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ABSTRACT 

This dissertation makes new advances in multi-criteria decision analysis (MCDA) and MCDA-based multi-

objective optimization (MOO) and applies these methods to new areas of sustainable sediment and 

water resources management. Chapter 1 briefly introduces some central themes of this dissertation. 

Chapter 2 presents a new method for identifying preference weights in MCDA decision models. Chapter 

3 applies existing tools for MCDA to the new topic area of sustainable marine sand resource use. 

Chapter 4 presents a new version of the Dredged Material Management Decisions (D2M2) software and 

applies it to optimize dredged sediment placement for multiple objectives. 

In the new approach for preference weight identification presented in Chapter 2, a stakeholder or 

decision maker is observed playing a game (e.g., a serious video game) with a similar context to a real-

world decision problem of interest. As the player make choices within the game, a record is kept of each 

chosen and non-chosen alternative and its performance data. After gameplay is finished, analysis is 

performed on the choice data from the gameplay log. Two approaches are demonstrated to best fit 

weight sets to the observed decisions. A brute force, enumeration approach evaluates all possible 

weight sets in a discretized weight space and an evolutionary optimization approach, with parameters 

tuned for a more explorative search, generates, evaluates, and evolves random weight sets within the 

continuous weight space. In an illustrative case study with a simple water management game, both 

approaches produce similar results showing a weight space of best fit. Tradeoffs between shorter and 

longer gameplay and analysis time affect the accuracy and completeness of the results. While further 

work is needed to validate the decision models inferred from gameplay against the decision models 

used in real life, this approach has promise for avoiding some cognitive biases and increasing the 

scalability of weight identification in MCDA applications. 

Chapter 3 applies MCDA to sustainably manage sand deposits (borrow areas) on the ocean floor that are 

dredged for fill material for coastal engineering projects such as beach nourishment. Borrow area users 

and managers have expressed concern that existing approaches are not sufficiently sustainable, e.g., do 

not adequately promote the long-term viability of borrow areas and balance environmental, social, and 

economic concerns. To remedy this, an MCDA workshop was held with stakeholders and subject matter 

experts from state and federal government, industry, and academia. Workshop participants were asked 

to develop an MCDA criteria hierarchy for evaluating the sustainable use of marine sand borrow areas, 

suggest metrics and scoring considerations for those criteria, list best management practices for 

sustainable borrow area use, and provide additional observations about existing challenges and future 

recommendations. Each of these products fills a gap in the literature for marine sand resource use. 

The D2M2 software advanced and applied in Chapter 4 creates MCDA-based MOO models of dredged 

material placement scenarios. This new version incorporates several features to better specify costs, 

benefits, and impacts and to support the modeler in developing useful solutions. It is applied in a case 

study using realistic site and management data for dredging and sediment placement along the Gulf 

Intracoastal Waterway (GIWW) near Galveston, TX. The site data are optimized in nine scenarios that 

vary the site network and weighting scheme for seven objectives that include financial cost, 

environmental impacts, and beneficial uses and effects. Results show tradeoffs between impacts and 

benefits, identify proposed sites most likely to be useful for system management, and highlight the need 

for additional placement capacity in the system over the 20-year timeframe, a need that can largely be 

filled through the creation of proposed beneficial use sites included in the model. 
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Chapter 1  

Introduction 
 

 

 

 

The chapter introduces some basic concepts related multi-criteria decision analysis (MCDA) and 

sustainable development, which are foundational to the substantive chapters of this dissertation. It also 

previews additional topics presented in the following chapters. Beyond this, each chapter contains its 

own introduction and/or background sections that further introduce concepts and review the literature 

relevant for that chapter. Chapter contents may also build on topics introduced in preceding chapters.  

