 
storage is 10 TAF, a value of  MINα  equal to 10% is adopted for all values of total 
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storage. However, for a total storage of 100 TAF, the minimum feasible proportion of 
cold water is 1%. That portion of the feasible space, between 1% and 10% is not explored 
in this model.      

 
5.5 Data for model application 

This section includes an example application of the model to a hypothetical 
situation of a relatively small reservoir with a quadratic approximation of head-storage 
curve shown in Fig.5.5, modified from that of Lake Spaulding in the South Yuba system 
in the California Sierra Nevada. The values for the infrastructure parameters are 
presented in Table 5.1. 

Table 5.4: Infrastructure parameters 
Parameter Symbol Value Units 
Upper bound on storage MAXS  100  TAF 
Lower bound on storage MINS  10 TAF 
Maximum release capacity MAXR  1000 CFS 
Powerhouse efficiency γ  0.8 N.A. 
Base head                      0h  100 MTS 
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Figure 5.42: Head-storage curve for hypothetical reservoir 

 
Inflows typically observed in the California Sierra Nevada during the period 

1981-2005 form an ensemble of 25 scenarios. Energy price data will correspond to those 
observed in the year 1999 in California, obtained from the California Independent System 
Operator (Cal ISO). 

 
5.5.1 Inter-season model 

For the inter-season model, the year was divided into 3 seasons, pre-stratification 
(weeks 1-21), stratification (weeks 22-38), and post-stratification (weeks 39-52). The 
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stratification period contains 17 weeks, roughly including the months of June to 
September. The inflow ensemble for the seasonal model is shown in Fig.5.6. Scenarios 
cover a wide range of hydrologic conditions. 
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Figure 5.43: Net inflow ensemble for seasonal model 

 
Energy price data are necessary for revenue calculation, as presented in the 

previous chapter. The relevant information is the curve of moving average (MA) prices as 
a function of the frequency of exceedance. These MAs correspond to the average of all 
hourly observed prices . Fig.5.7 shows the price frequency curves on which the MA 
curves shown in Fig.5.8 are based. The higher peak prices, at about 230 $/MWh, are 
observed during the stratification season (those with very small exceedance frequency), 
but the post-stratification season has higher prices for almost all frequencies. The lowest 
prices in the year are observed during the first 21 weeks (pre-stratification season), with a 
peak price of 50 $/MWh. From Fig.5.8, overall average prices, i.e. those at 100% 
exceedance frequency, are 25-45 $/MWh.   
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Figure 5.44: Price duration curve seasonal model 
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Figure 5.45: Moving average price seasonal model 

 
 Applying the algorithm in Fig. 5.4 we obtain the coefficients for each Chebyshev 

polynomial term. Initially, an approximation of order 5 was used, but results indicated 
that an order 3 would suffice for our purposes. The value function for the post-
stratification season, which represents the carryover storage value for the end of the 
stratification season is shown in Fig. 5.9 for minimum required releases of 10, 50 and 100 
cfs, equivalent to 1%, 5% and 10% of turbine capacity. As expected, the value of storage 
decreases as the minimum required release increases. The negative coefficient of the 
squared term indicates that the curves are concave, which was expected and necessary to 
ensure a global optimum in the intra-season problem. Since the nonlinear optimization 
methods for the stratification season are based on derivatives, it is the slope of the curve 
and not the absolute value what determines optimality. In fact, the condition for 
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optimality, when no constraint is binding, is that the marginal values of current and future 
use of water are equal (Draper and Lund, 2004). 
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Figure 5.46: Carryover storage value for minimum required release of 10, 50, and 100 cfs 

  
The effect of a minimum release requirement is clear in Fig.5.9. As the required 

release increases, the value of having a given amount of water stored in the reservoir 
decreases. The higher the minimum release the smaller the amount of water that can be 
used for peaking operations. More water is used for generation at every hour, even those 
with low prices. The marginal value of carryover storage  for each minimum release 
requirement is presented in Table 5.2, which shows the ranges for minimum and 
maximum storage: 

ENDS

 
Table 5.5: Marginal value of carryover storage 

Minimum release (cfs) Marginal Value ($/AF) Range ($/AF) 
10 ENDS⋅− 041.0455.23  19.36-23.05 
50 ENDS⋅− 039.0901.23  20.00-23.51 
100 ENDS⋅− 054.0315.25  19.92-24.78 

