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ABSTRACT

Hydropower Generation Optimization in the Era of Renewables and Climate
Change

Effects of expanding solar energy and non-stationary climate conditions on hydropower
generation are explored with a hybrid linear programming-nonlinear programming (LP-
NLP) hydropower optimization model. Additional operating algorithms are developed
for pumped-storage hydropower optimization. The hybrid LP-NLP model is a reservoir
operations model with an objective to maximize overall hydropower revenue. LP models
are fast but less accurate, while NLP models are slow but have better nonlinear system
representation. In a sequential optimization, the model solves the problem first with a
linear approximation, then initializes the NLP model with the LP solution to reduce NLP
iterations and runtime. LP and NLP models also can be used stand-alone.

Energy prices are highly correlated with net energy load. Starting 2013, California’s
solar generation has been increasing to meet its renewable energy targets. As solar gener-
ation increases, net load decreases, reducing energy prices during solar generation hours.
As a result, dispatchable hydropower becomes less profitable during mid-day hours, shift-
ing hydropower generation to hours 6-10 in the morning and increasing evening peak
generation. In the dry season with less inflow availability and higher evening peak prices,
operations focus mostly on evening peak hours.

Climate change effects on long-term hydropower planning from 2015 to 2100 with
monthly time-step are evaluated with the LP model only as runtime of the NLP model
significantly increases with large model sizes of this period. With climate change, temper-
ature increases, more winter precipitation falls as rainfall rather than snowfall, and timing
of snowmelt runoff shifts earlier. These changes slightly increase winter hydropower gen-
eration, while decreasing spring and early summer generation for hydropower plants with
sizable storage capacities, which adds some operating flexibility and adaptability to chang-
ing conditions. Plants without storage capacities are more directly affected from climatic

changes.



Two algorithms are developed for pumped-storage hydropower (PSH) operations. The
first algorithm uses a price-duration curve to find optimal pump and generate thresholds,
while the second algorithm uses numerical reservoir system modeling, accounting for water
mass balance. The second algorithm also is used to evaluate solar generation effects on
PSH operations. With the expansion of solar generation, water is pumped into the upper
reservoir during night and solar generation hours with low energy prices, and energy is

generated during the morning and evening peak hours with high energy prices.
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Chapter 1

Introduction and Literature Review

Ranging from small to large-scale, reservoirs can serve single or multiple objectives, in-
cluding water supply, flood control, environmental protection, recreation, and hydropower.
Reservoirs store and regulate water releases for various demands, such as irrigation water
during the dry season or hydropower during peak energy demands.

As a limited resource, optimal water allocation is critical. However, optimal multi-
stage water allocation is complex and often nonlinear, particularly due to the stochastic
nature of reservoir inflows (Marino & Loaiciga, 1985; Pereira & Pinto, 1985; Kelman et al.,
1990; Kim & Palmer, 1997). Inflows vary within and between years (Faber & Stedinger,
2001). There are also uncertainties in water demands, as addressed in Karimanzira et al.
(2016), whose predictabilities, however, are sometimes better than hydrologic variables,
such as precipitation and runoff. Developing effective operating policies can be challenging
when uncertainties affect performance (Tejada-Guibert et al., 1995). Many researchers
have focused on evaluating hydrologic uncertainties and reservoir inflow forecasts (Kim
& Palmer, 1997; Rangarajan & Simonovic, 1999; Faber & Stedinger, 2001; Hamlet et
al., 2002; Tang et al., 2010; Rheinheimer et al., 2016; Wang et al., 2017). Considering
all drivers, including inflow, demand and energy prices, the decision criteria in reservoir
operations become when and how much to release in the current time-step and store water
for later stages, as releasing too much water can cause future shortages and high storages
may spill water, depending on hydrology (Pereira & Pinto, 1985).

For hydropower, reservoirs store energy, as higher-elevation water. Using potential
energy difference (water head) between reservoir intake and tailwater levels, power is gen-
erated by vertical movement of water. Hydropower’s lower operating cost (Madani et al.,
2014) than most other power sources gives incentive to maximize hydropower generation
in a power system with mixed generation sources (Hamlet et al., 2002). Hydropower also
can provide operational flexibility by generating power on short notice (Chatterjee et al.,
1998; Coté & Leconte, 2016) and additional ancillary services, such as peak and frequency
regulation, and spinning reserve (Li et al., 2013). Hydropower plants usually are classified
into three forms: a) large-storage, b) low-storage or run-of-river, and ¢) pumped-storage
plants (Pérez-Diaz & Wilhelmi, 2010; Madani et al., 2014), with some plants overlapping
these general types. Run-of-river plants run continuously and usually supply base power
load, while plants with more storage capabilities and pumped-storage plants are more



dispatchable and regulated for peak demands (Pérez-Diaz & Wilhelmi, 2010).

Despite its advantages and ability to reduce C'Oy emissions, hydropower has ecological
and environmental impacts (Bratrich et al., 2004; Viers, 2011). Large dams modify stream
flow regimes, block fish migration routes, trap nutrients and sediments, and affect river
ecosystems (Bratrich et al., 2004). Studying environmental impacts of hydropower and
trade-offs between environmental and hydropower objectives are important tasks, but
beyond the scope of this research, even though the developed model, discussed later, can
be modified to include environmental in-stream flow requirements.

Figure 1.1 shows California’s in-state electric generation capacity (a) and annual av-
erage generation (b) portfolios between 2001 and 2017. California, as of 2017, has an
in-state installed hydropower capacity of 14 GW, which is roughly 18% of total state
installed energy capacity of 80 GW (California Energy Commision, 2018). Most of Cal-
ifornia’s hydropower plants are in the Sierra Nevada (east) and Cascade Range (north)
and shown in Figure 1.3. Hydropower generation varies between years, depending on
water availability. 2001-2017 annual in-state hydropower generation averages to 31 TWh
(California Energy Commision, 2018). Ziaja (2017) discusses California’s hydropower
system policies and compares of rules and models.

Many algorithms have been developed for reservoir operations and water allocation.
Martin (1983); Yeh (1985); Wurbs (1993); Labadie (2004); Ahmad et al. (2014) review
reservoir optimization and compare techniques. Similar techniques are applied to hy-
dropower reservoir operations. Most common applications use linear (LP) (Madani &
Lund, 2009; Vicuna et al., 2011; Rheinheimer et al., 2016), nonlinear (NLP) (Tejada-
Guibert et al., 1990) and dynamic programming (DP) (Grygier & Stedinger, 1985; Marino
& Loaiciga, 1985; Afshar et al., 1990; Zhao et al., 2012; Li et al., 2013) to solve hydropower
optimization problems. Stochastic dynamic hydropower optimization models often better
represent inflow uncertainty (Pereira & Pinto, 1985; Trezos & Yeh, 1987; Kelman et al.,
1990; Tejada-Guibert et al., 1995; Kim & Palmer, 1997; Faber & Stedinger, 2001; Tang
et al., 2010; Coté & Leconte, 2016). Turgeon (2007) proposes different solution meth-
ods for hydropower reservoir optimization. Turgeon’s method is called optimal reservoir
trajectory and solves based on raising reservoir storage to be profitable so long as gain
from higher head exceeds loss from additional spill. This method, however, is limited to
reservoirs on the same river system. Heuristic methods, such as evolutionary algorithms,
also are used to optimize hydropower operations (Wu et al., 2016; Wang et al., 2017).

Although dynamic programming (DP) and its variation stochastic dynamic program-
ming (SDP) are popular for hydropower system optimization, the curse of dimensionality
(Yakowitz, 1982; Zhao et al., 2012; Feng et al., 2017) and its suitability to a generalized
hydropower network solver remain challenging. Linear programming (LP) has advantages
of a fast evaluation and finding a globally optimal solution, but nonlinear hydropower op-
timization problem needs to be simplified to fit a LP formulation, reducing the accuracy
of results. NLP needs less simplification, and nonlinear hydropower operations can be
well-represented. However, computing time increases exponentially with the number of
decision variables. Chapter 2 presents a hybrid linear programming-nonlinear program-
ming (LP-NLP) hydropower optimization model for California.

California generates electricity from various sources (Figure 1.1), with most in-State
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Figure 1.1: California’s in-state installed energy capacity (a) and annual average genera-
tion (b) between 2001 and 2017 (Data source: CEC Energy Almanac)

generation from natural gas. Starting 2012, natural gas and nuclear generation have been
declining, while wind and especially solar generation have been increasing. These are
all part of California’s ambitious clean energy goals, called Renewable Portfolio Standard
(RPS) targets, where the state had a renewable generation target of 20% and 25% of total
generation in 2013 and 2016, respectively, and the next targets are 33%, 40%, 45%, and
50% by the years 2020, 2024, 2027, and 2030, respectively (California Energy Commision,
2017). In an earlier study, Eichman et al. (2013) show that 50/50 mix of additional solar
and wind installation would provide the highest system-wide capacity factor, where large
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wind farms provide low cost generation and solar provides more predictable generation.
Most of these RPS targets, however, have been met by solar photovoltaic (PV) genera-
tion, which significantly affects hourly net load and energy prices with a so-called ‘duck
demand pattern’ (Figure 1.2) for non-solar energy (Denholm et al., 2015). Increased solar
generation lowers the back of the duck curve, when solar generation peaks, converting
the system from one-daily peak to two-daily peaks. This new price pattern from renew-
able expansion significantly affects hourly hydropower reservoir operations (Chang et al.,
2013). Chapter 3 evaluates effects of this new price pattern on dispatchable hydropower
generation and presents adaptations using the hydropower optimization model developed
in Chapter 2.
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Figure 1.2: Total and net load (total - (solar 4+ wind)) in 2018. Net load is called ‘duck
curve’ due to its shape. (Data source: CAISO)

California’s Fourth Climate Assessment Report states that by the end of this century,
temperature will increase, sea level will rise and snowpack will decline with “very high”
confidence, and frequency of droughts and the intensity of extreme precipitation events will
increase with “medium-high” confidence (Bedsworth et al., 2018). This non-stationary
climate is expected to shift the timing and magnitude of water availability (Lettenmaier
& Sheer, 1991; Miller et al., 2003; Vicuna et al., 2007; Cayan et al., 2008; Vicuna et al.,
2010; Dettinger, 2016; Swain et al., 2018). Snowmelt timing is important in California’s
water operations as snowpack in the Sierra Nevada stores water for water supply and
energy demands during summer (Forrest et al., 2018). More precipitation as rainfall
and earlier melting of the snowpack from higher temperatures is projected (Pierce et
al., 2018), requiring adapting management to these changing conditions (Hanak & Lund,
2012; Herman et al., 2018).

Hydropower generation strictly depends on water availability and is susceptible to any
change in runoff timing and magnitude from changed air temperature and precipitation
(Mukheibir, 2013; Lanini et al., 2014; Boehlert et al., 2016). When water shortages occur
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due to climate change or increased water demand, users will compete for limited water,
including hydropower uses (Lin et al., 2013). Optimal water allocation and adaptation
to changing conditions are key to maximizing overall objectives and system effectiveness.
Climatic changes also should be considered when making investment decisions for new or
existing hydropower facilities (Kim et al., 2017).

Madani and Lund (2009), Vicuna et al. (2011), Madani et al. (2014), Rheinheimer et
al. (2014), and Rheinheimer and Viers (2015) study effects of climate change focusing on
high-elevation hydropower generation with small-storage capacity plants and found that
snowmelt runoff shift and precipitation mostly as rainfall rather than snow will have eco-
nomic and environmental impacts and alter operations. Boehlert et al. (2016) and Forrest
et al. (2018) show that hydropower generation in California will increase in winter and
decrease in summer with climate change. To evaluate climate change impacts, especially
on hydropower plants with sizable storage capacities, which are also more adaptable, the
hydropower optimization model developed in Chapter 2 is run for several climate projec-
tions with hydropower generation, reservoir operations and investment results, presented
in Chapter 4.

Pumped-storage hydropower (PSH) stores water in an upper reservoir during low de-
mand and price hours to generate energy during high demand and price hours (Figueiredo
& Flynn, 2006; Bozorg Haddad et al., 2014; Pérez-Diaz et al., 2015; Yang, 2016). Al-
though some energy is lost during pumping and generation, energy price variability makes
these plants profitable. PSH systems are dispatchable and improve power reliability in
addition to their ancillary services (Figueiredo & Flynn, 2006; Kougias & Szabé, 2017).
Barbour et al. (2016) provides a review of PHS development in major energy markets, in-
cluding Europe, USA, and China. PHS operations are driven solely by hourly energy price
variability, but unlike other hydropower types, are less dependent to water availability.
The major operating decision is when to pump and generate given efficiencies of pump
and turbine and capacities. Chapter 5 presents two algorithms that optimize short-term
hourly operations of PSH plants. The first algorithm uses price-duration curves to find
optimal operating duration, pump and generate price thresholds, and provides analytical
solution to the problem. The second algorithm is more sophisticated and is modified from
the reservoir operations model developed in Chapter 2.

This research develops an efficient and flexible hydropower operation and planning
model using state-of-the-art optimization modeling techniques. The model is then used to
evaluate solar PV and changed price pattern effects on short-term hydropower operations,
and climate change effects on long-term hydropower planning and management. Also,
separate algorithms are developed for pumped-storage hydropower operations. Research
questions of this dissertation include:

e (Chapter 2) How to incorporate recent advances in optimization to develop a hy-
brid model that utilizes advantages of different techniques? Assuming NLP best
represents operations, can LP reduce the number of NLP iterations? LP accuracy
losses are quantified and discussed.

e (Chapter 8) How does solar photovoltaic (PV) generation-changed energy price
patterns affect short-term hydropower operations in California?



e (Chapter 4) How do future climate projections affect California’s long-term hy-
dropower generation and management?

e (Chapter 5) How to generate optimum operation (energy generation vs. pumping)
strategies for pumed-storage hydropower (PSH)? How does solar generation affect
PSH decisions?

The hybrid hydropower optimization model described in Chapter 2 is run for short-
term reservoir operations with an hourly time-step to evaluate solar generation effects
on hydropower, discussed in Chapter 3. The hybrid model also is run for long-term
hydropower planning with a monthly time-step to evaluate climate change impacts, pre-
sented in Chapter 4. Finally, a modified version of the hybrid model is applied to PSH,
and is compared with another algorithm. This comparison and solar generation effects
on PSH are discussed in Chapter 5.
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Figure 1.3: California’s power generation by source (Data source: CEC)
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Chapter 2

Hybrid Linear Programming -
Nonlinear Programming for
Hydropower Optimization

2.1 Introduction

In a decentralized (or deregulated) energy market, an independent hydropower plant
operator seeks to maximize profit (Li et al., 2009). This is done by storing limited wa-
ter and generating energy during most beneficial hours within available storage capacity
(Bushnell, 2003; Olivares & Lund, 2012). Optimizing storage and release schedules of hy-
dropower plants with reservoirs is critical for operational decisions. Plants without sizable
storage capability are called run-of-river (Anderson et al., 2015). Run-of-river plants di-
vert a fraction of flow and operate continuously depending on water availability (Garrido
et al., 2009; Lazzaro & Botter, 2015). This chapter discusses hydropower optimization
with linear and nonlinear programming using the network-flow reservoir system modeling
and quantifies accuracy losses and runtime benefits of LP, NLP, and the hybrid LP-NLP
models.

2.2 Hydropower Optimization

Hydropower optimization requires representing two key inputs in addition to plant
characteristics: reservoir inflow and energy prices. The latter is assumed exogenous, that
hydropower operations do not affect energy prices. Inflow and price are assumed to be
known with certainty in a deterministic model. Equation 2.1 shows total power generated
(Watts) as a function of density of water, p (kg/m?); gravitational constant, g (m/s?);
plant efficiency, n (constant); water head, H(t) (m); and flow through turbines, Q(t)
(m3/s):

Power = pgnH (t)Q(t) (2.1)
Integrating power over time, ¢ (hour), in a given period, AT, yields generation (Wh):

T
Generation:/o pgnH (t)Q(t)dt (2.2)



Multiplying generation with energy price, p(t) ($/Wh) results in hydropower revenue (3):

Revenue:/o pgnH (6)Q(t)p(t)dt (2.3)

For N power plants in a network, total hydropower revenue (Equation 2.3) from all plants
and time-steps can be formulated as:

N T

Total Revenue = Z Z pgniH; Qi At (2.4)
t

7

For constant head power plants, head H does not change for a given plant ¢ in time t.
However, for variable head power plants with large storage capacity, water head H van
be written in terms of storage, resulting in two decision variables: turbine release () and
storage S.

N T
Total Revenue = Z Z pgniH (S)i1Qipe At (2.5)
it

Hydropower optimization is a nonlinear problem since water head, H, changes non-
linearly with storage (Equation 2.1). Furthermore, multiplying two decision variables,
head as a function of storage H(S) and release @), adds another layer of nonlinearity. The
hybrid LP-NLP model developed in this chapter combines fast evaluation of LP and accu-
rate representation of NLP. In a sequential optimization, a LP model is created and solved
first, and then a NLP model of the same problem is solved using LLP decision outputs as an
initial solution, which reduce the number of iterations and computing time for slower NLP
model. In both cases, the deterministic model maximizes hydropower revenue (Equation
2.5), given inflow and energy price. The following sections discuss hydropower optimiza-
tion, LP and NLP model development, and its application to California’s hydropower

operations.