 

MULTI-CRITERIA DECISION ANALYSIS 

Decision science is a focused and formalized subfield of operations research and management science 
that deals with human decision making.1 It is fundamentally concerned with choices, e.g., a decision 
maker or group of stakeholders selecting or develop a best option or course of action from a set of 
possible alternatives. It includes normative decision theory, which covers how rational actors should 
make decisions, prescriptive decision theory, which gives practical recommendations for good decision 
making in real-world settings, and descriptive (behavioral) decision theory, which reports how humans 
actually make decisions, including measurement of bias, error, and irrationally. 2,3,4,5  

Multi-attribute utility theory (MAUT) is prominent in decision science research. It often extends the 
concepts of von Neumann-Morgenstern expected utility theory6 to multi-attribute problems such that 
each alternative can be evaluated with respect to multiple objectives or criteria that have different 
levels of importance to the problem. Other multiple criteria decision analysis (MCDA; also known as 
multi-criteria decision-making, MCDM) theories, such as multi-attribute value theory (MAVT), are more 
frequently applied in practice, often making simplifying assumptions about the risk tolerance used in 
classic MAUT in exchange for greater ease of application.4 Depending on the form of prescriptive 
MCDA/MAUT/MAVT model used, criteria importance may be described with weights that quantify the 
decision maker’s relative preferences between criteria and through utility/value functions that describe 
the desirability of different levels of performance for each criterion with respect to the decision 
context.1,7  

Decision science, and behavioral sciences in general, rely heavily on surveys and interviews as research 
mechanisms.8,9 For example, prescriptive decision analysts often use structured interviews and surveys 
to ask decision makers or stakeholders to enumerate relevant criteria, describe utility or value functions, 
suggest alternatives, and identify tradeoff weights. Surveys and interviews also are used with subject 
matter experts to elicit probability judgements and to estimate alternative performance. 
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Although many MCDA model variations exist, the applications in this dissertation use a linear, additive 
MAVT model of independent criteria, a popular form of MAVT application.3,4 Here, each alternative, 
indexed by 𝒋, available to the decision maker(s) or stakeholders from set of alternatives can be described 
by data that estimate its performance, 𝒗𝒊,𝒋, against 𝒏-many relevant criteria, indexed by 𝒊. These data 

are typically developed by subject matter experts and presented to the decision makers(s) or 
stakeholders by the analyst. Priorities among competing criteria are represented through a decision 
model that includes quantified tradeoff weights, 𝒘𝒊, that capture the relative importance of the criteria 
to the decision maker(s) or stakeholders and are normalized to sum to one.  

Value functions, 𝒇𝒊(𝒗𝒊,𝒋), quantify the relative benefit expected from any level of performance for 

criterion i. (These are similar to utility functions in MAUT models but use the term “value” instead of 
“utility” to note that they assume constant risk preference.) Linear value functions can be described by 
their endpoints or a slope and intercept and neglect changes in marginal value over the range of 
performance considered in the alternative evaluation problem. The value functions map performance 
data from whatever units they are provided in onto a common zero-to-one value scale normalized with 
respect to the decision maker(s)’ or stakeholders’ perceptions of benefit across criteria. With an additive 
value model, the total MAVT value score for each alternative, 𝒂𝒋, is calculated as 𝒔𝒄𝒐𝒓𝒆(𝒂𝒋) =

∑ 𝒘𝒊𝒇𝒊(𝒗𝒊,𝒋)𝒏
𝒊=𝟏  and represents the total benefit of each alternative summed across all criteria. Under 

these assumptions, the alternative the decision maker(s) or stakeholders choose, 𝒂𝒋∗, should be the one 

with the highest total MAVT score, 𝒔𝒄𝒐𝒓𝒆(𝒂𝒋∗) = 𝑴𝒂𝒙𝒋(𝒔𝒄𝒐𝒓𝒆(𝒂𝒋)). 

 

SUSTAINABLE DEVELOPMENT 

Modern visions for sustainable development draw from a framework popularized in the classic 1987 

report Our Common Future from the United Nations World Commission on Environment and 

Development.10 One component of this framing of sustainability deals with resource use and 

consumption, asserting that a renewable resource is used sustainability when its rate of its use does not 

deplete it but leaves it able to provide value for future generations as well. This deals with equity of 

resource use over long time horizons. Whenever possible, discussions of sustainability should include a 

long-term, multi-generational perspective for expected resource management. 