 
 
5.5.2 Intra-season model with temperature management 

The ensemble of 25 scenarios of weekly net inflow for each of the 17 weeks in the 
stratification season is shown in Fig. 5.10. The general trend, represented by the average 
(bold line), exhibits a decrease of inflows as the season progresses. Early in the season 
inflows are as large as 2,000 cfs (twice the turbine capacity) whereas by the end all 
scenarios are below 500 cfs. Also, the dispersion between scenarios decreases over time. 
Starting in week 8, some scenarios become quite dry.  

For the exogenous representation of temperature dynamics, the lower layer will be 
at a constant temperature  of 8 °C. The starting temperature in the upper pool  will LT0

UT0
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be 12 °C, with a warming rate γ  equal to 0.5 degree per week. The temperature target 
will be set at 15 °C.  
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Figure 5.47: Net inflow ensemble during stratification season 

 
Energy price data, represented by the price duration and moving average curves 

for each week in the stratification season, are presented in Figs. 5.11 and 5.12, 
respectively. The 4 curves with highest observed prices correspond to weeks 14, 13, 7 
and 5. Prices curves during all other weeks are alike.  
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Figure 5.48: Price duration curve for each week during the stratification season 
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Figure 5.49: Moving average price for each week during the stratification season 

 
5.6 Intra-season model results 

Results for the optimal operation of the stratified reservoir during summer are 
obtained in two steps. First, a backwards SSDP recursion is performed to estimate the 
Chebyshev coefficients that approximate the total value of starting at selected 
combinations of total storage and proportion of cold water (see Fig.5.4). The discrete 
state points for the coefficient estimation are not equally spaced over the feasible range of 
each state variable. Nodes are defined using the Chebyshev rule (Judd, 1998 pp. 238), 
with a higher density of points close to the upper and lower bound of each state variable. 
The set of combinations is obtained as the tensor product of one dimensional Chebyshev 
nodes for each state variable. For each week, starting from the last, this step solves one 
optimization problem for each combination of states and stores the value of the objective 
function. After solving the optimization for all combinations of state variables in a given 
week, the coefficients of the Chebyshev approximant are calculated as shown in Fig.5.4.   

Having a continuous approximation for the value functions for each scenario and 
week in the stratification season, the second step solves an optimization problem which 
maximizes the sum of immediate and future benefits at each week for equally spaced 
combinations of storage and proportion of cold water at regular intervals. This step 
includes a greater number of state combinations than used in the estimation phase.   

Model results are scenario- and week-dependant. However, for our purposes we 
are interested in the average over the 25 scenarios. Results are shown for selected weeks, 
chosen by three criteria. First, as shown in Fig. 4.2, early in the season the temperatures 
of both pools are colder than the temperature target. Past a certain point (week 7 in this 
case), the temperature in the upper layer becomes higher than the target. We would 
expect to see differences in the results for weeks before and after week 7. A second 
criterion for selecting weeks is the energy price factor. Weeks with high and low prices 
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have to be included to identify the price effect on the results. A third factor to consider is 
the effect of the value of the ending storage, which is expected to be stronger towards the 
end of the season. Based on these criteria, results are presented for weeks 1, 7, 10, 14, 
and 17. Table 5.3 includes price information for the selected weeks. Considerable 
differences in average energy price and prices at different exceedance levels are observed 
among the selected weeks.   

 
Table 5.6: Energy price information for selected weeks 

Week 1 7 10 14 17 
Average 17.03 41.81 28.18 42.38 30.04 

5% 32.09 148.35 42.80 82.93 36.04 
25% 25.60 41.88 31.50 41.71 33.34 
75% 8.49 21.71 23.02 28.22 28.12 
95% 0.05 14.89 16.01 17.83 21.61 

 
We are interested in both the economic and environmental performance of the 

system. Operational insights are also of interest. At the beginning of each week, the 
operator is faced with the problem of how much water to release from each reservoir pool 
to generate power. Immediate hydropower revenues are weighted against the value of the 
resulting warm and cold water storages for the next week. The economic performance of 
the system is herein represented by the energy produced and revenues obtained each 
week. Release temperature is used as a measurement of the environmental performance. 
Operational insights can be extracted from carryover storage (total and of cold water), 
releases (total, cold, and warm). The economic impact of minimum release and maximum 
temperature is studied through its respective marginal values.   