2.2.1 Storage-Head Relationship

For a plant with large storage capacity, water head changes with reservoir levels. Head
increases if the plant stores water and decreases if storage decreases. Depending on a reser-
voir site’s topography, there is a nonlinear relationship between reservoir water storage,
elevation and energy storage. Water head is the difference between reservoir elevation and
tailwater race, H = E,cservoir — Praitwater- Figure 2.1 depicts the power storage and the
head as a function of water storage for a rectangular and sloped (trapezoidal) reservoir.
For the same water storage and capacity, surface area increases and head decreases with
sloped reservoirs. The power storage and the head increases linearly as water storage
increase for rectangular reservoirs, while the power storage and the head increases with
marginal decrease for sloped reservoirs.
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Figure 2.1: Rectangular vs. sloped reservoir power storage and head changes depending
on water storage

A third-degree polynomial relationship, suitable for rectangular and sloped reservoirs,
is used to represent head as a function of storage for variable head power plants. Polyno-
mial parameters «, 3, 7 and ¢ are specific for each power plant ¢ and fit using observed
storage and elevation data from the California Data Exchange Center (2018).

H = ;S + B:5® + 7S + ¢ (2.6)

Figure 2.2 shows polynomial relationship between storage and head for selected reser-
voirs. For large reservoirs, such as Shasta and New Melones, head variations are much
higher with a change in storage. Small reservoirs, such as Keswick (downstream of Shasta)
and Nimbus (downstream of Folsom), have less head variations. Even though head could
be assumed fixed for those small reservoirs, a variable head function (Equation 2.6) is
applied. Using polynomial parameters «, 3, 7 and ¢ as inputs, head H is dynamically
calculated as a function of storage. Substituting Equation 2.6 into Equation 2.5 becomes:

N T
Total Revenue = Z Z pgni(ozngt + @Sﬁt +%iSit + ¢i)Qirpi At (2.7)

7 t
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Figure 2.2: Relationship between head (E,eservoir — Etaitwater) and reservoir storage, and
polynomial curves (Data source: CDEC)
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2.2.2 Generalized Network Flow Representation

Network flow optimization models allocate a commodity carried in the network and
common in transportation, transmission, and water resources (Draper et al., 2003, 2004;
Bazaraa et al., 2010; Dogan et al., 2018). Optimality criteria can be to minimize the
cost of commodity movement and losses or maximize flow and benefits. Since hydropower
plants are often connected with streams or canals and water is allocated among them,
multireservoir hydropower modeling fits a network flow framework. A typical hydropower
network contains nodes and links, where nodes denote power plants and links denote
streams, canals or pipelines. General representation of hydropower network flow repre-
sentation contains objective function to be maximized.

max z = Z Z f(Xi;) (2.8)

subject to:
Xij <wu, V(i j) € A (2.9)
Xij > 1;;,¥(i,5) € A (2.10)
Zin - Zainij =0,VjeN (2.11)

where (1, j) indices represent origin and terminal nodes in time and space. X;; is flow from
node ¢ to node j (decision variable). f(X) in (Equation 2.8) can be linear or nonlinear
objective function. Equations 2.9, 2.10 and 2.11 represent upper bound, lower bound and
mass balance constraints, respectively. A denotes matrix of links (arcs), and N denotes
matrix of nodes.

Figure 2.3 illustrates a simple hydropower network with two time-steps (¢ and ¢ + 1)
and two plants (i and i 4+ 1) in serial. Flow carried in the network originates from an
artificial node called ‘Source’ and goes into a node called ‘Sink’, for which Equation 2.11
is skipped as there are only outgoing links from ‘Source’ and incoming links to ‘Sink.’
Adding more physical elements, such as reservoirs and canals, increases the model network
horizontally, and adding more time-steps to the network increases the network vertically,
where physical network is replicated and only connection between time-steps is reservoir
storage from one time-step to the other.
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Figure 2.3: Generic network flow representation of the model with two time-steps (¢ and
t+ 1) and two plants (¢ and ¢ + 1) in series

Most large-scale water resources models use linear programming, successive linear
programming, or dynamic programming as nonlinear programming is computationally
expensive (Martin, 1983). CALVIN, a large-scale hydroeconomic optimization model for
California’s water infrastructure, represents nonlinearities with piecewise linear penalty
(or cost) curves, where multiple links are connected from origin node i to terminal node j
with varying (convex) unit costs, which has accuracy losses than general linear program-
ming (Draper et al., 2003; Dogan et al., 2018). Lund and Ferreira (1996) and Murk (1996)

also use the similar piecewise linear programming to model Missouri and Columbia River
system reservoirs.

2.2.3 Nonlinear Programming Model

Hydropower operations are substantially nonlinear, which occurs mostly from chang-
ing water head and storage. The Nonlinear Programming (NLP) model dynamically
represents water head based on the polynomial relationship (Equation 2.6) and does not
require simplifying the objective function or constraints. To calculate head from storage,

the NLP model separates flow X and storage Y decision variables. Converting Equation
2.7 into network flow framework, objective function of NLP model becomes:

_ 3 2
max 2= ; GZA g0 (Y, + BnY,, + Yo + o) Xonpm At + Z PmXm  (2.12)
m Fn S

meAp
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subject to

Xij S i, V(i,7) € Ap (2.13)
Yij < i, V(i j) € As (2.14)
Xi; > 1;,V(i,§) € Ap (2.15)
Yy > 1, V(i) j) € Ag (2.16)
[Z X + Z Yji] — [Z a; X + Z a;;Y;j] = 0,¥j € Ng, Ng (2.17)

where m and n represent flow and storage links of the physical network; 7 and j are origin
and terminal nodes in a given link; Ar and Ag are sets of flow and storage links; u is
upper and [ is lower bound constraints; and a is amplitude used to represent evaporation
losses. 7 is overall plant efficiency. There are two parts in objective function (Equation
2.12): First part represents nonlinear hydropower revenue; the second (linear) part is used
to penalize spills. Equations 2.13 - 2.16 enforce upper bound and lower bound constraints
on flow and storage links, while 2.17 enforces mass balance at every flow (Ng) or storage
(Ns) node j.

The NLP model is solved with IPOPT, an open-source large-scale nonlinear program-
ming solver (Wachter & Biegler, 2006).

2.2.4 Linear Programming Model

The Linear Programming (LP) model simplifies the nonlinear objective function by
linearizing Equation 2.7. Instead of dynamically calculating water head, power generation
and eventually revenue, the LP model uses prescribed unit benefit values b. These unit
benefit values are calculated by fitting a linear surface to nonlinear hydropower revenue
curve at each plant and time-step, where coefficient of determination 72
(minimizing residuals) shown in Equation 2.18.

21 25E (2.18)

1s maximized

where SSE is sum of squares of errors (or residuals), and SST is total sum of squares,
which can be written in a general form as:

>y —9)?
>.;(Benefitypp; — Benefit,p;)?
1
> i(Benefityrpi — N >, Benefitnrp;)?

where Benefityrp is calculated using Equation 2.7, and Benefit;p is calculated by
optimizing unit benefits (slopes) of flow and storage, b, to maximize r* for all plants

rP=1-—

(2.19)

r?=1-—

(2.20)
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and time-steps ¢. Linear benefits with optimized b, nonlinear benefits and errors between
nonlinear and linear benefits are simulated in Figure 2.4. Errors are highest at corner
points where storage and releases are maximum (plant capacity). Despite errors in the
LP model, both models try to reach maximum storage and release, where benefit is the

highest.
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Figure 2.4: Linear and nonlinear objective functions (benefit curves) and errors showing
residuals between nonlinear and linear curves

After calculating b;; by maximizing Equation 2.20, the LP model’s objective function
and constraints can be written as:

J

i

subject to:
Xij < i, V(i j) € A (2.22)
Xij > 1;;,¥(i,j) € A (2.23)
> Xji— ) ayXy=0VYjeN (2.24)

where ¢ and j are origin and terminal nodes in space and time; N and L are sets of nodes
and links; X is flow (decision variable), b is unit benefit, u is upper, [ is lower bound and a
is amplitude used to represent losses such as evaporation. The parameter b (negative) also
is used to penalize spills. The objective function (Equation 2.21) is a sum of benefits, and
Equations 2.22 - 2.24 enforce upper bound, lower bound and mass balance constraints,
respectively.

The LP model is solved with the GNU Linear Programming Kit (GLPK), an open-
source, large-scale linear programming solver (Free Software Foundation, 2019).
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2.3 Application: California

California relies on hydropower for 7% (in 2015) to 47% (in 1983), with an average
of 19% (1983-2017), of in-state electricity generation, depending on hydrologic variability
(Figure 2.5). Drought years, 1987-1992 and 2012-2015, have less, and wet years, 1983,1997,
and 2016, have more hydropower generation. About 74% of California’s hydropower is
from high elevation plants (Madani & Lund, 2009) in northern and eastern California, and
about 63% of total hydropower capacity of 14000 MW is in the Sierra Nevada (Figure 2.6),
driven mostly by (often stored) water from snowmelt (Rheinheimer et al., 2014). CEC
considers small hydropower (turbine capacity < 30 MW) as a renewable energy source.

The developed model can represent fixed-head (high head, low storage) and variable
head (low head, high storage) hydropower plants. As a proof-of-concept model, 11 plants
are modeled (Table 2.1). Head is dynamically calculated using Equation 2.6. However,
fixed plants could also be represented by eliminating all parameters except ¢ in Equation
2.6. These plants are multipurpose and hydropower generation is often by-product of
operations. However, only hydropower objectives are considered here.

California's Long-Term Energy Generation (TWhly)
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Figure 2.5: Long-term annual average energy generation portfolio of California and im-
ports (Data source: CEC Energy Almanac)
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Figure 2.6: California’s hydropower plants and capacities for a single turbine unit (Note:
some plants have multiple units. Data source: CEC)

2.3.1 Energy Prices

Energy prices are the economic value of unit energy generation in the energy mar-
ket. The energy market in California consists of an independent system operator (ISO),
scheduling coordinators, power exchanges, utility distribution companies, retail marketers,
customers and generators (Srivastava et al., 2011). The California Independent System
Operator (CAISO) is a non-profit organization, which operates California’s wholesale elec-
tricity market, where automated auctions are run every day and every five minutes, across
4600 price nodes (locations), dispatching the lowest cost generators to meet demand while
ensuring transmission capacity (CAISO, 2018a).

Hourly average wholesale energy prices are obtained from CAISO (2018b). Locational
marginal fifteen-minute energy prices are averaged to obtain statewide hourly average
energy prices shown in Figure 2.7. Energy prices are lower during off-peak hours (0-6),
when demand is lower, and higher during on-peak hours (18-22), when demand is higher.
With a price-taking approach, these energy prices ($/MWh) are used as input to calculate
hydropower revenues from generation (Equation 2.7).
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Figure 2.7: Hourly statewide average marginal energy prices of California ($/MWh) be-
tween 2010 and 2018 (Data source: CAISO)

2.3.2 Hydrologic Inputs and Plant Characteristics

Hydropower plants operate depending on water availability. So, reservoir inflows are
important for modeling. In the deterministic case, inflows are directly used as model
inputs. Reservoir inflows represent hydrologic variability across a modeling period. Some
models use historical hydrology to represent this variability; others use hydrologic fore-
casts. Planning models, such as CALVIN, usually use long-term historical hydrology, and
operations models often use short-term future forecasts. The developed model can be
used for both long-term planning and short-term operating decisions. The model can
be run in several time-step lengths, including hourly, daily, weekly, monthly and annual,
depending on data availability, and historical hydrology or future forecasts can be used
as reservoir inflows. Reservoir inflows with hourly resolution are downloaded from the
California Data Exchange Center (2018). Both historical and forecast inflows are repre-
sented deterministically in this modeling.

Table 2.1 shows modeled hydropower plants and their characteristics, such as storage
and release capacity, deadpool storage, overall efficiency n and polynomial parameters
«, 3,7 used to dynamically calculate water head from storage.
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Table 2.1: Network plants, their properties, and parameters used to dynamically calculate

head as a function of storage
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2.3.3 Comparing LP and NLP Models

Both LP and NLP models use the same network structure, similar to Figure 2.3
but with slightly different representation of operations and equations. The NLP model
separates flow and storage decisions and dynamically calculates head and hydropower
revenue. The LP model has a single decision variable and uses unit benefit values b to
calculate total benefit. If all nonlinearities of hydropower optimization can be represented,
the NLP model is assumed to perfectly represent operations. With objective function
linearization in the LP model, accuracy losses occur. This section compares LP and NLP
model outputs to quantify errors and test the LP model.

The LP and NLP models are compared for dry and wet periods. The dry period, with
3,541 decision variables, is from June 1 to September 1, 2018 with a daily time-step and
has an average of 23 m?/s reservoir inflow. The wet period, with 3,466 decision variables,
is from January 1 to April 1, 2017 with a daily time-step and has an average of 310 m3/s
reservoir inflow. Initial and ending storage values are set to half of the storage capacity
for modeled reservoirs. Differences on decision variable outputs (Figure 2.8) are due to
residuals (errors) shown in Figure 2.4-(b). Despite the same network and properties,
different objective functions drive operations, resulting in output differences. The NLP
model has a fuller system representation, while the LP model employs unit benefit values.
Negative values in Figure 2.8 show that the LP model over-estimates storage and release
decisions about 17% of the time for the dry period and 10% of the time for the wet period.
Positive values show the LP model under-estimating at roughly 2% and 25% of time, for
wet and dry periods, respectively. At the remaining times, the NLP and LP outputs
are similar (£ — 05). The LP model slightly over-estimates in dry periods and under-
estimates in wet periods in both duration and magnitude. As the hydrology becomes
wetter, the LP model’s under-estimation increases, and with a drier hydrology, the LP
model’s over-estimation increases. The LP model is the least reliable in high storage and
low release, and low storage and high release conditions.
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Figure 2.8: Percent frequency distribution of decision value (daily release and storage)
differences between NLP and LP models for dry and wet periods

Figure 2.9 compares LP and NLP model outputs (daily flow and storage in million
m?3) for dry and wet periods. Mostly due to less operational flexibility in the dry period,
there is more agreement between LP and NLP model outputs. Wet period decisions
cover wider range and LLP model under-estimates some high storage decisions. Most large
differences between the LP and NLP models are from only three reservoirs, under specific
conditions. The LP decisions in the wet season are less reliable in two cases: a) The
largest differences are from reservoirs with low deadpool and large head variations (New
Melones and Pine Flat), where nonlinearities are higher; and b) reservoirs with large
storage capacity (Shasta), where the LP model mostly underestimates storage.
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Figure 2.9: LP and NLP model decision variables (daily release and storage) comparison
and marginal density distributions for dry and wet periods

Although operations for the LP model are driven by a linear objective function, power,
generation and revenue results in Table 2.2 are postprocessed from the polynomial head
function (Equation 2.6) after obtaining flow and storage decisions. the LP model over-
estimates power and generation by 1% in dry period, and under-estimates by 2.3% in
wet period. Given the model objective is to maximize total hydropower revenue, the LP
model’s revenue in wet period is quite close to the NLP model. In dry period, however,
the LP model under-estimates revenue by about 2%. This could be partly due to multiple

optimal solution or LP model’s lower storage or release decisions during less available
times in the wet period.

Table 2.2: Dry and wet period daily average hydropower load (MW /day), generation
(MWh/day), and revenue ($/day)

NLP Model LP Model Difference Difference (%)

Power loaddry period 25.6 25.9 0.25 1%
Power loadyet period 327.1 319.4 =77 -2.3%
Generationgyy period 615 621 6 1%
Generationyet period 7,850 7,666 -184 -2.3%
Revenueqyy period 32,235 31,622 -613 -1.9%
Revenueyet period 232,725 232,731 6 0.002%

2.3.4 Hybrid LP-NLP Hydropower Optimization Model

The Hybrid LP-NLP model takes the fast calculation advantage of the LP model to
reduce the number of iterations in the NLP model, which has fuller system representation
but slow computing time. Both LP and NLP models use the same network, defined by
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plants and time-step in the modeling horizon. Despite the LP model’s accuracy losses and
resulting errors, the LP can efficiently point to an optimal feasible region. In a sequential
optimization, first the LP model is created and run. Then, LP decision outputs are used
to initialize the NLP model’s decision variables, called warmstart, to reduce number of
NLP iterations for convergence.

Figure 2.10 compares accuracy and solver runtimes of LP, NLP and Hybrid LP-NLP
models. Each model is run for three different model sizes, small, medium and large-scale
with a number of decision variables of 502, 1376 and 3162, respectively. Accuracy losses
in LP model result from residuals in the objective function and relative to the NLP model
in Equation 2.25, where f is the average objective function (revenue) value. Accuracy
losses accumulate as size increases in the LP model. Runtime increases exponentially,
however much faster for the NLP and Hybrid LP-NLP models. Hybrid model, where the
NLP model is initialized with LP outputs, significantly reduce runtime of the NLP model
without affecting accuracy.
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Accuracy (%) = 100 * (1 — ) (2.25)
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Figure 2.10: Result accuracies and solver runtimes of LP, NLP and Hybrid LP-NLP
models with different model sizes (Small, medium, and large models have 502, 1376, and
3162 decision variables, respectively. Solver runtime does not include time for model
creating and postprocessing)

The hybrid LP-NLP model, which initializes the NLP model with the LP model’s
solution, reduces runtime of the NLP model by about 80% in all model sizes (Figure
2.11). The NLP model also can be initialized with the NLP solutions (lower bound NLP)
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after solving it to represent the lower bound for runtime improvement with a perfect initial
solution. This is the time that the model takes to verify the optimal solution. There is
still a room up to the lower bound NLP to further reduce the NLP iterations and runtime
if a better initial solution (than LP) with less residuals is provided, such as piecewise LP
or successive LP, especially for the large model size.
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Figure 2.11: Solver runtimes of LP, NLP, and Hybrid LP-NLP models and lower bound
NLP with different model sizes (Small, medium, and large model sizes. Solver runtime
does not include time for model creating and postprocessing)

The initialization with the LP model reduces the number of NLP iterations, while
runtime still increases exponentially and can be pose a problem for long-term operations
with many decision variables. In addition, price and inflow uncertainties increase as the
modeling horizon increase. So, the LP model’s ability to run for long periods in a short
duration of runtime can be favorable to the NLP model’s better system representation of
storage-dependent head.