Another component of this classic framing of sustainability suggests that sustainable decisions about 

natural resources use should balance the three broad goals of safeguarding the environment, promoting 

societal welfare, and supporting economic development or providing economic benefit.11 This 

conceptualization of the environmental, social, and economic “three pillars” of sustainability can be 

applied to both renewable and finite resource use and is predominantly concerned with equity across 

sectors in the present. 

MCDA can be applied to help evaluate the sustainability of proposed plans or projects, for example by 

including criteria that that estimate intergenerational resource availability and/or reflect the three 

pillars. Several recent publications review MCDA applications to sustainability in different sectors. 

Kuman et al. (2017) review applications of MCDA to sustainable renewable energy development.12 

Stojčić et al. (2019) review applications of MCDA to sustainability engineering, including construction 

and infrastructure, supply chains, transport and logistics, energy, and other engineering disciplines.13 

Pérez-Gladish et al. (2021) present a special issue of the International Journal of Sustainable 

Development and World Ecology that focuses on recent developments in MCDA for economic 
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development, social cohesion, and environmental sustainability.14 Within business management, 

Chowdhury and Paul (2020) review uses of MCDA in studies of corporate sustainability.15 These and 

other works establish a well-grounded basis for using MCDA to incorporate sustainability considerations 

in the design, evaluation, and selection of project alternatives. Nevertheless, opportunities remain to 

apply MCDA to new types of sustainability problems, including in water resources and sediment 

management. 

 

OTHER TOPICS IN THIS DISSERTATION 

Building on the topics presented above, Chapter 2 presents topics related to video gaming and game 

analytics. It reimagines traditional MCDA and its decision makers and stakeholders in the context of 

game play, as players making choices in a virtual environment. It combines concepts from MCDA and 

game analytics to develop a new topic of decision model inference from gameplay analysis. It also 

introduces optimization topics for MCDA inference, following a handful of other works, and recasts 

MCDA modeling as an error-minimization optimization problem. This approach is applied to a text-based 

video game for sustainable water management that includes criteria for financial cost, economic 

growth, agricultural production, urban housing, and environmental preservation. 

Chapter 3 continues to focus on MCDA and sustainability but switches topic areas. It introduces the 

topics of dredging, beach nourishment and coastal engineering projects, physical and environmental 

processes related to marine sand deposits, MCDA workshops, and best management practices. It 

integrates these topics by using an MCDA workshop to develop a generalized MCDA model and list of 

best practices for sustainably managing marine sand deposits.  

Chapter 4 builds on the discussion of sustainable dredging in Chapter 3 but shifts to the topic of 

navigational dredging (for maintaining the navigability of waterways for marine transportation). It uses a 

different type of optimization from the type presented in Chapter 2, where the objective is to minimize 

or maximize an aggregate MCDA score. It applies this in a case study to sustainable manage dredged 

sediment under MCDA criteria for financial cost, environmental impacts, and beneficial uses of 

sediment. 
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Chapter 2 

Inferring Preference Weights for Multi-

Criteria Decision Models Through 

Analysis of Gameplay Choices 
 

 

 

 

ABSTRACT 

Video games, both recreational and serious, are ubiquitous in modern society. Game analytics, the 

systematic analysis of game environmental and player data to draw meaningful insights, provides 

powerful tools for game designers and developers to create more engaging and profitable games. Multi-

criteria decision analysis, a formalized domain of decision science, develops and applies rational decision 

models to help users structure objectives, identify preferences, and integrate complex information to 

evaluate alternative choices and make efficient, value-maximizing decisions. Decision analysis is 

regularly used in diverse fields such as environmental management, healthcare, oil and gas production, 

military and government operations, etc. to help decision makers and stakeholders identify and select 

better alternatives, with substantial financial payoffs and other benefits. An opportunity exists to 

integrate game analytics and decision analysis for observational research on human decisions in gaming 

environments. Prior demonstrations of decision model inference in non-gaming environments provide a 

foundation for this effort, as do existing examples of other types of inference-making and behavioral 

studies in gaming environments, where game-based approaches are shown to capture many of the 

same benefits and outcomes as physical observational studies. Observational studies in non-gaming (i.e., 

real world) environments often involve data collection via surveys, interviews, and physical observation 

experiments. These have time, cost, and logistic constraints on scalability and produce data that faces 