In most cases, results will be presented as surfaces with the two horizontal axes 
representing levels of storage and proportion of cold water. The vertical axis will 
represent the result of interest. When surfaces were not clear, equivalent curve plots are 
presented instead.  

 
5.6.1 Release temperature and thermal operations 

As expected, release temperatures follow the temperature pattern of the upper 
(warm) pool until it reaches the maximum allowable temperature. From that point on, 
water is released at 15 °C, the maximum allowed. This is so for any combination of total 
storage and cold water content. Fig.5.13 shows the release temperature for each week. 
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Figure 5.50: Average release temperature through the stratified season 

  
This result indicates that, as expected, during the first 7 weeks only warmer (but 

still cool) water is released. Cold water is saved for the periods when the upper layer is 
warmer than 15 °C. Starting in week 8, cold water is released in amounts that are just 
enough for the mixed released to reach the maximum allowed temperature. An exception 
to this behavior, which is not reflected in the average shown in Fig. 5.13, occurs for cases 
when the reservoir is relatively full of cold water (no warm water is in storage), cold 
water can be released even when it is not needed for temperature purposes. This occurs in 
weeks with relatively high energy value (7 and 14), when the optimal hydropower release 
exceeds the inflow of warm water during the week in question. In those instances, release 
temperatures decrease to about 14.8 °C. 
 
 5.6.2 Release decisions 

The operational decision at each week is how much water to release from each 
pool of the reservoir. Water can be released without running through the turbines into an 
alternative stream which is not sensitive to temperature. These releases will be called 
spills although they can happen even if the turbines are not running at flow capacity. The 
total release, which includes flow through the turbines and spill, is shown for weeks 1, 7, 
10, 14, and 17, in Figs. 5.14 to 5.18, respectively.  

A general trend observed in all selected weeks is that for all content of cold water, 
total release increases (or at least does not decrease) with total storage at the beginning of 
the week. This is expected since more water is available for generation. Interestingly, 
turbine flow capacity (1000 cfs) is never reached. Also, the maximum total release, which 
occurs when the reservoir is full, decreases as the season progresses. This is consistent 
with the decreasing trend in the inflows observed in Fig. 5.10. Some differences are 
observed between different weeks. For weeks 1, 10, and 17, only the minimum required 
is released for low storage values. This is due to the relatively low energy value during 
those weeks compared to weeks 7 and 14 (see Table 5.3), when even for low total storage 
releases exceed 150 cfs and 100 cfs, respectively. An extreme case is the last week of the 
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season, when releases exceed the minimum required only when the total storage is higher 
than 90 TAF (90% of storage capacity). This is the combined effect of relatively low 
energy value and the lowest inflows in the season.   

The effect of the amount of cold water stored in the reservoir at the beginning of 
each week varies depending on the week. For weeks 1 and 7, no evident effect is 
observed. This was expected because until week 7 the temperature of the upper pool does 
not exceed the maximum allowable temperature for the combined release. As mentioned 
in section 5.6.1, almost exclusively warm water is released during the first seven weeks 
of the season. In weeks 10 and 14, the effect of the cold water storage is clear. In both 
cases the total release drops abruptly when a very low amount of cold water is available. 
With the exception of very high total storages, the total release is 10 cfs, the minimum 
required.  

This is explained because the lower bound considered for the content of cold 
water is the amount just needed to release the minimum flow at the adequate temperature. 
Total releases above 10 cfs for total storage values above 90 TAF (or 90% of storage 
capacity) with the minimum feasible content of cold water are explained because water is 
spilled. Although counter-intuitive to some extent, unproductive releases can occur even 
when turbine capacity is not exhausted. With little cold water available and high storage 
levels, the carryover storage reaches capacity and the extra available water cannot be 
released through the turbines, because the constraint on temperature would be violated. 
Thus, the extra water is spilled to the alternative reach, without economic value for 
generation but also without increasing the combined release temperature.  