2.4 Limitations

The model limitations include perfect hydrologic foresight, single revenue-maximizing
objective, and the assumption that hydropower operation does not affect energy prices.
For short-term operations, of a 1 to 3 day period with hourly time-step, operators usually
have good hydrologic foresight. However, for long-term operations or highly variable and
uncertain short-term conditions, perfect hydrologic foresight may result in too optimistic
operations, flattening effects of extreme events, such as droughts and floods. However,
for long-term operations and planning, hydrological uncertainties are much higher than
limitations imposed by the perfect foresight. Most modeled reservoirs are multipurpose,
but their short-term objective is often to maximize hydropower revenue within water
supply release schedules and flood operations. Finally, the marginal cost of hydropower
generation is much lower than fossil-fueled sources, so a price-taking approach is employed.
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2.5 Conclusions

A hybrid hydropower optimization model was developed and applied to California’s
hydropower system. Taking advantage of fast calculation in the LP and a fuller system
representation of a NLP model, the hybrid model runs the LP and NLP models sequen-
tially, using LP outputs to initialize the NLP model and reduce number of iterations
for convergence and runtime by 80%. This initialization, called warmstart, significantly
reduces iterations and runtime for the NLP model without affecting accuracy of results.
The hybrid LP-NLP runtime can be reduced up to lower bound NLP if a more accurate
solution than LP, such as piecewise LP or successive LP, is provided. The LP and NLP
models also can run separately. Despite reduction with warmstart, the hybrid LP-NLP
model still requires much longer runtime than the LP model. So, for short-term opera-
tions, where a good system representation is important, the hybrid LP-NLP model can
be used. For long-term planning and management decisions, where hydrologic and energy
price uncertainties are higher, the LP model can be better. LP and NLP decisions are
similar in the dry season, with less operational flexibility. As water availability increase
in the wet season, differences between the LP and NLP models increase. The LP model
is less reliable when water availability is higher, head changes nonlinearly with storage,
and storage capacity is large.
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Chapter 3

Solar Energy Effects on Short-term
Hydropower Operations

3.1 Introduction

Hydropower with a sizable storage capacity is considered a dispatchable resource,
where stored water stores energy when demand is low and is dispatched later to meet
peak demands (Pérez-Diaz & Wilhelmi, 2010). These peak demands can be seasonal,
such as summer demand for long-term operations, or daily peak-hour demands for short-
term operations. In an economic equilibrium, load (supply) equals demand. On average,
total demand is less at night and more during daytime (Figure 3.1). Nuclear, geothermal,
small hydropower provide mostly base load supplies, and thermal (mostly natural gas),
large hydropower and imports help meet both peak demands and base load. Although
total demand remains unchanged, hourly breakdown of load sources has been changed
significantly since 2010. This is because of California’s ambitious Renewable Portfolio
Standard (RPS) targets that the State wants to achieve 33%, 40%, 45%, and 50% of total
generation from renewable sources, such as solar, wind, small hydro, biomass, biogas, and
geothermal, by 2020, 2024, 2027, and 2030, respectively (California Energy Commision,
2017). Most of these goals are met by wind and solar photovoltaic (PV) generation, which
are variable due to their intermittent nature (Chang et al., 2013). The difference between
total load and variable supply is net load, and its curve is called a ‘duck curve’ due to
its shape (Denholm et al., 2015). With increasingly variable supply, especially solar, this
shape has notably transformed, lowering net load when solar power production peaks
around noon and steeper ramping rates to meet the peak demand in the evening. The
net load is highly correlated with wholesale energy prices. This chapter aims to quantify
effects of changed price patterns on short-term hydropower reservoir operations, using the
hybrid LP-NLP hydropower optimization model with an hourly time-step over a seasonal
period from 2010 to 2018. Although the modeled reservoirs serve for multi-purposes,
including water supply, environment, flood protection and recreation, their short-term
objective often is to maximize hydropower revenue given release schedules.
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Figure 3.1: Hourly average load (GW) and sources between 2010 and 2018. The net load
(total - (solar + wind)) curve is called a ‘duck curve’ (Data source: CAISO)

3.2 Reservoir Inflows

Five large-scale reservoirs with varying storage sizes and inflow rates are modeled (Ta-
ble 3.1). The model is run for two seasons: wet and dry. The wet season is between
January and June, and the dry season is between July and December of each year from
2010 through 2018. In the wet season, average reservoir inflows are much higher with
precipitation and snowmelt runoff, giving operators more flexibility for dispatchable hy-
dropower operations. In the dry season, with lower flows, priorities are given to the most
valuable hours in terms of energy prices to maximize overall revenue. For initial and
ending storage boundary conditions, half of the reservoir storage capacity is assumed for
each season and year, without carryover storage.
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Table 3.1: Modeled hydropower plants and observed mean (u) and standard deviation
(o) of hourly inflows (m?/s) in wet and dry seasons (Data source: CDEC)

Plant Plant ID Capacity Storage Capacity Wet Season 2Dry Season
(MW) (MCM) 1 o p o
Shasta SHA 714 5615 281 309 134 153
Bullards Bar BUL 315 1192 71 102 20 47
Folsom FOL 207 1203 162 240 57 92
New Melones NML 300 2985 64 79 30 33
Pine Flat PNF 165 1233 91 109 34 56

1 January-June, 2July-December

The modeled reservoirs are on the lower foothills of the surrounding mountains, where
there are several hydropower plants upstream with low-storage, owned by several agencies
including Pacific Gas and Electric Company (upstream of Shasta, Folsom, New Melones,
and Pine Flat), Sacramento Municipal Utility District (upstream of Folsom), and North-
ern California Power Agency (upstream of New Melones). Nevertheless, these upstream
hydropower plants somewhat regulate hourly inflows with hydropower peaking releases
to the modeled hydropower plants, as shown in Figure 3.2. With large storage capacity,
modeled reservoirs can reduce upstream regulation effects, generating energy when it is
most valuable. Also, hourly overall average inflows between 2010 and 2018 for dry and
wet seasons are used to evaluate only energy price effects on operations, eliminating any
hydrologic impacts.

Wet Season Hourly Average Inflow (m?3/s) Dry Season Hourly Average Inflow (m3/s)
3 200
300 A —— SHA —— SHA
250 1 ' i . . 100 4,
72.5 22.5
_ — BUL 20.0 A — BUL
700 1751
170 A 60
i — FOL | — FOL
160 / 50
- 35 -
70 NML 30 NML
60 - 25
95 4 — 40
90 - —— PNF —— PNF
: : : : : 30+ : : : :
0 5 10 15 20 0 5 10 15 20
Hour Hour
(a) Wet season hourly average plant inflows (b) Dry season hourly average plant inflows

Figure 3.2: Wet and dry season hourly overall average reservoir inflows (m?3/s) affected
by upstream hydropower peaking releases between 2010 and 2018 (Data source: CDEC)
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3.3 Renewable Generation and Solar

Energy generation from renewable sources, including geothermal, biogas, biomass,
small hydro (<30 MW), wind, and solar, are a significant portion of California’s energy
portfolio. Geothermal, biogas, biomass, and small hydro provide about 1500 MW hourly
base load, while solar dominates the renewable portfolio when it peaks, especially in recent
years (Figure 3.3-(a)). Solar and wind generation are intermittent and greatly vary across
hours. Wind usually peaks around midnight and solar peaks around noon, somewhat
and sometimes complementing each other. Starting 2013, as a part of RPS targets, solar
generation has been booming, with modest increases in wind generation, while generation
from the other renewables are mostly unchanged (Figure 3.3-(b)).

Solar energy converts the sun’s directly radiated light into electricity (photovoltaics)
or heat (thermal) (Labouret & Villoz, 2010; Pick, 2017). Electricity generation in solar
PV occurs via cells or panels that directly transform the sun’s energy into electricity,
while solar thermal first heats fluids, such as water, air or other fluids, then generates
electricity (Labouret & Villoz, 2010). Solar thermal is very small (Figure 1.1). So, total
generation from solar PV and thermal is referred simply as solar generation here.

12000 Hourly Average Renewable Load (MW) 7000 Annual Average Renewable Load (MW)

solar solar

wind wind
6000 -
10000 1 small hydro small hydro
biomass i biomass
8000 4 biogas 5000 biogas
geothermal geothermal solar

4000 A
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2000 -
small hydro

i iomass
—biogas———
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bigma:

geothermal geothermal
. . . . . : : . 0 . . . . . . .
2010 2011 2012 2013 2014 2015 2016 2017 2018 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year, Hour Year
(a) Hourly average renewable load (b) Annual hourly average renewable load

Figure 3.3: Hourly and annual average renewable loads (MW) between 2010 and 2018
(Data source: CAISO)

3.3.1 Renewable Goals

California’s Renewable Portfolio Standard (RPS) establishes gradually increasing re-
newable targets, shown in Figure 3.4-(a), and requires at least 50% of total generation
from renewable sources by 2030 (California Energy Commision, 2017). The State has met
its first and second goals (20% and 25%), and in 2017, about 30% of total generation
was from renewable sources. Small hydropower provides less than 5% of total generation
and changes with water availability, decreasing in drought years between 2012 and 2016.
Large-scale conventional hydropower, with capacity > 30 MW, is not considered renew-
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able. To met RPS target of 50%, the State needs additional 20% renewable generation.
Figure 3.4-(b) shows that starting 2013, most increase in renewable generation is from
solar (slope = 1.09), meaning solar is meeting most RPS targets. Thus for the 2030 goal,
existing (2017) solar generation must be almost doubled. Since most significant solar
generation increases occur starting 2013, years from 2010 through 2012 are considered
pre-solar years, from 2013 through 2018 are considered post-solar years to study how the
solar deployment is affecting hydropower operations.
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Figure 3.4: Annual average renewable generation (% of total), California’s renewable
goals, and total vs. solar generation comparison (Note: Large Hydro is not considered
renewable. Data source: CEC Energy Almanac)

3.4 Demand-Energy Price Relationship

There is a strong relationship between demand (load) and energy prices. Energy prices
are higher during on-peak hours and lower during off-peak hours. These prices are more
correlated with the net load, the difference between total load and variable supply, shown
in Figure 3.5. This difference is much higher during solar peaks. Load difference in off-
peak and on-peak demands are mostly from wind generation, and larger differences are
from solar generation. Prices increase with a steeper slope with off-peak demands, then
slowly increase with average demand, then steeper increase again with on-peak demands.
Around the average energy price and load, the unit increase in price (AP) is much greater
with net load than the total load. As the variable supply increases, the gap between net
load and total load grows, resulting in steeper increases in energy prices, especially in
average demands, when solar generation peaks.
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Hourly Load vs Energy Price
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Figure 3.5: Hourly average (2010-2018) energy prices vs. total and net loads (Data source:
CAISO)

3.5 Energy Prices and Changed Pattern

Hourly energy prices are obtained from CAISO (2018b), and reflect the market value
of a unit of generation. These wholesale prices are different than retail electricity prices
that utility companies charge their customers, where usually fixed plus tier-based tariffs
are used (PGE, 2019). CAISO maintains the power grid and regulates market operations
in California. Originally node-based, statewide average of hourly marginal energy prices
are used. Figure 3.6 shows hourly average energy prices for each year between 2010 and
2018 and wet and dry seasons. Energy prices depend on several variables, such as natural
gas prices, but usually are higher in dry season due to air conditioning use. Since energy
prices change with the net load, as variable supplies, particularly solar, increase, net load
decreases, which lowers energy prices between hours 8 and 18 in both seasons, resulting
in twice-daily peaks. Also, in the dry season, the price difference between the first and
second peaks is much higher, increasing price volatility.
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Figure 3.6: Hourly average (statewide average of all price nodes) marginal energy prices
(3/MWh) between 2010 and 2018 in wet (Jan-Jun) and dry (Jul-Dec) seasons (Data
source: CAISO)

Affected by solar generation, energy prices change considerably and reshape the price
scheme. Figure 3.7 shows this transformation between 2010 and 2018 for wet and dry
seasons with normalized energy prices between 0 and 1. The normalization (Equation
3.1) removes the magnitude of prices, which can differ each year, and better show the
effects and price trends. Energy prices undergo a significant transformation during solar
generation hours in both seasons. As solar generation increases, energy prices gradually
decrease between hours 8 and 20, resulting in two daily peaks. In pre-solar years, 2010-
2012, daytime prices are much higher, slightly increasing during evening peak. Price in
these years are higher between 8 and 23, and lower the rest of the day. In the wet season
(Jan-Jun) of 2016 through 2018, normalized energy prices are even lower during hours 10-
18 than prices at night, where total demand is lower. For hydropower plants with sizable
storage capacities, this new price scheme gives little incentive to generate hydropower
during off-peak hours, focusing operations in a smaller time-frame during on-peak hours,
with much increased pulse releases.

(Pps —min (P,))
(max (P, ) —min (P, ))

,V(n, s) (3.1)

Price Normalized,, s =

where P is an array of hourly average marginal energy prices in year n (2010-2018), and
season s (wet, dry).
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Figure 3.7: Normalized hourly energy prices in wet and dry seasons

Negative energy prices usually occur due to over-generation when the demand is low.
While shifted slightly to earlier months in recent years, negative prices are mostly in the
wet season and wetter years, such as 2011 and 2017, resulting mostly from low-storage
(run-of-river) hydropower generation (Figure 3.8-(a)). Another important transformation
can be observed in hourly negative price trends. Solar deployment shifts months with
negative prices earlier, but more importantly it affects the hourly timing of these prices
(Figure 3.8). In the pre-solar period, negative prices occur during low demand hours,
between 0 and 8. As solar generation increases, lowering net hourly load, negative prices
shift to hours between 8 and 18 in the post-solar period. Negative prices are not desirable
for hydropower plants without much storage capacity. In contrast, hydropower plants
with storage capacities, can store water during those low-valued hours, gaining head, and
release water during profitable hours. This negative price scheme is economically favorable
for pumped-storage hydropower plants, which pumps water to an upper reservoir during
low-valued hours to release and generate electricity during higher-valued hours.
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Figure 3.8: Count of negative energy price occurring hours between 2010 and 2018 (Data
source: CAISO)

3.6 Results

The hybrid LP-NLP hydropower optimization model is run for several energy price
patterns to evaluate effects of solar generation on short-term hydropower operations with
hourly time-steps for each wet and dry season from 2010 to 2018. Results include hy-
dropower generation, reservoir storage and release, and revenue difference in wet and dry
seasons, and are discussed below. Also, adaptations to the new energy price pattern are
explored.

3.6.1 Hydropower Generation

Hydropower generation is controlled by water storage and release decisions, driven by
energy prices. Hydropower generation meets the demand since energy price and demand
are highly correlated. As storage increases, the potential energy difference between stor-
age elevation and tailwater (head) increases. Increased storage also sustains hydropower
generation for longer periods. However, hydropower is not generated until the stored wa-
ter is released through turbines. So, the decision becomes how much to store and release
and when to do so. Figure 3.9 shows hourly average hydropower generation (MWh) for
pre-solar (2010-2012) and post-solar (2013-2018) periods as seasonal and annual overall
hourly averages. Since energy prices decrease from hours 9 through 18, generation during
these hours shifts to earlier peaking hours of 8 in the wet season. Also, generation for
the evening peak hours starts earlier, extending through midnight. In the dry season,
all hydropower generation is in the evening peak hours in a smaller time-frame, as unit
price of energy is much higher in these hours. In addition, water is limited so, it is saved
for peak hours to maximize revenue. The average reservoir operating rule becomes to
generate hydropower first during evening peak, and only if there is enough water, release
during the morning peak, with reduced hydropower generation during solar generation
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hours (9-18).
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Figure 3.9: Hourly average hydropower generation (MWh) for pre and post-solar periods
in wet (Jan-Jun) and dry (Jul-Dec) seasons and annual average

Operations vary for plants as each has different storage and turbine capacities and
inflow rates (Figure 3.10). Shasta and Folsom generate small amounts in morning peak
hours, while remaining plants generate during both morning and evening peaks with large
amounts in the post-solar period in the wet season. Bullards Bar generates hydropower
during most hours. This is because its head does not change significantly with storage
(Figure 2.2), so it does not have to wait long to store water and gain head. New Melones
and Pine Flat generate hydropower during both peaks with similar morning and evening
peak generation amounts. All plants in the wet season reduce hydropower generation for
hours between 9 and 18 in the post-solar period.