fundamental limits in accuracy, completeness, frequency, resolution, integrity, etc. In contrast, because 

a game’s state is fully knowable, gameplay data is limited only by data storage, computing power, and 

the analyst creativity. While they are expensive to create, once created, gaming environments are 

scalable and can be applied broadly. They also enable analysts to observe decisions made in extreme 

scenarios that would be difficult to replicate in physical observational studies. The level of 

customization, adaptability, and repeatability available when crafting game-based observational study 

environments also may present opportunities to reduce study susceptibility to some cognitive biases 

and errors when compared to non-gaming environments. When applied to infer parameters of decision 

models, these benefits combine and offer promise of real-world improvements for decision analysis. 
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This chapter: 1) introduces the concept of inferring preference weights for multi-criteria decision models 

from analysis of observed player choices in gaming environments, 2) presents a simple, proof-of-concept 

game related to water management, 3) demonstrates application of two decision-model inference 

methods (brute force enumeration and evolutionary optimization) to game-play logs generated by 

playing the water management game, 4) presents and discusses Pareto-efficient and near-Pareto-

efficient result sets of inferred weights from each method, which are largely successful in capturing the 

weights used to generate the gameplay data, and 5) summarizes further work that can advance 

decision-model inference from gameplay observation. 

Keywords:  multi-criteria decision analysis, game analytics, preference weight inference, inverse 

problems, parameter estimation  
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INTRODUCTION 

Video games are ubiquitous in modern society. About one third of the world’s population, including half 

of all US adults and nearly all US teens engage in some type of video game play.1,2,3 Although most 

games are recreational, “serious games”4 are an important subset used for training and education by 

schools, businesses, governments, and the military. In 2020, an estimated 2.7 billion gamers will have 

been $159.3 billion on video gaming (and over $200 billion by 2023).1 For serious games, the global 

market is expected to reach $28.8 billion annually by 2025.5 In addition to growing sophistication and 

graphical realism, virtual and augmented reality in computer, console, and mobile gaming is poised to 

accelerate game use.6 The current and anticipated prevalence of gaming in daily life presents new 

opportunities to use gameplay data and observations of player choices in gaming environments to gain 

insights about how people make decisions under a wide range of conditions, with repeated trials that 

would otherwise be difficult or costly to replicate or observe.  

Video games allow players to experience exotic environments and equipment (e.g., exploring a remote 

jungle, piloting a commercial airliner). To interact in these settings, players use their decision-making 

skills and mental abilities (e.g., problem solving, wit, intuition, attention to detail). Research suggests 

that the human mind generally engages in decision-making in digital environments as if they were 

real,7,8,9 though some details of these interactions (e.g., risk taking behavior) have been observed in 

different circumstances either to be consistent or somewhat differ in digital vs real settings.10,11 

Nevertheless, with appropriate analysis, observation of in-game behavior may provide insights into the 

player’s thinking, potentially with less expense, time, and expertise requirements than traditional 

behavioral studies, depending on game development effort and the scale of application. 

Game analytics, the systematic analysis of game environmental and player data to draw out insights, can 

help game designers and developers create more engaging, bug-free, beneficial, and profitable games. 

Their use of game analytics has grown, especially in the recreational video game industry, to improve 

player experience and game profitability.12 This emerging discipline seeks to record and analyze a 

player’s gameplay logs to draw insights about a game’s mechanics. This helps game designers, 

developers, and producers create better games by testing whether existing or proposed games work as 

intended, identifying glitches and optimizing player experience to increase the game’s appeal. 

The events tracked in commercial game analytics are typically higher order, such as the number of 

players globally, the average time spent per player, and the level of interaction per player. Yet, since 

nearly all events and variables related to a player’s avatar and the game environment can be tracked 

from the spatio-temporal environmental state data recorded from within the gameplay environment, 

commercial game analytics do occasionally delve into minutiae about specific in-game actions.13 In 

principle, there is little difference in the analyses of gameplay data verses data collected in the real 

world other than the greater precision available in virtual settings, and many behavioral analysis 

techniques and tools developed for other disciplines can be applied to gameplay data.14 Current 

developments in game analytics are primarily led by the major global software firms and game-

development studios. As such, game analytics is developing apart from behavioral research and has 

rarely shown interest in using observations of in-game play to infer player traits or characteristics 

beyond the moment in the game. However, when applied to broader research questions, an opportunity 

exists to integrate game analytics and observational research of human decision making within gaming 

environments, an area not yet explored. 