In week 14 (Fig. 5.17), besides the abrupt decrease in release as cold water 
content reaches its minimum, cold water content influences total releases at relatively 
high levels of cold water content (between 60% and 80% of total storage). In that week, 
energy value is high, so relatively large turbine releases would be in order. For total 
storage levels between 40% and 60% of storage capacity, total release decreases about 50 
cfs when the cold water available drops from high to medium values. Again, a high 
release level cannot be sustained as the cold water content becomes limiting. 

Interestingly, in the last week of the season (Fig. 5.18), no effect of the cold water 
content is observed on total releases. This contradicts intuition, since at the end of the 
season the upper layer is warmest and temperature would have been expected to limit 
releases. However, the contradiction is only apparent. During this week only the 
minimum is released except when the reservoir is near full. The lower bound on cold 
water storage ensures the appropriate temperature for minimum releases. For total storage 
above 90 TAF spills occur. As will be more clearly seen in the energy outcome of the 
system, only the minimum flow is passed through the turbines when the cold water 
content is lowest. The rest of the total release shown in Fig. 5.18 is released as a spill, 
without producing electricity.    
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Figure 5.51: Total expected release in first week for minimum release of 10 cfs 

 

 
Figure 5.52: Total expected release in week 7 for minimum release of 10 cfs 
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Figure 5.53: Total expected release in week 10 for minimum release of 10 cfs 

 

 
Figure 5.54: Total expected release in week 14 for minimum release of 10 cfs 
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Figure 5.55: Total expected release in week 17 for minimum release of 10 cfs 

 
5.6.3 Energy production 

Energy is the direct economic good provided by hydropower plants and the only 
source of revenue considered in this study. Ancillary services, like capacity reserve, can 
be an additional important source of revenue but are not included in the present model. 
Energy output surfaces for the selected weeks are shown in Figs. 5.19 to 5.23. As 
expected, the energy surfaces follow the same pattern as the total release. Energy output 
increases with storage. Energy output for high storage values is highest early in the 
season, when the inflows are highest. Since total release includes spills, the influence of 
minimum cold water content as a limiting factor is clearer in the energy production, 
which reflects the release that contributes to revenues. For weeks 1 and 7, no effect of the 
cold water storage is observed. For weeks 10, 14 and 17, the total energy output drops to 
a minimum when the cold water content can only support the minimum release at 15 °C. 
In week 14, the effect of cold water content is not limited to the instances when cold 
water storage is the minimum feasible. For medium storage levels, energy output exhibits 
three levels. The highest energy production occurs for very high cold water contents. 
When the cold water content drops from high to medium, energy production decreases to 
an intermediate level. Finally, when the cold water available is the smallest possible, 
energy production experiences a sudden decrease to reach its minimum level.  
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Figure 5.56: Expected energy production in the first week for minimum release of 10 cfs 

 

 
Figure 5.57: Expected energy production in week 7 for minimum release of 10 cfs  
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Figure 5.58: Expected energy production in week 10 for minimum release of 10 cfs 

 

 
Figure 5.59: Expected energy production in week 14 for minimum release of 10 cfs 



 95

 

 
Figure 5.60: Expected energy production in the last week for minimum release of 10 cfs 
 
 

5.6.4 Carryover storage 
The crucial tradeoff faced by a reservoir operator involves consideration of the 

direct benefits of releasing water and the expected value of carryover storage, water that 
is kept in the reservoir for future periods. Unlike the results for total release or energy, no 
evident differences can be identified among the selected weeks. For this reason, only two 
of the selected weeks are shown, 1 and 14, respectively in Figs. 5.24 and 5.25. Results for 
the other 3 weeks selected for result presentation look undistinguishable from the surface 
of week 14. This is mainly due to a scale issue. All other variables kept constant, a 
decrease in 100 cfs in total release increases carryover storage by less than 1.4 TAF, 
practically not reflected for a scale as large as 100 TAF. Therefore, the drop in total 
release when the cold water storage is lowest cannot be easily appreciated.  