Generation focuses mostly on evening peak hours in the dry season due to less water
availability and much higher energy prices during the evening peak. All plants signifi-
cantly reduce pre-solar period hydropower generation during solar generation hours, with
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small morning peak generation, and extend the duration of evening peak generation.
Hydropower plants can start operations more quickly than thermal plants, but increased
ramping rates in the post-solar period can cause harm downstream. In addition, minimum
in-stream flow requirements downstream of these plants often affect optimized releases.
Most large reservoirs, such as Shasta, Bullards Bar, and Folsom, have smaller reservoirs
downstream, which can act as afterbays to alleviate negative impacts of pulse releases and
help meet environmental targets. Water availability, storage capacity and storage-head
relationship result in different plant operations.
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Figure 3.10: Hourly average generations (MWh) of modeled plants in the wet season
(Jan-Jun) for pre and post-solar energy price periods.
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3.6.2 Reservoir Storage and Release

Reservoir storage increases with inflows and decreases with generation releases. The
slope of the rising limb of the storage curve gives average inflow rate, and similarly the
slope of the recession limb equals the average turbine discharge rate. Spills are penalized
to minimize foregone energy, and no significant spills occur during any hourly time-step
with overall average inflows. The pre-solar period storage peaks earlier in the day in
the wet season, occurring around hours 6 and 10 (Figure 3.12-(a)). Storage slightly
decreases during hours around 7-8 with morning peak releases in the post-solar period
of the wet season, but a much greater daily peak occurs at 18 and falls with evening
peak generation releases. In the dry season (Figure 3.12-(b)), normalized storage does
not change significantly with solar development. Peak storage of the post-solar period
shifts about 3 hours later, occurring around 18.

Dry Season Normalized Storage
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Figure 3.12: Normalized reservoir storage of 5 modeled plants for pre and post-solar
periods in wet (Jan-Jun) and dry (Jul-Dec) seasons

Since overall average inflows are used for pre- and post-solar periods to eliminate inter-
annual hydrologic variability, total release volume does not change (the area under the
release curve is the same for both periods shown in Figure 3.13). In the wet season of the
pre-solar period, some releases on hours between 9 and 18 move to earlier hours, forming
the morning peak releases. The remaining releases move to later hours, extending the
duration and amount of evening peak releases in the post-solar period. Plants make little
releases during morning peak hours in the dry season, and concentrate all operations to
evening peak hours. Some pre-solar period releases, between 13 and 18 hours shift to later
hours, increasing evening peak releases in the post-solar period.
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Figure 3.13: Hourly average turbine releases (m?/s) of all plants for pre and post-solar
periods in wet (Jan-Jun) and dry (Jul-Dec) seasons

3.6.3 Hydropower Revenue

The hybrid LP-NLP hydropower optimization model maximizes hydropower revenue
across all plants ¢ and time-steps t. Hydropower revenue (R) is obtained by multiply-
ing hydropower generation (G) with unit energy prices (p), shown in Equation 3.2. To
maximize revenue, the model generates hydropower during the most profitable hours.
Generation in less profitable hours are only made when enough water is available.

Ri,t = Dit * Gi,t (3-2)

Table 3.2 shows hourly average modeled revenue in wet and dry seasons between 2010
and 2018, denoting how the revenue changes with the solar induced energy price changes.
Overall, hydropower revenue increases proportionally with increased (mean) energy prices
and are higher in the wet season and lower in the dry season. As the solar development
increases between 2010 and 2018, price range increases significantly, causing twice-daily
peaks. This range is measured as the energy price difference between hours 20, evening
peak demand and price hour, and 13, solar generation peak hour. Given those changes
and similar amounts of hydropower generation on average, with seasonal average reservoir
inflows, hydropower revenue increases in the post-solar period. For example, wet season
of 2016 and 2012 have the same average price (21 $/MWh), but hourly average revenues
in these years are 2,842 and 2,706 $/h, respectively. Similar, the dry seasons of 2016 and
2011 have the same average price (31 $/MWh), but price range and hourly revenue of
2016 (23 $/MWh and 1,846 $/h) is much more than revenue of 2011 (6 $/MWh and 1,765
$/h). Similar comparisons can be made for other years and seasons between pre- and
post-solar periods, showing the effect of the new price pattern on hydropower revenue.
Years from 2013 to 2015 are transitioning years from 1-daily to 2-daily energy price peaks,
so revenue comparison in these years may not give the same results (for example 2010
and 2013 wet seasons).
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Figure 3.14 shows how hourly average revenue ($K/h) changes with hourly energy price
and generation. Revenue changes linearly with energy prices and hydropower generation
(Equation 3.2). However, the slope of this linear relationship varies at each generation
level, becoming steeper as generation increases. In years between 2010 and 2012, although
average revenues differ between wet and dry seasons (Table 3.2), peak hourly revenues
are around 10-20 $K per hour. The seasonal peak price differences are much greater in
years between 2016 and 2018, with peak generation hourly revenues around 10-20 $K in
the wet season and 15-35 $K in the dry season. Hourly revenues are also much higher
in this period than 2010-2012 for two reasons: first, energy prices differ between these
two periods (slightly higher in the dry season of 2016-2018) (Figure 3.6); and second with
adaptations to the energy price changes, more hydropower revenue is gained.

Table 3.2: Average energy price, price range, and hourly average modeled revenue (Energy
price data source: CAISO)

Energy Price (3/MWh)  Average Revenue

Period Year Season Average Range’ ($/h)
Pre-solar 2010 Wet 34 1 4,585
2010 Dry 31 3 1,665
2011 Wet 24 4 3490
2011 Dry 31 6 1,765
2012 Wet 21 ) 2,706
2012 Dry 28 ) 1,653
Post-solar 2013 Wet 37 10 4,447
2013 Dry 41 10 2,190
2014 Wet 43 16 5,724
2014 Dry 40 15 2,209
2015 Wet 29 16 3,708
2015 Dry 30 15 1,636
2016 Wet 21 13 2,842
2016 Dry 31 23 1,846
2017 Wet 25 33 3,891
2017 Dry 36 43 2,550
2018 Wet 27 30 3,933
2018 Dry 43 37 2,761

"Energy price difference between hours 20 and 13, which are evening energy price peak
and mid-day solar generation peak hours
Note: hourly overall average (2010-2018) inflows for each season are used
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Figure 3.14: Hourly average revenue ($K) from generation in wet and dry seasons of years
2010-2012 and 2016-2018 energy prices with fitted contour surfaces

Figure 3.15 shows hourly revenue differences between pre-solar (2010-2012) and post-
solar (2013-2018) period averages. Although a total of roughly 18.2 $K revenue is lost due
to less hydropower generation during solar generation hours between 11 and 17, roughly
30.1 $K of revenue is gained in the other hours in wet season, with a net increase of
11.9 $K. The dry season has less operational flexibility. In this season, roughly 12.9
$K of revenue is lost between hours 12 and 17, but a total of 25 $K is gained during
hours between 18 and 22, totaling the net difference to 12.1 $K. The adaptation to new
conditions of the post-solar period results in an additional net daily benefit of 24 $K per

plant.
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Figure 3.15: Hourly average revenue difference ($) between pre and post-solar periods in
wet (Jan-Jun) and dry (Jul-Dec) seasons

3.7 Summary and Adaptations

The new energy price pattern increases overall hydropower revenue with adaptations,
although most hours between 10 and 18 are less profitable due to solar generation, espe-
cially in wet seasons with more water availability. Figure 3.16 summarizes annual average
operations with normalized values (between 0 and 1) for pre-solar and post-solar periods
and wet and dry seasons. The normalized values of energy prices were much lower due to
less net load during hours between 9 and 18 in the post-solar period, creating two daily
peaks occurring hours 7-9 in the morning and 19-21 in the evening in both seasons. The
magnitude of the latter is much greater than former. Since the model is driven by energy
prices, subject to water availability, operations significantly adapt to these new energy
price conditions. Reservoir storage peaks daily during hours 6-9 in wet season and 13-14 in
dry season in the pre-solar period, then decreases with hydropower releases. These storage
peaks move hours 16-18 in wet season and 15-17 in dry season in the post-solar period,
before the evening peak releases start. Peak releases of the post-solar period concentrates
to smaller time-frame of the evening peak hours. Plants generate some hydropower dur-
ing the morning peak hours in the post-solar period, mostly in the wet period, but most
generation and revenue is from hours between 19 and 21.
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Figure 3.16: Summary of annual operations with normalized values for pre-solar (2010-
2012) and post-solar (2013-2018) periods

Water resources system management evolves as policies, operating rules, environmen-
tal regulations, and climatic conditions change. Adaptive management is key for robust,
reliable, and resilient water resources system management, including flood, water supply,
ecosystem, and hydropower, and to use limited resources efficiently (Medellin-Azuara et
al., 2008; Connell-Buck et al., 2011; Hanak & Lund, 2012; Lund & Moyle, 2013; Ahmadi
et al., 2014; Hui et al., 2018). Adapting short-term hydropower reservoir operations to
the new price scheme increases overall hydropower revenue. Figure 3.17 compares actual
hourly reservoir outflows of Shasta and Pine Flat for pre-solar and post-solar periods in
wet and dry seasons. Based on these reservoir release records, Shasta seems to follow
the hourly price curve for its release decisions, releasing more when energy prices are
higher and less with lower prices to increase overall hydropower revenue. Pine Flat, on
the other hand, does not optimize short-term operations for hydropower, and release de-
cisions do not change across hours. Although Shasta’s operations are good for increasing
hydropower revenue, it can do better with adapted operations by reducing generation
releases in solar generation hours and increasing the evening peak generation. Using
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mathematical optimization modeling, both plants can increase their hydropower revenues
with release schedules discussed before. Pine Flat has a much more room for a better
short-term hydropower operations in terms of allocating releases to more profitable hours
and increasing hydropower revenue.

Useful adaptations include:

e Hydropower releases are not valuable or optimal in hours when solar generation is
higher in either season.

e If water availability is greater (in the wet season), releases are made twice a day to
generate during on-peak hours in the morning and evening.

e If water is more scarce, generate only during the most valuable hours (the evening
peak).

e Storing water during less profitable hours and energy generation during the evening
peak for extended durations increases overall hydropower revenue.
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Figure 3.17: Hourly average actual reservoir outflows of Shasta (SHA) and Pine Flat
(PNF) in wet (Jan.-Jun.) and dry (Jul.-Dec.) seasons (Data source: CDEC)

3.8 Conclusions

This chapter presented effects of new energy price patterns from renewable generation,
particularly solar energy, on short-term hydropower operations, using a hybrid LP-NLP
hydropower optimization model. The expansion of solar generation, as part of Califor-
nia’s renewable goals, decreased energy prices significantly during daylight hours, when
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solar generation peaks, resulting in a two-peak net demand and energy price pattern.
The first peak occurs around 8 in the morning, and the second peak occurs around 20 in
the evening. This new energy price pattern considerably affects dispatchable hydropower
operations. The new price pattern, if adapted to, is more profitable for short-term hy-
dropower operations. In the wet season, twice-daily hydropower pulse releases, without
much generation between 10 and 18, increase hydropower revenue. In the dry season, the
evening price peak is much greater than the morning. With more limited water avail-
ability in this season, operations concentrate on the evening peak hours with a shorter
duration. Large hydropower pulse releases in a smaller duration of time can potentially
harm downstream ecosystems, but most reservoirs have a small afterbay which can re-
duce the impacts of these pulses. California will increase renewable generation to meet its
RPS target of 50% by 2030. Given most of this target is from solar generation, the State
might double current solar generation. This will continue to lower energy prices during
solar hours and reshape energy price pattern, giving more opportunities for operational
optimization of dispatchable hydropower.
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Chapter 4

Climate Change Effects on
Long-term Hydropower Planning

4.1 Introduction

Climate change impacts in water resources planning are usually evaluated by applying
projected climate variables, temperature and precipitation, derived from general circu-
lation models (GCM) to a hydrologic model, which outputs variables, such as runoff
(Kopytkovskiy et al., 2015). Each GCM is considered as a different climate scenario.
Scenario-based approaches reflect system performance under different uncertain condi-
tions and benefit decision makers by looking at operations from different perspectives,
where mean and median impacts are more relevant for risk-neutral decisions, such as
hydropower planning, whereas extreme conditions might be more relevant for risk-averse
decisions, such as floods and droughts (Brekke et al., 2009).

The LP hydropower optimization model is run for several climate projections, ranging
wetter to drier, but all are warmer than the historical climate. The downscaled climate
projections and hydrologic variables are developed as a part of California’s Fourth Cli-
mate Assessment and publicly available (cal-adapt.org). This dataset also includes routed
stream flow for selected locations shown in Table 4.2. For two plant locations, Sacramento
River at Shasta and Kings River at Pine Flat, available routed stream flow locations do
not overlap with the hydropower model. Thus, a routed stream flow predicting model is
developed for those locations, discussed in subsequent sections.

Figure 4.1 shows analytical modeling process for this chapter. The Variable Infiltra-
tion Capacity (VIC) hydrologic model (Liang et al., 1994) is run with downscaled GCM
variables (Pierce et al., 2014) under 20 future climate scenarios (10 models and 2 rcps:
medium and high C'O, cases), producing hydroclimatic data, including routed stream
flows (Cal-Adapt, 2018). Routed stream flow predicting model is run for two plant loca-
tion, where VIC routed runoff is now available. Then the hydropower optimization model
is run with predicted stream flows and energy prices from CAISO (2018b). Hydropower
generation is evaluated under historical and 20 future climate projections, and results are
presented.
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Figure 4.1: Analytical modeling framework

Monthly average energy prices (a) and demands (b) are shown in Figure 4.2. Due
to California’s climatic conditions, energy demand is much higher in summer (air con-
ditioning), peaking marginal wholesale energy prices in August. Cheaper hydropower
generation, especially from high-elevation plants, reduces energy prices in spring. The hy-
dropower optimization model is driven energy prices and constrained by water availability
and physical capacities. The model only considers hydropower objectives (Equations 2.21
and 2.12). Many modeled plants are operated mainly for water supply with hydropower
generated as byproduct. However, higher energy prices in summer somewhat coincide
with irrigation season water demand.
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Figure 4.2: Monthly average marginal energy prices between 2010 and 2018 (Data source:
CAISO)
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4.2 Modeled Hydropower Plants

Modeled hydropower plants (Figure 4.3) can be categorized based on their historical
hydrographs (Figure 4.4) into three groups: Cascade Range (CR); Northern Sierras (NS);
and Southern Sierras (SS). CR plants (Shasta and Keswick) are fed mostly by rainfall,
which peaks in winter, with some baseflow during summer. NS plants (Oroville, Engle-
bright, Folsom and Nimbus) are considered mixed rainfall and snowmelt-fed plants, where
average stream flow peaks in May due to snowmelt. There is also considerable stream flow
during winter and some baseflow during summer, but much lower than CR plants. The
third category SS plants (New Melones, Don Pedro, New Exchequer and Pine Flat) are
mostly fed by snowmelt and have significant flow variations between months with very low
summer baseflow. All these plants are in the lower foothills of surrounding mountains with
large storage capacities, which give them some operational flexibility, facilitating climate
adaptation, unlike high-elevation low storage (run-of-river) plants with little operational
flexibility and adaptability.