8 
 

Decision science is a separate field of study and application disconnected from game analytics. Decision 

science, and behavioral sciences in general, rely heavily on surveys and interviews as research 

mechanisms.15,16 Structured interviews and surveys are used, for example, to ask decision makers or 

stakeholders to enumerate relevant criteria, describe utility or value functions, suggest alternatives, and 

identify tradeoff weights, and to ask subject matter experts to provide probability judgements and 

estimate alternative performance. This is problematic because survey and interview mechanisms are 

subject to many well-known cognitive biases and types of error that skew outcomes,17,18,19 somewhat 

impairing the aim of decision science to help decision makers add rationality and transparency to their 

decisions. Due to this, in part, psychological research notes that surveys may poorly predict actual 

behavior.20,21 Survey results can also be heavily influenced by the choice of elicitation method.22 

Montibeller and von Winterfeldt23,24 summarize and discuss how 26 particular cognitive and 

motivational biases affect all phases of decision analyses. These biases and errors are sometimes 

exploited by corporations and policy makers to create substantial changes in outcome from subtle shifts 

in language or framing,25,26 which can also be an unintentional danger for decision analysts. Many errors 

and biases that accompany traditional elicitation techniques can be reduced, 23,24,27,28,29 but only with 

substantial difficulty, effort, skill, and care in study design and application. Without elimination of bias 

and error, the data elicited via surveys and interviews may not reflect what analysts believe they do and 

may fall short of expectations when used to predict future decision making.  

Surveys and interviews also have logistical drawbacks. They may be cognitively demanding for the 

respondents30 and not efficient to scale over large groups due to the required analysts’ time 

involvement, administration and processing costs, and implementation effort. As a partial solution, a 

few researchers and practitioners have implemented MCDA surveys via online 

questionnaires.e.g.,31,32,33,34,35 While this addresses some of the scalability concerns of traditional decision 

science surveys, the lack of a interaction with a decision analysts who can answer process questions is 

anticipated to degrade the accuracy of the results.36 Aubert and Lienert37 use online MCDA surveys with 

questions asked by gamified digital avatars instead of human analysts and incorporate feedback about 

response consistency. These advances may overcome some of the disadvantages from the loss of 

interaction with the analysts, but remain subject other biases and cognitive effects that are similar to in-

person surveys. Developing novel methods to parameterize decision models that avoid triggering even 

some cognitive and motivational biases could be a major step forward, especially if implemented 

through an approach that is more scalable and less logistically burdensome than traditional approaches. 

As a potential improvement over surveys and interviews, knowledge of behavior and decisions in the 

past can help predict future outcomes in similar situations.38,39 Many scientific disciplines use this 

principal in physical observational studies,40 e.g., to measure different types of cognitive effects. Direct 

observation is valuable for opening new frontiers unavailable through traditional elicitation, but also 

requires greater effort than surveys and interviews and has limited scalability due to high cost, time, and 

logistic constraints. Data produced from physical studies also faces fundamental limits in accuracy, 

completeness, frequency, resolution, integrity, etc. of the recorded data beyond which further 

improvements are infeasible or physically impossible. Advancing this approach, some behavioral and 

cognitive research observes human behavior in video games and virtual environments.41,42 Because a 

game environment’s state is fully knowable, analysis of gameplay environmental data is limited only by 

data storage, computing power, and the analyst creativity. Behavioral observation studies in virtual 

environments leverage the same relative consistency between past and future behavior as is leveraged 
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in physical behavioral observation, and captures many of the same benefits, but with vastly improved 

scalability and with fewer time, cost, and logistic constraints to implement the analysis. Developing a 

game is costly, but existing virtual environments can likely be extended at more modest cost. Applying 

data mining techniques to data from gameplay observation also may support identification of patterns 

in decision making that would otherwise evade the analyst. 