However, close inspection of Fig. 5.25 permits identification of an increase in 
carryover storage when cold water storage is lowest. This is consistent with the decrease 
observed in total release when only the minimum flow can be released at the adequate 
temperature. A slight increase in carryover storage for week 14 consistent with the step-
like reduction observed for total release can be identified from the source data of Fig. 
5.25. Results differ between weeks 1 and 14 in two main aspects. First, carryover storage 
for any combination of state variables is higher in week 1. This reflects the higher inflows 
observed by the beginning of the season and also the low value of energy in the first 
week of summer. When the reservoir storage is at its minimum of 10 TAF at the 
beginning of week 1, carryover storage is above 20 TAF. Some concavity with respect to 
total storage can be identified for very high total storages. For initial storages of 95 TAF 
or above, the reservoir is full at the end of week 1. 
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Figure 5.61: Expected carryover storage first week for minimum release of 10 cfs 

 

 
Figure 5.62: Expected carryover storage week 14 for minimum release of 10 cfs 

 
Carryover storages for week 14 are generally lower than its counterpart for the 

first week of the season. If storage at the beginning of week 14 is the minimum 10 TAF, 
about 12 TAF are passed to week 15. The reservoir is never full at the beginning of week 
15, not even when the maximum storage of 100 TAF at the beginning of week 14. This is 
due to the low inflows towards the end of the summer.    
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5.6.5 Hydropower revenues 
Revenues drive hydropower reservoir operations. The revenues for each selected 

week are presented as surfaces in Figs. 5.26 through 5.30. Revenues include the effect of 
productive total release and energy price at a given week. As expected, revenues are 
highest for week 7, when energy price is highest, ranging between $80,000 and $220,000 
per week depending on total storage. Week 14 follows closely, with revenues between 
$50,000 and $170,000. Much smaller revenues are generated during the other weeks 
shown. The effect of cold water storage as a limiting factor is observed for weeks 10, 14 
and 17. The decreasing nature of average energy price with hydropower release (Fig. 
5.14) is reflected in the revenues. The gradient of revenues in the direction of total 
storage is less pronounced than its energy counterpart. As energy production increases, 
the average price at which it is sold decreases, so the revenues increase less than 
proportionately to an increase in energy generation. This effect is particularly clear in 
weeks 1 and 7. The revenue surfaces (Figs. 5.26 and 5.27) look much flatter than the 
corresponding energy surfaces (Figs. 5.19 and 5.20).     

 

 
Figure 5.63: Expected hydropower revenues in first week for minimum release of 10 cfs 



 98

 

 
Figure 5.64: : Expected hydropower revenues in week 7 for minimum release of 10 cfs 
 
  

 

 
Figure 5.65: Expected hydropower revenues in week 10 for minimum release of 10 cfs 
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Figure 5.66: Expected hydropower revenues in week 14 for minimum release of 10 cfs 
 

 

 
Figure 5.67: Expected hydropower revenues in the last week for minimum release of 10 cfs 

 
5.6.6 Marginal cost of minimum release 

The economic impact of an environmental constraint can be represented through 
the marginal change in the economic performance of the hydropower system due to a 
marginal change in the environmental requirement. In the case of minimum required 
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release, its impact is two-fold. First, it enforces that at least the minimum amount is 
released even when it was not economically desirable. This is the typical marginal value 
associated with a minimum release constraint. Even when the hydropower release is 
greater than the minimum, the minimum flow has an effect of the revenues as indicated in 
Eq. 5.5, which capture the peaking nature of hourly operations. Since the minimum flow 
must be released at every hour during the week, that water cannot be allocated optimally 
to hours of high price. Energy from the minimum flow release is sold at the average price 
of all hours in the week. Energy above the minimum is produced by peaking operations 
and therefore captures a higher price.  

The first effect, the marginal value of the minimum release constraint is a 
standard output of the optimization solver package GAMS. This value is zero whenever 
the release exceeds the minimum, indicating that no uneconomic releases are being 
forced. For weeks with high energy prices, like 7 and 14, the marginal cost on the 
constraint is generally zero, except for very dry inflow scenarios and when the cold water 
content is at its minimum. The marginal costs associated with the minimum flow level 
are presented for weeks 1, 10 and 17 in Figs. 5.31, 5.32 and 5.33, respectively. No 
evident effect can be attributed to the available content of cold water in the reservoir at 
the beginning of the week, except when very little cold water is available in week 10. 
When the cold water storage is just that needed for the minimum flow and the reservoir is 
not full, the cost of the minimum flow constraint reaches values between 10 $/cfs and 18 
$/cfs. Fig. 5.32 shows that in week 10, for cold water content higher than the minimum 
feasible, the minimum required release has an economic effect only for total reservoir 
storages between 10 TAF and 30 TAF, with a cost of about 2 $/cfs.  