‘ Shasta (714 MW)
@® Keswick (117 MW)
Oroville (644 MW)
Englebright (47 MW)
Folsom (207 MW)
Nimbus (14 MW)
New Melones (300 MW)
Don Pedro (203 MW)
New Exchequer (95 MW)
Pine Flat (165 MW)

Figure 4.3: Modeled hydropower plants for long-term climate scenarios
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Figure 4.4: Regional monthly historical (1922-2014) hydrographs and probability densities
of three systems with flow regimes historically dominated by mostly rainfall runoff (CR),
mixed rainfall and snowmelt runoff (NS) and mostly snowmelt runoff (SS) (Data source:

CDWR)

4.3 Climate Scenarios

All climate models (Table 4.1) predict warmer air temperatures for California, with an
average increase of 1.5-2 °C' under medium (rcp 4.5) and 2-3 °C' under high or business-
as-usual (rcp 8.5) CO, emission cases. Precipitation predictions vary among the models.
Some models, such as CanESM2 and CNRM-CM5, predict a wetter future with an average
increase of 14-25% by the end of this century, while others models, such as ACCESS1-0,
HadGEM2-ES and MIROCS5, predict a drier climate with an average reduction of 1-4.5%.
Ensemble average and ensemble median of 20 climate scenarios are 4.7 and 1.6 % increase
than historical conditions. So, on average the climate is expected to become slightly
wetter.
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Table 4.1: Changes in average daily air temperature and precipitation between 2014-2100
downscaled over California under 20 climate projections (10 models and 2 rcp scenarios)
compared to historical climate (1950-2013) (Data source: cal-adapt.org)

Change in Average
Temperature (A°C) Precipitation (%)

Model Institution RCP 4.5' RCP 852 RCP 4.5 RCP 8.5
ACCESS1-0 CSIRO, and Bureau of Meteorology, Australia 1.78 2.48 -1.1 -4.5
CanESM?2 CCCMA, Canada 2.02 2.81 14.3 22.8
CCSM4 NSF, Department of Energy, and NCAR, USA 1.56 2.29 4 6.1
CESM1-BGC  NSF, Department of Energy, and NCAR, USA 1.49 2.12 5.7 10.8
CMCC-CMS Centro Euro-Mediterraneo per i Cambiamenti, Italy 1.51 2.24 0.6 0.9
CNRM-CM5 CNRM Meteo-France, and CERFACS, France 1.64 2.31 16 19
GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA 1.95 2.63 2.9 0.6
HadGEM2-CC Met Office Hadley Centre, UK 1.79 2.79 2.3 0
HadGEM2-ES  Met Office Hadley Centre, UK 1.95 2.78 -1.1 -0.2
MIROCH JAMSTEC, AORI, and NIES, Japan 1.68 2.14 -2.6 -1.4
Ensemble Average 1.74 2.46 4.1 5.4
Ensemble Median 1.73 2.40 2.6 0.8

Medium and 2High (business-as-usual) COs emission scenarios

Changes in precipitation and temperature are not uniformly distributed throughout
the state. Figure 4.5 shows the spatial distribution of daily average historical (1950-2014)
and ensemble average (2015-2100) rainfall and snowfall (mm/day), and percent differences
on precipitation (rainfall 4+ snowfall). Rainfall slightly increases in northern parts of the
state and Sierra Nevadas. Snowfall, however, slightly decreases with changing climate.
While northern parts of the state receive increased average precipitation, southern Cal-
ifornia becomes drier, which can exacerbate historical mismatch with water availability
in the north and demand in the south and increase the southern California’s dependence
on imported water. Historically, temperature is higher in the Central Valley and desert
inlands of the southern California and lower in mountainous parts of the state (Figure
4.6). Temperature increases are slightly less in coastal areas and higher inland parts
of the state. Increased temperature and reduced snowfall affect timing and magnitude
of snowmelt runoff, which implies significant changes into California’s snowmelt-driven
reservoir operations.
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Figure 4.5: Historical average (1950-2014) and ensemble average across all scenarios (2015-
2100) rainfall and snowfall, and change in precipitation (rainfall + snowfall) (Data source:
cal-adapt.org)
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Figure 4.5: Historical average (1950-2014) and ensemble average across all scenarios (2015-
2100) rainfall and snowfall, and change in precipitation (rainfall + snowfall) (Data source:
cal-adapt.org)
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Figure 4.6: Historical average (1950-2014) and ensemble average across all scenarios (2015-
2100) daily temperature, and change in temperature (Data source: cal-adapt.org)

4.4 Routed Stream Flow Predicting Model

The fourth climate assessment dataset includes routed stream flows for several loca-
tions (Cal-Adapt, 2018). But two plant locations, Sacramento River at Shasta and Kings
River at Pine Flat, of the hydropower optimization model are not included. A statistical
model is developed to predict routed stream flows for those missing locations. Routed
stream flow predicting model (RSFPM) takes VIC variables and VIC routed flows shown
in Table 4.2 and makes predictions using Random Forest method (Breiman, 2001). Ran-
dom Forest is a tree-based ensemble method and uses patterns and relationships between
input and predictor variables to make predictions.
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Table 4.2: VIC variables and VIC routed stream flows used to predict routed stream flow

VIC Variable VIC Routed Stream Flow

- Rainfall (mm/day) - Sacramento River at Red Bluff
- Snowfall (mm/day) - Feather River at Oroville

- Precipitation (mm/day) - Yuba River at Smartville

- Snowmelt (mm/day) - Bear River at Wheatland

- Unrouted baseflow & runoff (mm/day) - American River at Fair Oaks

- Incoming & net radiation (W/m?) - Mokelumne River at Pardee

- Soil moisture (mm) - Stanislaus River at New Melones
- Air temperature (°C) - Calaveras River at Jenny Lind

- Relative humidity (%) - Tuolumne River at Don Pedro

- Total evapotranspiration (ET) (mm/day) - Merced River at New Exchequer
- Potential ET (mm/day) - San Joaquin River at Millerton

The RSFPM generates decision trees using input variables shown in Figure 4.7. The
model determines split points that minimize mean squared error for each estimator at
each depth. The bottom layer has the final values of decisions. Once the tree structure is
formed based on a training dataset, the model predicts routed flows using VIC variables
for each climate scenario, performing ‘true’ and ‘false’ operations starting from the top
of the tree. If the statement is true, then the left branch, if false, then the right branch
is followed until the bottom of the tree is reached, where final values (routed stream flow
predictions) are located. The RSFPM creates many decision trees, forming the forest,
and takes the ensemble average for the final decision. The ensemble average of N number
of regression trees with each T'(z) prediction is:

Py = 3 T@) (1.1

samples = 482
value = 236.682

True False

SAC_B (ft**3/sec) <= 17384.271
mse = 35546.973

samples = 383 samples = 99

SAC_B (ft**3/sec) <= 9872.346 SAC_B (ft**3/sec) <= 48227.07
mse = 9401.698 mse = 55237.555
value = 170.908 value = 490.979

samples = 288 samples = 95 samples = 90 samples =9

shortwave_in (W/m**2) <= 117.728 SAC_B (ft**3/sec) <= 12870.49 SAC_B (ft**3/sec) <= 35248.91 OROQVI (ft**3/sec) <= 23231.484
mse = 4303.743 mse = 11534.368 mse =26777.195 mse = 37902.793
value = 138.383 value = 274.541 value = 443.178 value = 1068.579

mse = 23027.273 mse = 1821.063 mse = 6209.502 mse = 12595.924 mse = 15231.787 mse = 48604.04 mse = 5280.222 mse = 12390.48
samples = 25 samples = 263 samples = 42 samples = 53 samples = 76 samples = 14 samples = 4 samples =5
value = 237.502 value = 130.006 value = 227.288 value = 304.273 value = 408.618 value = 617.418 value = 868.917 value = 1211.194

Figure 4.7: An example (simple) decision tree with a depth of 3
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4.4.1 Model Testing and Prediction

The RSFPM is calibrated and tested for historical period (1950-2014) and applied to
20 climate scenarios for the future period (2015-2100). Figure 4.8 compares observed and
predicted stream flows. The model predicts with reasonable accuracy. Although Kings
River routed flow predictions better align on the perfect fit line (1:1), Sacramento River
predictions are close to the perfect fit. Figure 4.9 shows time-series plots of observed and
predicted stream flows. 90 individual trees are grown for each river location and ensemble
averages are taken for the final prediction. 90 trees of the random forest is a calibrated
parameter. As more trees are grown, better correlation between observed and predicted
flow is achieved. But, after 90 trees, the correlation benefit (greater Pearson’s r) does not
change and runtime increases as more trees are grown. Finally, before making predictions,
RSFPM is tested for Feather River at Oroville, where VIC routed flows are available.
Figure 4.10 compares VIC routed and RSFPM routed (predicted) flows for HadGEM-ES
rcp 4.5 scenario between 2015-2100. Random forest predictions reduce variance due to
decision tree and ensemble averaging. RSFPM peak flows are usually slightly lower, and
low flows are greater than VIC routed flows. After testing the model, Sacramento River at

Shasta and Kings River at Pine Flat routed flows are predicted under 20 climate scenarios
(Figure 4.11).
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Figure 4.8: Observed vs. RSFPM flow prediction (m?/s) with marginal and joint proba-
bility densities for routed flow locations
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Figure 4.9: Time-series of observed and RSFPM predictions for routed flow locations
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Figure 4.10: Comparison of VIC routed and RSFPM predicted flows for Feather River
inflows into Oroville
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Figure 4.11: Routed flow predictions under 20 climate scenarios

4.5 Reservoir Inflows

Projected climate scenarios cover a wide range of hydrologic conditions, from wetter to
drier, with all scenarios warmer, resulting in a variety of reservoir inflow scenarios. With
climate change, probabilities of extreme events and variability of inflows are predicted
to increase. Table 4.3 statistical properties of overall average reservoir inflows under
future projected (2015-2100) and historical (1922-2014) climates. Because of increased and
more frequent extreme events, all projections have greater maximum inflows, and most
drier scenarios have greater standard deviations than historical climate. Most projected
scenarios are wetter than historical climate, with the wettest scenario (CNRM-CM5 rcp
8.5) having monthly average inflow of 118 m?3/s, while the driest scenario (ACCESS1-0
rcp 8.5) has 69 m?/s average inflow.
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Table 4.3: Statistical properties of monthly average reservoir inflow (m?/s) under pro-
jected (2015-2100) and historical (1922-2014) climates

Hydrology®! Climate Scenario Mean Std. Dev. Min 25% 50% 75% Max

wetter CNRM-CMS5 rcp 8.5 118 133 12 25 63 168 924
CNRM-CMS5 rcp 4.5 114 121 12 27 68 163 890
CanESM2 rcp 8.5 111 129 11 26 61 154 1041
CanESM2 rcp 4.5 101 106 12 25 62 140 817
CESM1-BGC rcp 8.5 94 98 11 22 D7 137 638
CESM1-BGC rcp 4.5 89 90 12 22 o4 130 598
CCSM4 rcp 8.5 84 91 12 21 52 118 674
HadGEM2-CC rcp 4.5 84 92 11 21 ol 112 740
CCSM4 rcp 4.5 84 88 12 21 49 118 551
HadGEM2-CC rcp 8.5 83 91 11 20 50 112 755
GFDL-CM3 rcp 4.5 82 75 12 21 o7 121 487
HadGEM2-ES rcp 4.5 80 85 12 20 47 113 621
GFDL-CM3 rcp 8.5 80 80 12 19 48 116 576
HadGEM2-ES rcp 8.5 80 91 11 19 46 104 711
Historical 79 74 11 22 50 113 511

drier MIROCS5 rcp 4.5 79 76 12 21 53 115 570
ACCESS1-0 rep 4.5 78 81 11 21 ol 106 675
CMCC-CMS rcp 8.5 78 82 12 22 46 106 581
MIROCS5 rcp 8.5 76 76 11 20 49 108 614
CMCC-CMS rep 4.5 74 73 11 21 49 102 542
ACCESS1-0 rep 8.5 69 72 11 19 46 90 267

"Wetter or drier hydrology compared to mean historical reservoir inflow

Climate change will alter timing of reservoir inflows in addition to magnitude. Average
reservoir inflows shown in Figure 4.12-(a) suggest a wetter winter and drier summer in
all scenarios. Variability between winter and summer inflows increases. Although some
wet scenarios predict winter flows up to 2.5 times greater than historical averages, most
scenarios and the ensemble average predict about 50% increase in winter runoff peak and
roughly 20% decrease in summer runoff. Figure 4.12-(b) shows monthly average reservoir
inflows for historical period and early (2015-2039), mid (2040-2069) and end (2070-2100)
of the century under medium (RCP 4.5) and high (RCP 8.5) emission scenarios. Monthly
average inflows peak in May mostly due to snowmelt runoff under historical climate. As
the climate changes, snowmelt runoff decreases and winter rainfall increases, and peak
flows shift to winter, potentially causing floods and increasing summer water shortages.
These changes slow down with RCP 4.5 scenarios and remain unchanged in the mid and
end of the century. With RCP 8.5 scenario, snowmelt recession in spring and winter
precipitation further increase until the end of the century.
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Figure 4.12: Monthly average reservoir inflow projections with ensemble averages (2015-
2100) normalized to historical average (1922-2014) and shift in ensemble average inflow

4.6 Results

The LP hydropower optimization model developed in Chapter 2 is run with monthly
time-steps for 20 future climate scenarios from 2015 to 2100 and for the historical climate
from 1922 to 2014 with historical monthly average (2010-2018) energy prices (Figure 4.2-
(a)). Ensemble average results are compared to historical average operations. Modeling
results include hydropower load and generation, reservoir storage, capacity evaluation of
hydropower plants and implications for run-of-river plants and presented below.

4.6.1 Hydropower Load and Generation

Hydropower load is usually favorable in energy systems with mixed generation sources
due to its lower operating costs and greater operating flexibility than fossil-fueled gen-
erations (Hamlet et al., 2002; Madani et al., 2014). But hydropower generation strictly
depends on water availability affected by climatic and hydrologic changes. These changes
vary temporally and spatially. Figure 4.13 shows load-duration curves of ten modeled
plants categorized into three hydrologic regions: Cascade Range (CR); Northern Sierras
(NS); and Southern Sierras (SS). CR plants have higher hydropower loads at all durations
under projected climate scenarios. But differences are greater for peak loads close to the
plant capacities between durations 10 and 40%. Plants in this region generate power
about 10% of time at the capacity. Reliabilities of peak loads of NS plants slightly de-
crease with climate change, except for Oroville, which sees an increase in duration of peak
loads but decrease in smaller loads. As a smaller-storage plant, Englebright historically
generates electricity at about 40% of time at its capacity, with a small reduction under
RCP 8.5 ensemble average. Loads at plant capacities decrease slightly for SS plants, but
ensemble average loads at around duration of 50% increase. Also, due to lower baseflow
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of SS plants, they do not generate about 20% of time. Standard deviations of hydropower
loads across climate scenarios increase from north to south.
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Figure 4.13: Load-frequency (reliability) curves of modeled hydropower plants under his-
torical and projected climates for all months. Historical climate is from 1922 to 2014, and
projected climates are from 2015 to 2100. (CR: Cascade Range, NS: Northern Sierras,
SS: Southern Sierras)

62



50 New Melones Load (MW) 205 Don Pedro Load (MW)

Projected Climates

200 -

300 - —— Historical Average
=== RCP 4.5 Ensemble Average 175 1
2501 ¥ — - RCP 8.5 Ensemble Average 150

200 A 125 -

150 100 4

75 4
100 A
50 1

50 - 25

0 20 40 60 80 100 0 20 40 60 80 100

Monthly Duration (%) Monthly Duration (%)
00 New Exchequer Load (MW) 180 Pine Flat Load (MW)

160 -
140 -
120 -
100 -
80
60
40 -
20

0 2I0 4IO ‘ 6I0 8I0 100 0 2IO 4I0 6IO 8I0 100
Monthly Duration (%) Monthly Duration (%)

Figure 4.13: Load-frequency (reliability) curves of modeled hydropower plants under his-

torical and projected climates for all months. Historical climate is from 1922 to 2014, and

projected climates are from 2015 to 2100. (CR: Cascade Range, NS: Northern Sierras,
SS: Southern Sierras)

Climate change effects on magnitude of hydropower generation are limited, especially
comparing ensemble and historical averages, but temporal changes are more significant.
Figure 4.14 shows monthly average hydropower generation (GWh/month) under histori-
cal (1922-2014) and future climate conditions (2015-2100), with ensemble average of RCP
4.5 and 8.5 scenarios. Generation significantly decreases in spring and early summer due
to snowmelt recession. Peak generation shifts to March rather than April and May. While
some wet scenarios bring peak hydropower generation close to 140 GWh, the ensemble
average peak is about 10 GWh more than the historical monthly average peak. With op-
erational flexibility from having large storage capacity, reservoir can capture some winter
peak flows to maximize energy generation and revenue to make up some of the lost energy
generation in spring. RCP 8.5 ensemble average generation is slightly lower in spring due
to less water availability. Although winter inflows are higher in RCP 8.5 scenarios, RCP
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4.5 and 8.5 ensemble average hydropower generation are mostly the same due to reservoir
storage capacity and excess water is spilled.

0 Monthly Hydropower Generation (GWh)

Projected Climates

140 A —— Historical Average
120 - --- RCP 4.5 Ensemble Average
FEEETNS
7 / —-— RCP 8.5 Ensemble Average

100 g7+~ :

80

60 -

40 +

20

O T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12
Month

Figure 4.14: Average monthly historical hydropower generation and climate ensemble

Monthly average hydropower generation (% of historical) for each plant and climate
scenario is shown in Figure 4.15, where darker green and blue are greater generation
and lighter green and yellow are less generation than historical. Wet scenarios, such as
CanESM2, CNRM-CM5, and CESM1-BCG, result is much higher hydropower generation,
especially in SS plants, where average generation increases up to 50%. Also, for such wet
cases, changes in Oroville’s generation is similar to changes in CR plants, operating more
like mostly rainfall-driven plants. Climate scenarios have less effect on CR plants, with
average generation close to historical levels. Also, some NS plants, such as Englebright and
Nimbus, are less affected, because of their lower storage capacities. Generation variances
are much higher in SS plant among climate scenarios. Overall, under projected climates,
almost all plants have slightly more generation than historical operations, with some
exceptions, such as ACCESS1-0 rcp 8.5.
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Figure 4.15: Monthly overall average hydropower generation (% of historical) of modeled
plants under 20 climate scenarios normalized to historical generation (CR: Cascade Range,
NS: Northern Sierras, SS: Southern Sierras)

Hydropower generation changes depend on water availability. Figure 4.16 shows rel-
ative changes between historical and ensemble average hydropower generation and water
availability (Equation 4.2). If monthly water availability increases with climate change,
generation increases, but less than the percent increase in the water availability (below
red line), because generation is limited by plant turbine and storage capacities and some
excess water is spilled, even though plants optimize their operations to capture additional
inflow. If monthly water availability increases by 100% (wet months, January-March),
generation only increases by 25%. Reduced water availability decreases generation, but
with adaptation, percent reduction in generation is less than percent reduction in wa-
ter availability (above red line). In this case, if monthly water availability decreases by
75% (dry months, August-October), generation decreases by about 60%. Adaptation
capability from having storage capacity is discussed in the next section.

Afi(%) = J ”m’;’? = nistorial 13 5 {1,2,..12} (4.2)
historical

where fensempie; 18 ensemble average hydropower generation or water availability (inflow)
for each month ¢, and fristoricas 18 historical overall monthly average hydropower generation
or water availability.
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Figure 4.16: Change (%) in monthly generation and water availability between historical
(1922-2014) and ensemble (2015-2100) 4.5 and 8.5 average climates (across 12 months)

4.6.2 Reservoir Storage

Reservoirs add flexibility to water resources operations. They also help maximize
meeting water and energy demands by storing water when demand is lower and water
supply is higher and releasing when demand is higher and water is scarcer. Shifts in timing
and magnitude of water availability with climate change significantly change reservoir
operations. Peak storage shifts to May with climate change rather than historical peak
occurring in July (Figure 4.17-(a)). Climate change increases storage in winter with
increased inflows under climate change. Summer and fall storage, however, is lower than
historical average. Because of wetter winters and late falls, dry season storage is lowered
for more hydropower generation with an anticipation to fill reservoirs later during the
year. Flood pools are not dynamically represented and the physical reservoir capacity
is kept constant across months. In some wet scenarios, higher winter storage increases
frequency of hitting flood pool.