However, using past decision making to predict future decisions require additional analysis steps not 

needed with traditional interviews and elicitations. This is because decision model inference from 

observed choice behavior is an inverse problem.43 In traditional forward modeling, the initial conditions 

are known, the relevant equations and parameters are available, and calculations must be performed to 

get the results. The analysis process in inverse modeling in reversed such that it starts with observation 

of outcomes and ends with inference of model parameters. Inverse modeling (or probabilistic inversion) 

was popularized in the geosciences, where the physical equations are well understood (e.g., from 

physics and engineering), physical results can be observed (e.g., contaminant plume size, 

electromagnetic-induction waveform), and the initial conditions and model parameters are unknown 

(e.g., plume source location, mineral-deposit size), and several methods and tools for probabilistic 

inversion exist.44 Unlike most forward modeling, inverse problems are typically ill posed and lack a 

unique solution, since several potential combinations of model parameters and initial conditions could 

lead to the same observed result. This requires error-minimizing optimization and often results in a 

collection of likely parameter sets instead of a single parameter set.45 The application of inverse 

modeling to infer decision-model parameters is expected to have similar strengths and weaknesses as 

its application in other disciplines. For example, these methods will have uncertainty in the resulting 

weight sets that decreases with more decision observations per player. 

A few prior efforts have used decision model inference in non-gaming settings, which provides 

encouragement about decision model inference for in-game observations. For example, Neslo & Cooke46 

combine probabilistic inversion with discrete choice models and random utility theory to enable out-of-

sample validation for stakeholder preference models, with a health-care application. Nelso et al.47 use a 

simpler procedure to apply probabilistic inversion to rank-order data to derive stakeholder preference 

weights for multi-criteria decision models. Kraan & Bedford48 use probabilistic inversion to transform 

expert judgements about output uncertainties into input uncertainties in the context of management-

science models for decision making. Though not explicitly referring to MCDA, Riordan et al.49 use 

Bayesian inverse planning to quantify preferences between alternative planning priorities for unmanned 

aerial systems. Though also not connected to MCDA, economic concepts of revealed preference pursue 

similar types of meaning from interpreted analysis of consumer choice data. While these approaches 

provide proof of concept, they have not yet gained broad popularity in the decision science community, 

likely due in part to the impracticality of making a sufficiently large number of decision observations to 

adequately parameterize the inferred decision models. Applying these approaches to gaming 

environments seems promising because in-game observations can be more scalable and efficient. As 

with other studies, knowing what to measure is important to improve analysis efficiency and accuracy. 

Outside of decision science, several other efforts have applied gameplay log analysis to infer potential 

real-world usefulness. Smith and Vogt50 present ongoing development of the Operation Overmatch 

game by the U.S. Army Early Synthetic Prototyping project, where soldiers choose and configure 

futuristic vehicles and weaponry to use in small team engagements against other human players. The 

soldiers’ use of different capabilities and their mission success are tracked and mined from gameplay 
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data to learn which capabilities might be most useful in realistic settings, to inform decisions about 

which technologies to advance towards physical production. Seater51 and Keena52 similarly use 

gameplay analysis to compare variants of unmanned aerial systems and robotic ground vehicles. They 

use the successes that player have accomplishing their missions using different technology variants to 

learn which variants might perform better in the real-world. Castronova53 observes locations where 

commerce centers develop in massively multiplayer recreational gaming worlds to infer macro-level 

economic effects from coordination game theory in online role-playing games.  

Some disciplines use gameplay data to learn about other aspects of human thinking. The fields of 

learning analytics54,55 and educational data mining56,57 study knowledge acquisition in various 

pedagogical settings, including some virtual environments and serious games. 58 Analyses of game-log 

data is used to assess what and how much has been learned by a student or trainee, often in 

comparison with other test and control groups taught the same material through video, print media, or 

human interaction instead of through a virtual classroom or educational game. These approaches show 

that gameplay log analysis is viable for learning about an individual’s real-world thinking, and provide a 

departure point for broader gameplay log analytics for decision science in non-pedagogical settings. 