In the first week of the season (Fig. 5.31) the marginal cost of minimum releases 
is zero for total storages above 50 TAF, regardless of the proportion of cold water 
available. Interestingly, the highest marginal cost of about 4 $/cfs occurs for a total 
storage of 30 TAF and not when storage is at its lower bound of 10 TAF, where the cost 
is about 1.5 $/cfs.     

In the last week of the season, as a result of a relatively high energy price and low 
flow conditions, the marginal cost of the minimum flow averages about 4 $/cfs, twice as 
high as the average for week 10. Since energy prices for these two weeks are very 
similar, the higher cost of minimum release in the last week can be associated with its 
low expected inflow. When the reservoir is nearly full or full, the cost drops to about 1 
$/cfs and practically zero, respectively.  
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Figure 5.68: Average marginal cost of minimum release in the first week for selected total storage 

levels 
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Figure 5.69: Marginal cost of minimum release in week 10 for selected total storage levels 
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Figure 5.70: Marginal cost of minimum release in week 17 for selected total storage levels 

 

5.6.7 Marginal cost of maximum temperature 
Besides minimum releases, environmental impacts of hydropower operations are 

constrained by the maximum allowed release temperature. This restriction affects 
operations only after the upper layer becomes warmer than the temperature target. Its 
marginal cost is zero for weeks 1 through 7. The marginal costs for selected weeks are 
shown in Table 5.4. The normal range includes all values of total storage and cold water 
storage except when the cold water content is the minimum feasible to release the 
minimum flow at the maximum allowed temperature. In those instances, the marginal 
cost of the temperature constraint increases to reach the maximum values presented in the 
table. Other than that, no other effect of the cold water storage can be identified. As 
expected, the marginal cost is highest for week 14. Week 17 sees the lowest cost of the 
temperature requirement because energy price is low and therefore extra generation 
allowed by relaxing the temperature requirement does not have much value.  

 
Table 5.7: Marginal cost of temperature requirement 

Week  Normal range ($/°C) Maximum ($/°C) 
10 1 - 4 80 
14 1 - 10 150 
17 <2 20 

 
5.7 Evaluation of scenario-dependant policies 

Under the implicit stochastic approach adopted here, optimal policies are specific 
for each scenario. An interesting analysis is to evaluate the performance of those policies 
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under a variety of different hydrologic scenarios, not only the one scenario used to derive 
such a policy. 
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Figure 5.71: Selected inflow scenarios for policy evaluation 

 
For illustrative purposes, consider the five inflow scenarios shown in Fig. 5.34. 

For each scenario, the optimal policy is obtained by re-optimization using the 
corresponding approximation of the value function obtained by dynamic programming. 
The performance of each policy, in terms of total revenues over the stratification season 
plus the value of ending storage, under all five scenarios is simulated by forward 
optimization. Results for an initial storage of 50 TAF (50% of storage capacity), with 25 
TAF of cold water are shown in Fig. 5.35. The highest revenues for all policies are 
obtained under inflow scenarios 1 and 5, the two wettest scenarios. Scenario 2, the driest 
of all five scenarios have the lowest total benefit for each policy.    
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Figure 5.72: Total benefit of optimal policies under selected inflow scenarios 

   
It is expected that, for each scenario, the associated policy outperformed all other 

policies. That result is clearly obtained for scenarios 1, 3 and 5. Interestingly, under the 
two driest scenarios (2 and 4), the corresponding policy is slightly outperformed by other 
policies. This difference can be attributed in principle to the error in the value function 
approximation. A very interesting result is that policy 3 seems to be optimal or near 
optimal under all five scenarios. In that sense, the policy obtained under scenario 3 is a 
robust policy for the five scenarios considered here. Policies 2 and 4 are only best (or 
nearly so) under the corresponding scenarios, but its performance is poor under other 
inflow scenarios. 
 