Spills are penalized with a small persuasion cost to minimize foregone energy in the
hydropower optimization model (Equations 2.12 and 2.21). If a plant’s reservoir capacity
is full and inflow exceeds turbine release capacity, it spills the excess water. Figure 4.17-
(b) shows change in monthly average spills (m?/s) under projected climate scenarios. All
projected scenarios result in more spills than for the historical climate, while spills only
slightly decreases in a few drier scenarios in May an June. Increased winter inflows result
in spills differences up to 25 m?/s in the wettest scenario with an ensemble average of
10 m3/s in January and February. Spills are higher with RCP 8.5 ensemble average in
winter and slightly lower in spring.
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Figure 4.17: Monthly average reservoir storage (BCM) and change in spill (m?/s) under
historical and projected climates

Figure 4.18 shows how adaptability changes with storage capacity. Adaptability is
measured with standard deviation of monthly hydropower generation across projected
scenarios and historical climate. It illustrates storage capacity (MCM) on the x-axis
and range of standard deviation of monthly average generation under different climate
conditions (boxplot) and historical climate (star) on the y-axis. As storage capacity
increases, with operational flexibility, plants can better adapt to changed (wetter or drier)
climates, resulting in greater standard deviations. Plants with smaller storage capacities,
however, have little room to make operational adjustments and have less adaptability. The
purpose of reservoirs is to regulate temporal water availability and demand mismatch.
As this variability increases with climate change, the role of reservoirs become more
important, especially with large storage capacity, such as Shasta and Oroville, which have
more variability with climate change than historical hydrology. Operations of smaller
plants cannot be affected as much by climatic changes.
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Figure 4.18: Adaptability of hydropower plants with different storage capacities under
climate change. Boxplot shows range of standard deviations of monthly hydropower
generation under 20 projected climates (2015-2100) and star shows standard deviation of
generation under historical climate (1922-2014). Note: X-axis is not on scale

4.6.3 Hydropower Revenue

The hydropower optimization model maximizes hydropower revenue across all plants
and time-steps (Equation 2.21). With a price-taking approach, energy prices are assumed
exogenous and hydropower operations do not affect energy prices, eliminating second-
order effects. Table 4.4 shows monthly average hydropower revenue ($M/month) and
change in revenue (%) from 10 modeled plants under the projected climate scenarios and
historical climate. This revenue increases proportionally with wetness of the scenario,
limited by plant capacities. Wetter climate scenarios have revenue increases of 10-25%
compared to historical climate. Drier climates result in revenue decreases of 1-11%. Be-
cause of big variations of average revenue among projected climates, ensemble average
revenues are 21.46 and 21.26 million dollars, while ensemble median revenues are 20.71
and 20.45 million $ under rep 4.5 and rcp 8.5 respectively. Ensemble average revenues
are greater than historical average revenue of 20.54 million dollars by 4.5% and 3.5%,
but ensemble median is only 0.8 % greater under rcp 4.5 and 0.4% less under rcp 8.5.
Here monthly average energy prices are used to separate price effects and evaluate only
hydrologic effects on hydropower generation (Figure 4.2). Although monthly distribution
does not change, other variables, such as petroleum and natural gas may significantly
change energy prices, resulting in different hydropower revenues, but revenue differences
should be similar.
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Table 4.4: Monthly average hydropower revenue in million dollars per month and change

in revenue (%) under projected and historical climate scenarios

Revenue! (10°$)

ARevenue (%)

Scenario rcp4.5 r1cp 85 rep 4.5 rep 8.5
CNRM-CM5 25.54 25.64 24.3 24.8
CanESM?2 23.85 24.45 16.1 19
CESM1-BGC 22.17 22.78 7.9 10.9
GFDL-CM3 21.42 20.61 4.3 0.3
CCSM4 20.86 20.88 1.6 1.7
HadGEM2-CC 20.56 20.29 0.1 -1.2
MIROCH 20.5 19.93 -0.2 -3
HadGEM2-ES 20.07 19.84 -2.3 -3.4
ACCESS1-0 20.03 18.19 -2.5 -11.4
CMCC-CMS 19.64 19.97 -4.4 -2.8
Ensemble Average 21.46 21.26 4.5 3.5
Ensemble Median 20.71 20.45 0.8 -0.4
Historical Average 20.54

IRevenue is not adjusted for inflation

Figure 4.19 shows how monthly average revenue across projected climates change
with changes in water availability using Equation 4.2, with f representing overall average
monthly revenue and water availability for each scenario. Hydropower revenue increases
with water availability as more hydropower is generated, but limited by plant turbine and
storage capacities. If water availability increases by 50%, revenue increases by only 25%
because excess water is either spilled or used lower-valued months. As water availability
decreases, limited water is used in higher-valued months, reducing negative impacts.
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Figure 4.19: Change (%) in monthly generation and water availability between historical
(1922-2014) and projected (2015-2100) climates (across 20 climate scenarios)

Figure 4.20 shows monthly revenue difference between ensemble average and historical
average climates. Overall, revenue increases in fall and winter, and decreases in spring
and summer. Increased fall and winter runoff help compensate for revenue losses from
reduced snowmelt runoff in spring and summer, resulting in an average net increase of
1.3 million $ per year in medium emission (rcp 4.5) and 1.1 million $ per year in high
emission (rcp 8.5) scenarios. With solar energy, if hydropower generation is allocated to
higher-valued hours, as discussed in Chapter 3, benefits can be increased and losses can
be minimized, resulting in more net revenue.
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Figure 4.20: Change in monthly hydropower revenue ($K) for each month (Ensemble
average minus historical average)

4.6.4 Capacity Evaluation and Investment

Expanding turbine capacity is evaluated for historical and projected climates by using
dual variables (Lagrange multipliers) on capacity constraints. In mathematical optimiza-
tion (linear and nonlinear programming), each constraint including lower bounds, upper
bounds, and mass balances (Equations 2.22, 2.23, and 2.24), have an associated dual vari-
able or Lagrange multiplier. A dual variable shows the change to the objective function
(Equation 2.21) if there were one more unit (m?/s) of that constraint (turbine capac-
ity), shown in Equation 4.3. Since the objective function is revenue here, it shows the
direct benefit of expanded turbine capacity in a specific time and location. Table 4.22
shows monthly average dollar values from one m?/s turbine release capacity expansion
for each plant under projected climates. Nimbus, New Melones, Don Pedro, and New
Exchequer have the most benefit from expanded turbine capacity with historical and
projected climates. Except for Don Pedro, their benefits slightly increase with climate
change. Keswick, Englebright, Folsom, and Pine Flat show small benefit from expanding
turbine capacity, while some climates have spiked benefits. Frequency of marginal bene-
fits is also important. Figure 4.21 shows monthly frequencies (%) and ensemble average
monthly benefits of those additional turbine releases. Most plants provide benefits during
a small duration of time. Don Pedro, New Melones, and New Exchequer have longest
durations and benefit from expanded turbine releases at about 25, 34, and 37% of time,
respectively, making their turbine expansion more favorable. These dual values only show
the systemwide benefit. For a complete analysis, the cost of expansion should be explored
for plants that could benefit from expansion, and a complete cost-benefit study should be

performed.

Oz -
: i A 4.
8u¢j’v(z’j) € (4.3)

)\ij -
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where A is Lagrange Multiplier, z is objective function, and u is right-hand-side constant
of upper bound constraint on a turbine link (7, j).

Ensemble Average Marginal Benefit ($/(m3/s)/month)
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Figure 4.21: Monthly frequencies (%) of total ensemble average monthly marginal benefits
of additional turbine releases ($/(m?/s)/month)

Higher discount rates reduce future value of money and the value of postponing in-
vestment decisions (Andersson et al., 2014). Figures 4.22 shows expected annual present
value benefits (Equation 4.6) of capacity expansion ($/(m?/s)/year) for low, medium, and
high real discount (or interest) rates (1, 2.5, and 5%, respectively) with a return period
of 50 years. With the nominal discount rate i,omina and the inflation rate e, fiation, the
real (inflation corrected) discount rate i,eq; is:

Z.7“eal = inominal — €inflation (44)

Annual average expected value benefit (EV B) of capacity expansion (dual value, \)
for each turbine capacity constraint for N number of months in the modeling period is:

12 &
EVE = — > A (4.5)

k=1

With the real discount rate ¢ and the investment return period n, the expected present
value benefit (EPVB) of annual average expected value benefit (EVB) for a turbine in-
vestment becomes:

EPVB = EVB (F(lzi) (4.6)
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Expected present value benefit of turbine capacity expansion differ across scenarios
and hydropower plants. As the real discount rate increases, expected present value ben-
efit of turbine capacity expansion decreases. There are macroeconomic (discount rate)
uncertainties affecting profitability of turbine capacity expansion investments, besides hy-
drologic uncertainties. Increased macroeconomic uncertainties with higher discount rates
can outweigh hydrologic uncertainties. New Melones benefits the most from turbine ca-
pacity expansion, more than 250 thousand $ per year from 1 m3/s turbine release capacity
expansion. As discount rate increases, not only these benefits, but also EPV variability
across projected scenarios decrease.
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EPV Benefit of Additional Turbine Release, i=1.0%, n=50 years
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Figure 4.22: Expected present value benefits ($K/(m?/s)/year) of additional turbine
releases with 50 year return for low (1%), medium (2.5%), and high (5%) interest rates

Figure 4.23 shows ensemble average monthly benefit of storage capacity expansion
($/MCM /month) for 10 modeled reservoirs, considering only hydropower objectives. Most
reservoirs show either no benefit or benefit in a small duration of months for some extreme
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events. Out of 10 reservoirs, only Englebright significantly benefits from expanding storage
capacity in about one third of months, and no benefit in remaining months. Considering
water supply benefits and environmental constraints, Nover et al. (2019) evaluate capacity
expansion of most California reservoirs and show that a few Cascade Range and Northern
Sierras reservoir could benefit from expanded capacity under climate change, but cost of
expansion could substantially reduce these benefits.
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Figure 4.23: Monthly durations (%) of total ensemble average monthly marginal benefits
of additional reservoir storage ($/MCM /month)

4.6.5 Implications for Run-of-River Plants

Constant head, low-storage also called ‘run-of-river’ plants operate continuously de-
pending on water availability and usually help supply base load. Lacking storage capacity,
they have little room to optimize their operations. Thus, their adaptability to changing
climate is limited and more affected by timing and magnitude of water availability, es-
pecially when it decreases. Given constant head (h), run-of-river hydropower generation
G(t) over time period At is:

G(t) = npghQ(t)At (4.7)

where all parameters (overall efficiency 7, density of water p, gravitational constant g,
and head h) are constant, except for plant inflow Q(¢). So, any change in plant inflow
affects hydropower generation proportionately.

G(t) = ¥Q(t) (4.8)
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where 1) represents all constants (npghAt). If 8 (%) change occur on plant inflow Q(¢) in
time-step ¢, then hydropower generation with a change of AG(t) becomes:

min(G(t) + Sy Q(t), Plant Capacity), if 3 is positive

G(t) — pYQ(1), otherwise (4.9)

G(t) + AG(t) = {

Plants with large storage capacities lessen water shortage effects and get the most
benefit from increased water availability with adaption (Figure 4.24). Plants with small-
storage capacities and high-heads (located on high elevations), however, lack of adaptation
capabilities. If water availability decreases, their generation reduce equally. If water
availability increases, they can only utilize this up to their plant capacity, spilling the
remaining. Their capability of utilizing these increased water availability also is less than
plants with large-storage capacities.
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Figure 4.24: Change in water availability vs. change in hydropower generation for small-
storage, high-head plants (conceptual)

Given the assumption above, small-storage, high-head hydropower generation reduces
in spring and summer in all regions CR, NS, and SS, with reduced inflow (Figures 4.25).
The largest generation reductions occur in NS region, about 40% in rcp 4.5 and about
60% in rep 8.5 in June and July. Summer hydropower generation from run-of-river plants
in SS region fall about 30% in rcp 4.5 and about 40% in rcp 8.5. Plants in these regions
benefit from increased fall and winter water availability, but this option will be limited
by plant capacities. Also, using Equation 4.9 and monthly changes, operators in these
regions can determine how their run-of-river hydropower generation would be impacted
by climate change.
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Figure 4.25: Rcp 4.5 and rep 8.5 ensemble average (2015-2100) and historical average
(1922-2014) monthly runoff change (%)

4.7 Summary

Results are summarized on a parallel coordinates plot, where vertical axes represent
the average percent Change (Af = (fprojected - fhistoﬂcal)/fhistorical * 100) of parameter
and horizontal lines are climate scenarios (Figure 4.26). Given projected precipitation
and temperature changes under 20 climate scenarios, average reservoir inflow increases
up to 50% in the wettest scenario and decreases by 10% in the driest scenario, with an
RCP 4.5 ensemble average and median increase of 10 and 5%, and an RCP 8.5 ensemble
average and median increase of 11 and 3%. Overall average change in reservoir storage
is small compared to changes in other parameters, but there are considerable monthly
temporal storage changes (Figure 4.17). Because of plant capacities (storage and tur-
bine), increases in generation are smaller than increases in reservoir inflows. Capacity
factor (shown for one year in Equation 4.10) is calculated as average generation divided
by maximum possible generation and is an indicator of how much of plant capacity is ex-
ploited. Capacity factor (%) changes proportionally with generation, although both RCP
4.5 and 8.5 ensemble median capacity factors are slightly lower than historical average.
With adaptations, revenue increases by 4.5% and 3.5% under RCP 4.5 and 8.5 ensem-
ble average but does not change under ensemble medians of projected scenarios. Useful
adaptations include improved winter flood forecast, less carry-over storage, and increased
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turbine release capacity for some hydropower plants.

27173:1 npghQ(t) At
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Figure 4.26: Summary of operations normalized to historical averages with each line
representing a different climate scenario

4.8 Conclusions

Climate change shifts timing and magnitude of water availability with earlier snowmelt
recession and slightly increased winter rainfall rather than snowfall. Monthly average peak
runoff occurs in earlier and greater than the historical average. Summer water availability
decreases about 25%, while frequency and variability of extreme events increase, especially
in winter. Temperature increases about 1.7-2.5 °C', and precipitation changes varies with
an ensemble average increase of 4-5 %. These effects also vary spatially. Sierras, where
operations are historically snowmelt-driven, have the most dramatic changes, with runoff
decreasing 20-40% in summer and increasing 40-60% in winter. Reservoir operations
for hydropower changes significantly with climate change. Increased water availability
increases hydropower generation in fall and winter, but spring and summer generation
declines, shifting peak hydropower generation earlier in the season. Spills increase in
the wet season, resulting in spilled energy. Plants with large-storage capacity have some
adaptation capability and lessen effects of decreased water availability, and take most
advantage of increased water availability, but this is limited by plant capacity. Lacking
adaptability and flexibility from having large-storage, run-of-river plants see more impact
from climate change, especially when water availability declines in spring and summer.
Useful adaptations to climate change include 1) improved winter flood forecast and dy-
namic dedicated flood pool so that more storage is used for hydropower and less energy
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is lost with spills; 2) reduced (hedging) carry-over storage at the end of the dry season so
that more hydropower is generated; 3) some plants benefit from expanded turbine release
capacity, especially Don Pedro, New Melones and New Exchequer, but cost of expansion
should be explored to evaluate net benefits. Storage capacity expansion provides little
additional hydropower benefits, except for Englebright, under climate change. With op-
timization and adaptive management, negative consequences of climate change can be
diminished.
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Chapter 5

Optimizing Pumped-Storage
Hydropower Operations

5.1 Introduction

Pumped-storage hydropower (PSH) plants pump water into an upper reservoir during
low price (off-peak) hours, storing water in the form of energy, and generate hydropower
during high price (on-peak) hours. A typical PSH layout is shown in Figure 5.1, where the
lower reservoir is on a stream and the upper reservoir is off-stream at a higher elevation.
Other layouts can have both upper and lower reservoirs are on streams. PSH operations
are driven by hourly price variability and efficiencies. In energy systems without price
variations, PSH are not economically feasible. Because some energy is lost with pumping
and generation, some price gradient is needed to recover the cost of lost energy. With
a price-taking approach, the basic operating rule is to decide when to pump water into
an upper reservoir, and release back to the lower reservoir, generating energy. ASCE
Hydropower Commitee (1989), Wood and Wollenberg (1996), Lu et al. (2004), Figueiredo
and Flynn (2006), and Bozorg Haddad et al. (2014) discuss operational algorithms for
PSH.