Beyond learning analytics and educational data mining, Gonzalez and colleagues measured various 

cognitive effects using games where players seek to optimally operate control-system dashboards and 

manage simulations for resource allocation and accumulation and disbursement of different supply 

stocks in dynamic systems.59,60,61 Holmgård et al.62 identify and assess different decision-making styles 

based on observation of in-game player behavior, aiming to create more “believable” computer-

controlled characters in recreational games. Godoy63 uses virtual environments to assess players’ real-

world risk-taking propensity in sexual health, to identify promising risk-communication interventions. 

Tlili et al.64 use an education video game to model player personality in terms of introversion or 

extroversion. Seok and DaCosta65 look at the intersection of personality and gaming to identify the 

extent to which five broad personality characteristics are loosely predictive of a college student’s 

frequency of video game use. While none of these studies infer parameters in decision models, they 

support the concept that observation of virtual behavior can be significantly linked to an individual’s 

real-world cognitive processes and characteristics. 

Building on this diverse past work, this chapter proposes that MCDA models can be successfully 

parameterized from observation of choices made in virtual environments, integrating aspects of game 

analytics and decision science. This concept is supported by the success of past efforts to infer decision 

models from physical observation, use game analytics to infer real-world technology performance, and 

use game analytics to study other aspects of human thinking and cognitive effects. With effort, virtual 

environments (especially first-person, immersive environments) developed with modern gaming 

platforms can have more realism than is possible in interview or survey questions or most physical 

settings for observational behavioral studies. If this proposed approach can overcome some biases and 

errors inherent in survey and interview elicitation, increase accurate decision-model parameterization, 

enable the analysis of results to be automated, reduce the need for intensive researcher involvement, 

and/or provide for a more scalable approach, then it holds promise for advancing decision analysis 

research and practice. 

In the following text, this chapter presents analytic methods based on these concepts, uses a simple 

game to generate gameplay data in an illustrative example, performs weight inference from the 
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gameplay observations, presents and discusses the results, and summarize conclusions, limitations, and 

next steps to further the concept of decision model inference from observed gameplay choices. 

 

METHODS 

This section summarizes:  1) a simple water-management game for generating observations of player 

decisions, 2) a method for evaluating candidate weight sets, 3) a brute-force, enumeration analysis 

approaches for inferring MCDA weight from gameplay data, and 4) an evolutionary optimization analysis 

approaches for inferring MCDA weight from gameplay data.   

Illustrative water-management decision game 

A simple, text-based water management game provides gameplay data to illustrate the concept of 

decision-model inference. In this game, the player plays as the executive director of a water agency. Due 

to population growth, agricultural expansions, and climate variability, the agency’s service area 

constantly faces potential water shortages and other impacts. The player must decide how to invest the 

agency’s funds to develop water projects that will create the best water-resources future for their 

region across a range of objectives. They must balance their time between raising funding and 

implementing water projects that best implement their vision for the region, given annual choices 

between several alternatives available for consideration (Figure 2.1).  

 

Figure 2.1. Screenshot of the introduction to the text-based water management game. 

The player plays for a fixed number of rounds set by the analyst prior to gameplay. In each round, the 

player can choose to either gain a known funding amount, already selected by random draw, or to 

invest their currently available funds in one of several, yet unknown, random project alternatives. If they 

choose to invest in a project, performance data (𝒗𝒊𝒋) for several project alternatives (𝒂𝒋) is randomly 

drawn from distributions internal to the game. The player then selects the alternative that they feel best 

advances their overall water-resources vision for their region. The number of alternative and criteria 

presented to the user per round is chosen by the analyst prior to gameplay. The order in which a player 

is presented with data for different criteria shifts randomly between rounds to reduce potential bias 
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related to criteria order. After making a choice, data for both the preferred alternative and all non-

preferred alternatives are saved in the gameplay log for later analysis. If the player chooses to raise 

funding instead of implement a water-resources project, the identified funding is added to their total 

balance available for future investment in water-resources projects (Figure 2.2).  

 

Figure 2.2. Screenshot of gameplay interaction in text-based water management game. 