5.8 Conclusions 

This chapter develops and uses an optimization model for the optimal operation, 
with weekly release decisions, of a stratified reservoir with a temperature control device 
which allows selective choice of release from different reservoir levels. The thermal 
structure of the reservoir was simplified by considering two pools, a warm upper layer 
and a cold lower layer. The problem is formulated as hydropower revenue maximization 
subject to infrastructure and environmental constraints. The latter were represented by a 
minimum release required at all times and a maximum temperature for the combined 
release. To avoid a myopic behavior, the value of carryover storage at the end of the 
summer was estimated by application of value iteration in a dynamic programming 
model. An implicit stochastic dynamic program was implemented to optimize operation 
for an ensemble of 25 inflow series. It was considered that the state of the reservoir is 
properly represented by the total storage and the content of cold water. With dynamic 
programming, the multi-stage problem is solved one stage at a time. At each week of the 
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season, given a total storage and its percentage of cold water, the model solves for 
optimal release from each of the two pools by trading off the immediate benefit of power 
generation and the future value of leaving water in storage, both warm and cold. A 
continuous approximation of the future value function was implemented using 
Chebyshev polynomials. With this approximation, the problem can be solved using 
standard nonlinear programming techniques.   

In general, results show a much stronger effect of total storage on the economic 
performance and operational pattern of the reservoir. Total hydropower generation and 
revenues increase with total storage. Cold water storage affects operations and therefore 
revenues only when it is at its minimum feasible level (i.e. only the minimum flow can be 
released at the appropriate temperature) or when energy prices are very high. No effects 
are observed early in the season, when the upper layer is still cooler than the temperature 
target. This result can be related with the approximation scheme adopted for the future 
value function and the exclusion of part of the feasible values of cold water storage.    

Examples of the results and analysis that can be performed with this model 
include the economic and environmental performance of the reservoir, as well as 
operational insights. Release temperature follows a very clear pattern. Until the upper 
layer becomes warmer than the maximum temperature allowed, the release temperature is 
the same as the temperature of the upper reservoir layer. No cold water is blended, but it 
is saved for warmer future periods. After the upper pool becomes warmer than the limit, 
cold water is released in amounts just to comply with the maximum temperature. Total 
reservoir releases follow the energy price pattern. More water is used for hydropower 
generation when energy is more valuable. When energy is relatively cheap, only the 
minimum required is released, unless the reservoir is nearly full. For all weeks, the total 
release tends to increase with the total storage. The effect of the percentage of cold water 
is evident when release temperature becomes a limiting factor for operations. When the 
cold water content is not sufficient to support the optimal total release at the adequate 
temperature, less than the desirable amount of water is passed through the turbines, 
reducing, the energy output and revenues. 

The cost of the environmental restrictions is represented by the marginal value of 
the corresponding constraints. The marginal cost of the minimum flow increases as the 
season progresses because inflows become smaller. This cost is only realized when the 
economically optimal release would be smaller than the minimum required. The cost is 
zero for weeks with high energy value, because economically optimal releases are much 
higher than the minimum. The marginal cost of setting a maximum temperature for 
reservoir releases is only realized after the upper layer is warmer than the target 
temperature. This cost is highest when energy is most valuable and very little cold water 
is available. 

Finally, the economic performance of five selected scenario-dependant policies 
under the corresponding five hydrologic scenarios was evaluated. The total benefit was 
calculated as the sum of hydropower revenues over the 17 weeks in the stratification 
period plus the value of storage at the end of the season. This analysis allows for 
identification of robust policies, those that perform well under a variety of scenarios. 
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5.9 Limitations and further research 
The most relevant limitation of this chapter is related to the continuous 

approximation of the future value function for two dimensions in dynamic programming. 
The non-rectangular domain defined by the feasible values of warm water and cold water 
storage, the original state variables, led to representation of the state of the system by 
total storage and proportion of cold water. Since feasibility is defined by a minimum cold 
water volume and not a minimum proportion of cold water to total storage, the resulting 
domain is still not rectangular, although it can be approximated to a rectangle by 
excluding a part of the feasible space. More precisely, the entire range of feasible 
proportions of cold water is only explored when the total storage is lowest. For higher 
storage values, only proportions of cold water defined by the minimum total storage are 
explored.   