This chapter presents two algorithms for PSH operations. The first algorithm uses
price-duration curves without taking water availability into account. Given a daily, weekly
or monthly duration with hourly time-steps, the optimal operating duration (pumping or
generation) without energy losses is 50%, meaning a PSH plant should pump if energy
price is less than median price, at 50% duration, and generate if the price exceeds the
median price without energy losses. However, energy losses or system inefficiencies affect
this operating policy. Algorithm 1 optimizes PSH operations assuming there is enough
water storage in lower and upper reservoirs to pump and generate at any time. A reduced
analytical solution depending only on efficiencies and energy prices is provided. Algorithm
2 is modified from the hydropower reservoir operations model, developed in Chapter 2,
and includes water availability and infrastructure capacities. Differences and similarities
of presented and existing algorithms are discussed. The two algorithms are compared and
results are presented. The second algorithm then is used to evaluate how energy prices
transformed by solar energy affects optimal PSH hydropower operations. Given solar
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affected energy price patterns with two peaks, water tends to be pumped during midnight
and midday, and energy is generated during the morning and evening peak hours, with
two daily operating cycles.

HahE Elevation
igh Energy )
Price: Generate Difference
(Head)
[ 0
Low Energy
Price: Pump

l Release

Figure 5.1: Pump and generation scheme between lower and upper reservoirs

5.2 Algorithm 1: Optimizing with a Price-Duration
Curve

An optimal PSH operating policy maximizes net energy generation revenue (revenue
minus pumping cost) (Equation 5.1). Price-duration curves can help optimize these PSH
decisions. A price-duration curve (Figure 5.2) sorts energy prices, P, in descending order
over a duration, H, between [0,1] or [0,100%] of the duration. The decision variable is the
optimal operating duration that maximizes total net profit, difference between generation
revenue and operating costs (Equation 5.5). Algorithm 1 finds the optimal operating
duration given energy losses and prices. This algorithm implicitly considers water mass
balance in the total duration by setting pumping, Hp, and generating, Hq, durations the
same. Energy prices corresponding to optimal generating duration or greater, P(H >
Hg), are generating prices, and energy prices less than pumping duration, P(H < Hp —
Hg), are pumping prices. In other durations and energy prices, P(Hr — Hg < H < Hg),
operations are stopped.

T T

Total Net Profit = Z Generation Revenue; — Z Pumping Cost, (5.1)

t=1 t=1
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Net profit from T hours of hydropower generation and Tp hours of pumping is:

T Tp 1
Total Net Profit = / napgheQe(t)p(t)dt — / n—pghpr(t)p(t)dt (5.2)
0 0 P

where 7 is efficiency, p is density of water, g is gravitational constant, h is head, @ is
discharge, and p is energy prices. Indices G and P represent generation and pumping,
respectively.

Duration H; of a price p; in an array of prices p is calculated with Equation 5.3. Energy
prices are obtained from price-duration curves, and H is percent hours of operation,
substituting Equation 5.4 into Equation 5.2 results in Equation 5.5.

rank(p;)
(count(p) + 1)

Hi(%) = %100 (5.3)

/ p(t)dt = / P(H)dH (5.4)

Hr—Hg

Hg 1
max z :/ nepghQP(H)dH — n—pghQP(H)dH (5.5)
0 j2

Hr
where z is the objective function to be maximized, Hq is optimal pumping duration, Hyp
is total duration (100%), and the difference Hy — H¢ is pumping duration (Hp). This
concave objective function can be analytically solved to find optimal operating duration
Hg = Hp. First-Order (Necessary) condition:

0z
OH

=0 (5.6)

Hg

Taking the First-Order derivative of Equation 5.5 with respect to H, and numerically
evaluating at point Hg yields:

L
OH

- P(H)nippghcz — 0 (5.7)

Hr—Hg

P(H)nepghQ

Hg

With an assumption that generating and pumping heads and discharges are the same
and Hp = 100, at the economic equilibrium, the reduced analytical solution of the objec-
tive function is:

P(100 — Hg)
=~ 5.8
Nanp P(HZ) (5.8)
Threshold prices that trigger pumping or generation are:
Pp < Pgnene (5.9)
P*
P> L (5.10)
Nanp
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where P} = P(100 — H¢) is pumping threshold price, and P5 = P(Hg) is generation
threshold price. This reduced analytical solution simplifies PSH operating rules and does
not require a price-duration curve, with an assumption that pumping head and discharge
equal generation head and discharge.

Given a concave objective function (Equation 5.5), the Second-Order condition of
maximization is satisfied.

0?2z
OH? | H,

The algorithm 1 numerically evaluates Equation 5.5 between [0,50%], and finds the op-
timal operating duration and corresponding pumping and generating prices (argmax{z}).
Generation or pumping duration cannot exceed 50% as the total must be less than or equal
to 100%. Equation 5.8 also can efficiently find pump and generate price pairs without
integral calculations.

ASCE Electric Power Research Institute (EPRI) Guides suggest that for planning
purposes, 70% overall cycle efficiency (nenp) can be used for small plants (< 300MW)
and 75 % can be used for large plants (ASCE Hydropower Commitee, 1989) and pro-
vides an approximate energy balance ratio (Equation 5.12), similar to the reduced ana-
lytical solution above (Equation 5.8), if pumping to generation (or charge-to-discharge)
ratio is 1. Figueiredo and Flynn (2006) used this approach for PSH modeling. Wood
and Wollenberg (1996) also provides a similar method, where generation (MWh) =
n * pumping load (MW h) for the same volume of water.

<0 (5.11)

Pumping Energy = 130% Generating Energy (5.12)

Lu et al. (2004) used energy balance instead of price duration curves used in algorithm
1, where the total stored (or ending) energy (E7) with an initial energy (Ep) is:

ET = EO + Em - Eout (513)

where
Ein, = Ppt,n, Euuw = Pyt (5.14)

where pumping is P, MW for ¢, hours, and generation is P, MW for ¢, hours, with an
overall efficiency of n. If Er = Ey, then Equation 5.13 becomes similar to the reduced
analytical solution of algorithm 1 (Equation 5.8):

Pyt, =nPyt, (5.15)
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5.2.1 Example

Energy Price, P ($/MWh)
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Figure 5.2: Price-duration curve of hourly energy prices for a week between May 1, and
May 7, 2018

Algorithm 1 is run with energy prices for one week period (May 1-7, 2018) and pa-
rameters in Table 5.1. These parameters are arbitrarily chosen for the conceptual model.
1000 m?3/s of discharge capacity for pump and generator and 100 m of elevation differ-
ence between lower and upper reservoirs are assumed. Pumping occurs from lower to
upper reservoir, and generation is from upper to lower reservoir. Pumping and generation
efficiencies are constant (0.8 and 0.9).

Table 5.1: Parameters for algorithm 1

Parameter Lower Reservoir Upper Reservoir
Head (m) 100 100
Discharge Capacity (m?/s) 1,000 1,000
Efficiency 0.8 0.9
Gravitational Constant (m/s?) 9.81

Density of Water (kg/m?) 1,000

Analytical solution of this unconstrained optimization problem includes evaluating
the First-Order and Second-Order optimality conditions for the price-duration function
P(H) fitted to ordered observed energy prices (Figure 5.2). Fourth-degree polynomial
P(H) function for this example is:

P(H) = 1.547 % 107°° H* — 0.00045H* + 0.04506 H* — 2.095H + 61.74 (5.16)
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Objective function z:

Hg
max z = / 0.9 % 1000 x 9.81 * 100 * 1000P(H)dH
0 (5.17)

100—Hg
_/ — %1000 * 9.81 % 100 % 1000P(H )dH

Substituting Equation 5.16 into Equation 5.17 yields:

Hg
max z = / 0.9 % 9.81 % 10%(1.547 * 107° H* — 0.00045H°
0

+0.04506 H? — 2.095H + 61.74)dH
100—H, (5.18)
¢ 1
—/ — % 9.81 % 10%(1.547 x 107" H* — 0.00045 H>

+0.04506 H* — 2.095H + 61.74)dH

First-Order condition given 1) = 9.81 x 108:

0z

e = 0= 0.9¢(1.547 + 10" H}, — 0.00045 HY,

Hg

0.04506 H2 — 2.095H + 61.74
* ¢ ¢ +61.74) (5.19)

1
—ﬁ¢(1.547 % 107°%(100 — Hg)* — 0.00045(100 — Hg)?
40.04506(100 — Hg)? — 2.095(100 — Hg) + 61.74)

Hg = 34 satisfies Equation 5.19. Evaluating this point in the Second-Order condition
satisfies that Hs = 34 is a maximum point.
0%z
OH? | Hg=34

= 0.99(6.2 % 107°H, — 0.0013509HZ + 0.09012H¢ — 2.095)

1
~og?(6:2x 107°Hg — 0.0005055H¢ + 0.00558 Hi; — 0.404) (5.20)

= —3.084 % 10° — 3.097 % 10® < 0

This example can also be solved numerically. Figure 5.3-(a) shows the objective func-
tion (Equation 5.5) evaluation results. As the operating duration (Hg = Hp) increases,
hourly net profit increases first, then after a certain point, it starts to decrease and eventu-
ally becomes negative. At that maximum point dz/0H = 0, and corresponding duration
is H}. Then, using the optimal operating duration, generation P(H{) and pumping
P(100 — H{,) energy price thresholds are determined (Figure 5.3-(b)). If energy prices are
at or above the generate threshold, energy is generated. Similarly, if prices are at or below
the pump price, pumping is done. Operations are stopped when the prices are between
these thresholds. For this example, the optimal operating duration of 34% corresponds to
a generation threshold price of 27.4 $/MWh and a pump threshold price of 19.5 $/MWh.
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These price thresholds also satisfy the reduced analytical solution (Equation 5.8), where
nenp = 0.9% 0.8 =0.7 and P(66)/P(34) = 19.5/27.4 = 0.7.

0 Objective Energy Price ($/MWh)

Ordered price
m  Generate threshold

700 701

600 - 60 A Pump threshold
A

500 - 50 1

400 40 4

300 30 4__27.4 $/MWh

200 20 4195 $/MWh

100 10 | [

0 10 20 30 40 50 0 20 40 60 80 100

Duration (%) Duration (%)
(a) Numerically finding Hg with function evaluation (b) Optimal duration and prices

Figure 5.3: Simulation of the objective function and finding pump and generate threshold
prices and durations

In algorithm 1, the optimal operating duration is determined solely by overall plant
efficiency (ngnp). The magnitude of energy prices and the slope of the price-duration
curve only affect the net total profit. Figure 5.4 simulates how optimal operating duration
changes with overall plant efficiencies. If the overall efficiency is 1 (no energy losses), then
optimal operating duration is 50%, and corresponding generate and pump thresholds are
the median price. As the overall efficiency decreases, the optimal generate and pump
durations decrease and the duration where operations are stopped increases. As the
overall efficiency approaches to zero, only small generation duration with highest prices
and pumping duration with the lowest prices become economically profitable.
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Figure 5.4: Simulating optimal operating durations and prices for a range of overall
efficiencies ngnp

The biggest limitation of algorithm 1 is that water mass balance is conserved at the
end of the period with an assumption that there is always enough water storage in the
lower and upper reservoir to pump and generate. In the total duration with implicit
representation, total volumes of pumping and generation releases are the same. But, the
mass balance within the time-period does not necessarily work. Since the thresholds are
constant, the model can suggest generation without pumping, which is why enough water
availability is assumed. Also, it is assumed that pump and turbines releases are made
at the capacity. With these assumptions, the resulting solution approximates the global
optimal solution, which is discussed in the more numerical algorithm 2.

5.3 Algorithm 2: Optimizing with a Reservoir Oper-

ations Model

Algorithm 2 is modified from the hybrid LP-NLP hydropower reservoir operations
model to represent PSH operations (Figure 5.5). This algorithm explicitly represents wa-
ter mass balance, and pump and generate decisions can be between 0 and the pump or
turbine capacity. In addition to when to pump and generate, which Algorithm 1 deter-
mines, algorithm 2 quantifies how much to pump and generate. The objective (Equation
5.21) is to maximize overall net hydropower revenue in all time-steps within lower bound,
upper bound, and mass balance constraints (Equations 5.23, 5.24, and 5.25). Algorithm
2 is modeled with Pyomo (Hart et al., 2017) and solved with GLPK (Free Software Foun-
dation, 2019), an open-source, large-scale mathematical programming solver. Given an
concave objective function in the feasible range, the solver provides a globally optimum
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solution.

subject to:

II])?X Z = Z Zb”XZ]
i g

napghapijAt, if (i,7) is a generation link
by = 4 —(L/ne)pahepyAt, it (i, ) is a pump link
0, otherwise

Xij > 1;;,V(i,5) € A
Xij <, V(i j) € A

(5.21)

(5.22)

(5.23)
(5.24)

(5.25)

where X;; represents flow (decision variable) over a link (7,7), from an origin node i
to terminal node j representing different points in time and space. b;; is unit benefit
($ per flow) and positive for generation links and negative for pumping links (Equation
5.22). Generation and pumping efficiencies 7z and np and heads hg and hp are assumed
constant. At is time difference and equal to 1 for hourly time-step. [;; and u;; are lower
and upper bound constraints, and a,; is amplitude representing losses.
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Figure 5.5: Generic network flow representation of the PSH model

5.3.1 Example

Table 5.2 shows parameters used for the algorithm 2. The same head, discharge capac-
ity, and efficiency as algorithm 1 are assumed for a comparison between two algorithms.
Lower reservoir has 5,000 MCM, and upper reservoir has 2,500 MCM of storage capacity,
with no deadpool, initial and ending storage. Inflow for the lower reservoir (Figure 5.6)

is obtained from CDEC station ORD, representing Sacramento River at Ord Ferry. May
1-7, 2018 inflows are extracted from the dataset.
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Table 5.2: Parameters for algorithm 2

Parameter Lower Reservoir Upper Reservoir
Head (m) 100 100
Storage Capacity (MCM) 5,000 2,500
Initial and Ending Storage (MCM) 0 0
Deadpool (MCM) 0 0
Discharge! Capacity (m?/s) 1,000 1,000
Release Capacity (m?/s) 1,500 0
Efficiency 0.8 0.9
Gravitational Constant (m/s?) 9.81

Density of Water (kg/m?) 1,000

"Pump or generator discharge

Hourly Average Flow (m?3/s)
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Figure 5.6: Hourly inflow for lower reservoir in algorithm 2. This flow data is Sacramento
River at Ord Ferry (Data source: CDEC)

Figure 5.7-(a) shows hourly average net flow, generation minus pumping (m?*/s), and
energy prices ($/MWh) over one week period (May 1-7, 2018). Pumping and genera-
tion occur twice a day given off-peak and on-peak energy price cycles. Water is usually
pumped to the upper reservoirs during hours between 0-5 and 9-17. Emergy is mostly
generated during peak hours between 5-7 and 17-0. Water is pumped for longer periods
than generation, which occurs in a smaller time-frame with greater intensity. Instead of
setting pumping and generating thresholds, algorithm 1 can pump and generate different
quantities depending on energy prices, although operations are mostly at pump and gen-
eration capacities (Figure 5.7-(b)). As energy prices increase, hydropower is generated by
releasing water into the lower reservoir, and with lower energy prices water is pumped to
the upper reservoir. To maximize overall net revenue (generation revenue minus pumping
cost), generation releases reach the capacity at high energy prices. When energy prices
are above 24 $/MWh, water is never pumped and only hydropower is generated (Fig-
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ure 5.7-(b)). When energy prices are below 20 $/MWh, water is pumped to the upper
reservoir without generation. Water is sometimes pumped and hydropower is sometimes
generated for prices between 20 and 24 $/MWh. Unlike algorithm 1, operations are never
stopped for any energy price, but rather mixed pumping and generation sometimes occur
between thresholds.
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Figure 5.7: Hourly average net flow (generation - pumping) (m?3/s) and energy prices
($/MWh)

Upper and lower storages change with pumping and generation (Figure 5.8). Storage
in the upper reservoir increase with pumping before the morning and evening peak hours,
which decreases the lower reservoir’s storage. The upper reservoir has two daily peaks
occurring between mode changes from pumping to generation (hours around 5 and 17).
Since energy prices are much higher in the evening peak hours, the second peak of the
upper reservoir, occurring hours around 15-18 is much greater. Generation discharges
and streamflows increase storage of the lower reservoir, peaking when the operating mode
changes from generation to pumping around hours 7 and 0. Although there is stream
inflow into the lower reservoir, only the portion pumped is stored, and the remaining is
released, because there is no benefit of storing water other than pumping.