On the other hand, the future value function was less smooth than expected with 
respect to the cold water content. It decreases abruptly when the cold water storage 
becomes very small. This abrupt behavior cannot be properly represented by low degree 
Chebyshev polynomials. In fact, the problem of continuous approximation of a concave, 
increasing (but not monotonically so), non-regular function remains a very difficult 
problem. Unsuccessful attempts were made as part of this work to extent the work by 
Schumaker (1983) on one-dimensional quadratic approximation for shape-preserving. 
However, even if a shape-preserving approximation is implemented, the problem of 
having a non-rectangular domain will persist.     

Therefore, further research is needed to improve the value function approximation 
for the intra-season model to allow more conclusive results regarding the effect of cold 
water on the economic performance and operational aspects of the problem. Specifically, 
a method for bivariate, shape-preserving function approximation over a non-rectangular 
domain needs to be developed. A starting point would be the extension of the shape-
preserving algorithm for bivariate function approximation over a rectangular domain 
developed by Costantini and Fontanella (1990) and later applied by Wang and Judd 
(2000).  

Another direction for further research that is already being explored is the 
implementation of an explicitly stochastic version of the dynamic programming model.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 
 

6.1 Conclusions  
This dissertation employs optimization models to explore some engineering 

solutions to alleviate the conflict between hydropower operations and downstream 
ecosystem maintenance. The present work includes operations with release decisions 
made at hourly and weekly intervals. Hourly peaking operations during a typical summer 
day were modeled for a reservoir-afterbay hydropower complex, under regulatory 
constraints defining minimum instream flows (MIFs) and maximum ramping rates 
(MRRs). Since revenues obtained at any longer time scale are the result of hourly 
operations, a method is proposed to incorporate hourly price and operational information 
on the revenues obtained at daily, weekly, or monthly decisions level. The method 
explicitly includes the effect of minimum stream flows on the economic benefits obtained 
by hydropower generation. Optimal weekly release decisions for a stratified reservoir 
with selective withdrawal were explored using a dynamic programming approach. 
Operations were constrained by minimum releases and maximum release temperature. 

Engineering solutions, when optimally operated, are useful to efficiently attain 
ecosystem-related targets. In the case of hourly operations, a small afterbay can mitigate 
the economic impact of release constraints by dampening the connection between 
hydropower generation flows and releases to the stream. With an afterbay, the cost 
imposed by stringent MIF or MRR requirements decreases considerably. As MIF and/or 
MRR requirements become more stringent, operations depart from the unconstrained 
peaking. An afterbay buffers this effect through an operation pattern characterized by a 
morning drawdown and some refill cycles during peak hours. With an afterbay, several 
alternative instream flow patterns are optimal. Expert judgment can be used to choose 
one over the others.    

The proposed method for estimating revenues at larger time scales using hourly 
operational information performs very well when compared to the revenue obtained by 
hourly optimization, outperforming the traditional two-block price structure approach.   

The model for temperature management shows a much stronger effect of total 
storage on the economic performance and operational pattern of the reservoir. Total 
hydropower generation and revenues increase with total storage. Cold water storage 
affects operations and therefore revenues only when it is at its minimum feasible level 
(i.e. only the minimum flow can be released at the appropriate temperature) or when 
energy prices are very high. No effects are observed early in the season, when the upper 
layer is still cooler than the temperature target. This result can be related with the 
approximation scheme adopted for the future value function and the exclusion of part of 
the feasible values of cold water storage.    

 
6.2 Future research 

Further research efforts can take several directions. The incorporation of more 
explicit ecosystem goals than minimum flow, ramping rates, and maximum release 
temperatures is limited by the lack of quantitative relationships between operational 
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patterns and its effect on desirable ecosystem attributes. Advances in this direction are 
needed. Other than that, the proposed method to link hourly operations with revenues on 
larger time frameworks can be extended to include uncertainty of the price duration 
curve, which was assumed to be perfectly known here. The model for temperature 
management would be considerably improved by a better approximation of the value 
function. Specifically, a method for bivariate, shape-preserving function approximation 
over a non-rectangular domain needs to be developed.  
 

 