91



Hourly Average Storage (MCM)

225
—— Upper Reservoir
20.0 1 === Lower Reservoir

17.5 4
15.0 4
12.5 4
10.0 4
7.5
5.0 1

2.5 1

0.0

0 2 4 6 8 10 12 14 16 18 20 22
Hour

Figure 5.8: Average hourly storage (MCM) of upper and lower reservoirs

5.4 Comparing Algorithm 1 and 2

Algorithms 1 and 2 optimize short-term PSH operations with different approaches,
both aiming to maximize net revenue and help meet peak energy demands. Algorithm 1
uses price-duration curves to find generation and pumping price thresholds, driven mostly
by efficiencies, without considering reservoir inflows and water mass balance, assuming
there is always enough water to pump and generate energy. This algorithm provides
simple, fast, and approximate solutions to the problem, especially with the reduced an-
alytical solution. Algorithm 2 uses reservoir operation optimization modeling to have a
better and more flexible system representation. Algorithm 1 has a single decision variable,
which is the optimal pumping or generating operating duration (H* = Hp = H), while
algorithm 2 has more than 3,000 decision variables in the one week period with an hourly
time-step. Each storage (flow in time) and flow of a network link in a given time-step is
a decision variable in algorithm 2. Figure 5.9 shows energy prices time-series (May 1-7,
2018) and compares pump and generate decisions of algorithm 1 and 2. After finding
optimal duration, algorithm 1 creates pumping and generating price thresholds, and any
prices below and above those constant lines determines PSH operating policy. However if
operated at the capacity, this can result in water imbalances within the period if there is
not enough water in the upper reservoir. For example, in Figure 5.9-(a), the total number
of pumping hours in first 72 hours is 17, while the total number of generating hours is
31. Algorithm 2 determines both pumping and generation timing and quantities and does
not have a water imbalance problem. With this algorithm, water must be pumped first
to generate energy later.
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Figure 5.9: Hourly energy price ($/MWh) time-series and pump-generate prices with
Algorithms 1 and 2 for one week period (May 1-7, 2018)

Figure 5.10 compares cumulative generation revenues and pumping costs ($K) of algo-
rithm 1 and 2. As algorithm 1 only determines pumping and generation timing, revenue
is calculated using algorithm 2’s objective function (Equation 5.21), assuming operations
at plant capacities. In the first half of the period (hours 0-96), algorithm 1 has greater
hydropower revenue and less pumping cost than algorithm 2, resulting in a more net profit
(Figure 5.11). This is because algorithm 1 suggests more generation than pumping during
this period, with slightly higher energy prices. After that, the cumulative net revenue re-
mains around 1000 $K until the end of the period. Average change in cumulative revenue
and cost in algorithm 2 is mostly constant. At the end of the modeling period, algorithm
1 and 2 have cumulative net benefits of 1,070 and 851 $K, respectively. If algorithm 1 is
used, it should be considered as guidance for when to pump and generate, and operators
should decide how much to pump and generate, accounting for mass balance. In addition,
the reduced analytical solution of the algorithm 1 can be used to find minimum generating
price given pumping price. For example, given overall efficiency (ngnp) of 0.72, if water is
pumped into the upper reservoir with the average energy price of 18 $/MWh, the average
generating price must be at least 18/0.72 = 25 §/MWh to recover energy losses.
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Figure 5.10: Cumulative generation revenue, pumping cost and net profit ($K) with
Algorithms 1 and 2. Revenue and cost of algorithm 1 is calculated using objective function
of algorithm 2
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Figure 5.11: Comparison of hourly and cumulative hourly profits for algorithm 1 (A1)
and algorithm 2 (A2). Profit of Al is calculated using objective function of A2

Algorithms 1 and 2 converge when the hourly energy price pattern does not change
across days. Algorithm 1 sorts energy prices and sets threshold prices but does not know
when low and high prices occur. If energy prices are mostly higher in the first half of the
period, then mostly lower (like this example), then differences between algorithm 1 and
2 decisions increase.
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5.5 Solar Effects on PSH Operations

With deployment of solar energy to meet renewable goals, energy prices fall signifi-
cantly during solar generation hours, between 9 and 18, resulting in two daily energy price
peaks and lows, shown in Figure 5.12. With this new price pattern, PSH pumping and
generating twice a day become more profitable, instead of a single daily pump and gen-
erate cycle without solar generation. Effects of the new energy price pattern transformed
by solar energy on short-term hourly PSH operations are evaluated using algorithm 2.
As discussed in Chapter 3 (Figure 3.8), the negative energy prices shifts to daytime due
to solar generation is favorable for PSH operations, increasing pumping during negative
price hours. Hourly overall average of inflows are used to eliminate hydrologic variations
(Figure 5.6). The model is run with energy prices of each year and overall lower reservoir
inflow separately from 2010 through 2018. Pump and storage decisions, lower and upper
reservoir storage, and generation revenues and pumping costs are presented.
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Figure 5.12: Hourly average and normalized energy prices from 2010 to 2018

5.5.1 Optimal Pump and Generate Decisions

PSH operations are driven solely by energy prices and efficiencies. Water is pumped
at low energy prices, and energy is generated if prices are high. This low and high
energy price scheme changes as solar generation increases. Years from 2010 through
2013, pumping occurs only in hours between 0-8 (Figure 5.13-(a)). As solar generation
increases and energy prices decrease between 9 and 18, water is also pumped during
those hours with increasing amounts, reducing pumping between hours 0-8. Between
years 2010 and 2012 (1-daily cycle), before the significant solar deployment, energy is
generated for longer durations between 8-23, peaking around 19-20 (Figure 5.13-(b)).
While peak generation hours are the same with slight extension, generation between 10-16
is significantly reduced in the following years, and starting 2016 (2-daily cycle) once energy
prices are high enough, energy is generated between 7-9 in the morning peak. Figure 5.13-
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(c) combines daily pump (negative) and generate (positive) flow (m3/s) cycles. As solar
generation increases, volumes of pumped before morning peak hours decrease, morning
peak generation increases, and pumping before evening peak hours increases, forming two
daily off-peak and on-peak pump and storage cycles.
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Figure 5.13: Pump and generation discharges (m?/s) and combined cycle

Figure 5.14 shows stacked percent hours of operation (pump, generate, and stop) for
1-daily (2010-2012) and 2-daily (2016-2018) cycles. With 1-daily cycle (Figure 5.14-(a)),
water is mostly pumped into the upper reservoir between hours 0-8, then hydropower is
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generated between hours 9-22. During transitioning hours between pumping and gener-
ation modes, such as 8-18 or 23, at about 90% of hours operations are stopped. With
2-daily cycle (Figure 5.14-(b)), water is mostly pumped between hours 0-6 and 10-16, gen-
erating hydropower in remaining hours. In this cycle, hydropower is generated at about
100% of time in hours 19-22.
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Figure 5.14: Hourly average stacked pumping, generation, and stopped hours (%)

5.5.2 Reservoir Storage

Energy price transformation reshapes upper and lower reservoirs’ storage curves. In
this PSH layout, water must be pumped into the upper reservoir to generate energy.
Figure 5.15 hourly average (MCM) and normalized upper and lower reservoir storage
between 2010 and 2018. The upper reservoir has single storage peaks years from 2010
through 2013, peaking hours around 6-8 before generation starts. With solar deployment,
these hours become morning peak generation hours, and the storage peak shifts earlier,
and second upper reservoir’s storage peak arises, with a greater magnitude, around hours
15-18 before the evening peak generation starts. The lower reservoir has an opposite
trend. Its storage increases with generation releases and stored inflow to be pumped later
around hours 6-10, and the second peak occurs hours around 20-2. As solar deployment
increases, the first lower storage peak increases, while the second decreases.
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Figure 5.15: Hourly average (MCM) and normalized storage for years from 2010 through
2018

5.5.3 Revenue and Cost

The model’s objective is to maximize overall net benefits (hydropower revenue - pump-
ing cost). Figure 5.16 hourly average hydropower revenues and pumping costs ($K) be-
tween 2010 and 2018 with adapted PSH operations to changed energy price scheme.
Without solar generation effects (2010-2012), pumping costs are mostly from night hours,
and generation revenue is from mid-day and evening peak hours. As solar generation in-
creases hours between 10-18, reducing energy prices, these hours become pumping hours.
Also, operations become less flexible compared to the pre-solar period of 2010-2012, fo-
cusing them in a smaller pump and generation periods, with sudden shifts between modes
reflected in revenues and costs. Some transitioning hours have both pumping cost and
generation revenue, which is due to averaging from longer periods. The model does not
pump and generate at the same time.
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Figure 5.16: Generation revenue and pumping cost ($K) for years from 2010 through 2018

As energy prices change, hourly optimal PSH schedules and operating cycles change.
Table 5.3 shows net hourly revenues ($/h) for different hours and average net daily profit
($/d). Years from 2010 through 2012 have a single daily off-peak when water is pumped,
and one-peak when energy is generated. This cycle starts to transition in 2013. Gener-
ation and revenue starts to decrease in hour 13, which is the hour that solar generation
peaks. Starting 2016, new two-daily off-peak and on-peak price cycle is completely formed.
Although daily profits are slightly higher with 2-daily peak cycle, no significant trend is
observed. There are several factors affecting daily revenue, including daily mean energy
price (1) and standard deviation (o). Standard deviation increases the price range and
has more impact than mean (compare daily net revenue of 2017 and 2018 or 2010 and
2011). When mean energy price is higher, more revenue is generated but pumping cost
also increases, less affecting net revenue. Highest net revenue is generated when both
daily energy price mean and standard deviation are higher.

99



€8.L°¢. 01 G¢  G6C'TS 9.6'92- IS0°L  998°GT-  S10%
€€0°96 It 1€ €08'1¢ 68G°0¢-  60S'8T  F0S'€Z-  LI0C edd ATre( ¢
99.°8¢ 9 9z F0STE LOETI- 961 69¢°8T- 910G
00T°9¢ G 08 8LL9¢ 9116~ 0 029°¢g-  S10T
LLL09 6 7 16C'LY 96 1.2°C-  T60°8¢-  ¥10T UOTHISTRLT,
800°L% 9 6¢  €0L9¢ 0 90¢'T  889'C¢-  €10%
879°]¢ G GZ  TGE6T 162'¢ 6V1- 99L.°LT- 10T
60798 8 8%  6.S'1¢ 90821 80S'e-  €OI'FI- T110T 3eod Aqre T
8G8°]T 9 e¢  €20'LT 9.2°ST Ge0'T-  GL.£°9%-  010%

(p/¢) enuasay 0 M Qg INO] €T INOF] & JNOF] ¥ INOF] Jedax Sl p)Ye)

19N ATte o8eaoAy  (YMIN/G) @o11g Are@  (U/¢) enuoaasy 19N 98eloAy A[INOY

Table 5.3: Average hourly and daily net revenue (generation revenue - pumping cost) and

daily energy price mean (u) and standard deviation (o)
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5.5.4 Summary

Results are summarized with normalized values for 1-daily (2010-2012) and 2-daily
(2016-2018) peak cycles (Figure 5.17). As a dispatchable hydropower resource, PSH
operations substantially change to adapt to new energy price pattern from solar energy
generation. Between 2010 and 2012 with 1-daily cycle, the lower reservoir’s storage peaks
during hours between 20-2 with generation releases, while the upper reservoir’s storage
peaks between 6-10 hours. During this period, water is mostly pumped from hours 0
through 7, and energy is generated from 11 through 22, peaking around 20, which is also
reflected in pumping costs and generation revenues. Between 2016 and 2018 after 2-daily
cycle is established, upper reservoir’s storage peak shifts to hours 13-18, with pumping
from the lower reservoir. In this period, water is pumped twice a day; first during hours
2-5, then 10-16, the latter has much more volume and longer durations. Generation occurs
in a shorter time-frame with a smaller amount between 7-8 during the morning peak, and
with a much larger amount between 18-24 during the evening peak. In the 1-daily cycle
period, there is roughly 3 hours between pumping and generation, and the mode changes
gradually. In the 2-daily cycle period, however, this reduces to 1 hour with sudden mode
changes.
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i i i i 1.0
I I I I

-

- 0.6

- 0.8

- 0.6

14 - -0.4 14 - -0.4

16 16
18 - -02 18 - -0.2
=

. | | e -0.0 -0.0
Stor,g  Storyg Flowp Flowg Costp  Revg

' ' ' i
Stor,g  Storyg Flowp Flowg Costp  Revg

(a) 2010-2012 Average (b) 2016-2018 Average

Figure 5.17: Summary of normalized hourly lower (LR) and upper (UR) reservoir storages,
pumping (P) and generation (G) flows, and pumping costs and generation revenues for
1-daily (2010-2012) and 2-daily (2016-2018) cycles

5.6 Conclusions

Two algorithms are developed and compared for short-term PSH operations. Algo-
rithm 1 employs a price-duration curve of a given period, such as daily, weekly, or monthly,
with hourly time-step, and finds optimal pumping and generation durations and thresh-
old prices. Pump or generate modes are triggered depending on these thresholds. An
analytical solution to the problem is provided for the special case where pumping and
generations discharges (1000 m?®/s) and head (100) with hourly energy prices for May
1-7, 2018. Algorithm 1 is driven by energy prices and efficiencies, without considering
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water mass balance, assuming there is enough water storage in the lower and upper reser-
voirs to pump and generate. Algorithm 2 uses a reservoir systems modeling approach
to determine pumping and generation quantities in addition to the timing, accounting
for mass balance. Both algorithms have perfect energy price foresight and algorithm 2
has perfect hydrologic knowledge. Algorithm 1 and 2 decisions converge for cases where
energy price fluctuations are low and the hourly price pattern repeats. The reduced ana-
lytical solution of algorithm 1 simplifies PSH operating rules if pumping and generation
heads and discharges are the same. Then algorithm 2 is used to evaluate solar deployment
effects and energy price transformations on PSH operations in California between 2010
and 2018. The model is run for each year in the range. Before the solar generation, the
optimal PSH operating strategy is to pump into upper reservoir at night, and generate en-
ergy during daytime, peaking in the evening. However, as solar generation reduces energy
prices between 9-18, these hours are no longer profitable for generation, but favorable for
pumping, creating two-daily pumping and generation cycles.
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Chapter 6

Overall Conclusions and Future
Directions

This dissertation used hydropower reservoir optimization modeling to evaluate effects
of changed energy prices from solar deployment on short-term hydropower operations and
climate change impacts on long-term hydropower planning and management. Additional
algorithms are developed and compared for pumped-storage hydropower (PSH) optimiza-
tion, and energy price effects on PSH operation cycles are studied. Key concluding points,
corresponding to each chapter, include:

1. Initialization with LP reduces NLP iterations and runtime by 80%. The devel-
oped hybrid LP-NLP hydropower optimization model can be efficiently used for
short-term hydropower operations with hourly time-step and long-term hydropower
planning with monthly time-step. LP model provides a good initial starting point
for the NLP model. The number of NLP iterations and runtime can be signifi-
cantly reduced with ‘warmstart’ from the LP solution. For long-term planning with
a large number of decision variables, LP model is more favorable as NLP model’s
runtime increases exponentially. Besides, uncertainties in reservoir inflows outweigh
accuracy losses from linearization in the long-term.

2. Solar energy development and changed energy price patterns substantially change
dispatchable hydropower reservoir operations. Hours with more solar energy gen-
eration become less valuable, so hydropower is not generated during these hours,
but stored for later use. In the wet season, energy is generated twice a day, during
the morning and evening peak hours. In the dry season with less inflow and higher
evening energy prices, operations mostly concentrate on the evening peak hours with
increased ramping rates.

3. Climate change reduces snowmelt runoff in the spring and increases precipitation as
rainfall in the winter, with increased intensities and frequencies. Hydropower plants
with large-storage capacities capture some of increased winter inflows and increase
hydropower generation. But, spring and early summer hydropower generations sig-
nificantly reduce. Lacking storage capacity flexibility and adaptation, plants with
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smaller storage capacity and run-of-river hydropower plants are more affected inflow
uncertainties. Although the ensemble mean hydropower revenue is slightly higher,
the ensemble median revenue is close to the historical average revenue, with current
monthly average energy prices. Increased fall and winter hydropower revenues help
compensate for reduced spring and summer revenues.

4. Two developed algorithms optimize PSH decisions of when to pump and generate
to maximize net profit. The analytical solution (algorithm 1) provides fast and ap-
proximate solution to the PSH optimization problem of deciding when to pump and
generate to maximize net revenue and help meet peak demands, while the numerical
optimization solution (algorithm 2) is more detailed and provides a more complete
solution. As a result of solar development and transformed energy prices, PSH
pumping and generation cycles change. Water is pumped into the upper reservoir
hours from 2 through 5 and 10 through 16, and energy is generated hours from 7
through 8 and 18 through 23.

Climate change affects hydropower revenue by shifting temporal and spatial water
availability, increasing revenue in fall and winter and decreasing in spring and summer.
Management policies also affect hydropower revenue. With solar generation, hydropower
revenue increases during the morning and evening peak hours and decreases during hours
when solar generation peaks. Combining management policies and climatic changes with
optimization and adaptive management, limited spring and summer generation can be
allocated to more valuable hours, reducing negative effects of climate change. PSH also
benefits from increased solar generation. Increased price range and variability with more
solar generation results in more PSH revenue.

The hybrid model, where the NLP model is initialized with LP solutions, reduces the
NLP model’s runtime by 80%, but this can be further reduced if a better initial solu-
tion is provided, with piecewise LP or successive LP, where objective function differences
(Figure 2.4-(b)) are smaller than LP. With the current trend and management policies,
solar generation will increase to meet RPS target of 50% by 2030. This will continue
to deepen the belly of the ‘duck curve,” reducing energy prices during solar generation
hours. Quantifying effects of further increased solar generation on hydropower reservoir
operation, including hydropower with large storage capacity and PSH, and identifying
adaptations will be useful. With the new energy price scheme, the model suggests large
pulse releases in a short duration of time. Compromising hydropower and ecological ben-
efits will be worthy. Studying effects of climate change can be expanded to other regions
to include more plants. Exploring these effects on different types of hydropower, such as
run-of-river and PSH, will make this study more completel. Constant efficiencies are as-
sumed for hydropower optimization modeling, but implementing varying efficiencies with
release decisions can improve result accuracy, especially for PSH, where operations are
directly affected by system efficiencies. Implementing limited hydrologic foresight with
a sequential annual optimization can help better quantify hydropower generation during
extreme hydrologic events, especially for long-term decisions. Variable head functions can
be applied to PSH for better system representation. Algorithm 1 assumes the same oper-
ating duration and flow quantity for pumping and generation. But, it can be modified to
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operate at different durations and flow quantities, which can minimize differences between
two algorithms.
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