In the version of the game used in this example, the player is presented with four project alternatives 

per round. Each alternative is presented to the player with level-of-performance data for five criteria 

(𝒏 = 𝟓), that include: total project cost ($K), number of urban homes for which a secure water supply is 

provided (# homes), increase in local contributions to gross domestic product from improved industrial 

water supply (% GDP), acres of agricultural land retained or added to production (# acres), and acres of 

environmental habitat added or restored to healthy ecological function (# acres). Data for the 

alternatives are randomly drawn, with uniform distributions (Table 2.1) used to provide greater 

variability in gameplay experience within the bounds of interest. The player starts the game with an 

initial budget of $400K and can earn between $5K and $135K (randomly drawn from a uniform 

distribution) per round spent pursuing an investment opportunity instead of implementing a project. 

Players with prior familiarity with the criteria in question will be better positioned to make consistent 

choices throughout the game, needing less exploratory play to gain familiarity with the criteria. 

Table 2.1. Ranges for uniform distributions from which alternative data are drawn. 

Criteria Min Max 

Cost ($K) 20 250 

Urban (# homes) 0 50 

Industry (% GDP) 0 12 

Agriculture (# acres) 0 100 

Environment (# acres) 0 100 

 

Gameplay data used for demonstration of decision-model inference was generated in 7 gameplay trials. 

Two trials were played in games with 15 rounds for potential decisions and 5 trials were played in games 
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with 40 rounds for potential decisions. Five trials were played based on pre-determined, rigid decision 

rules and 2 were played by the author based on the author’s experienced preferences (Table 2.2). The 

distributions from which funding amounts and alternative performance values are drawn were 

consistent across the trials.  

Table 2.2. Summary of the seven gameplay trials, including the decision rules consistently applied by the 

player in each round, the number of rounds played, and number of project-selection decisions made. (In 

each round, the player can choose between four available project alternatives or can invest in growing 

their financial resources; the number of rounds in which they made a project-selection decision is shown 

in the “# Decisions” column.) In the first five trials, the player played with a fixed-preference decision rule 

to provide benchmarks for assessing the results of the decision-model inference. In the last two trials, the 

author played with his actual preferences and judgments.  

Trial ID Decision Rule Applied for the Duration of Each Trial # Rounds  # Decisions 

Env8 Always earn money instead of doing a project if the payoff is 

>= $75K. For projects, always choose the alternative that has 

the highest Environmental score. For ties, choose the 

alternative with the higher Agriculture score.  

15 8 

Env26 Always earn money instead of doing a project if the payoff is 

>= $75K. For projects, always choose the alternative that has 

the highest Environmental score. For ties, choose the 

alternative with the higher Agriculture score. 

40 26 

Cost6 Always earn money instead of doing a project if the payoff is 

>= $75K. For projects, always choose the alternative that has 

the lowest Cost score. For ties, choose the alternative with 

the higher Agriculture score. 

15 6 

Cost26 Always earn money instead of doing a project if the payoff is 

>= $75K. For projects, always choose the alternative that has 

the lowest Cost score. For ties, choose the alternative with 

the higher Agriculture score. 

40 26 

Urb&Ind21 Always earn money instead of doing a project if the payoff is 

>= $75K. For projects, alternate between choosing the option 

that has the highest Urban score and the option that has the 

highest Industry score. For ties in Urban score, choose the 

alternative with the highest Industry score, and vice versa for 

ties in Industry score. (If both Urban and Industry sores tie, 

next choose the alternative with the lowest Cost score, and if 

that ties next choose the alternative with the highest 

Environmental score.) 

40 21 

Auth20 The author playing with the author's preferences. 40 20 

Auth22 The author playing with the author's preferences. 40 22 
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Evaluation of candidate weight sets 

The objective of the decision-model inference analysis in this chapter is to identify many candidate 

weight sets, apply them to the observed decision problems, compare their performance, and identify 

those that best reproduce the outcomes from the player’s gameplay log. Each candidate weight set is 

used in a linear-additive multi-attribute value theory (MAVT, see introduction) formulation of MCDA 

model with decision and environmental data from the game environment, and compared with the 

actual choice observations to measure its predictive accuracy. The “best” inferred weight sets are those 

that maximize prediction success and minimize prediction error. Regardless of what method is used to 

generate the candidate weight sets, their evaluation with respect to the observed decisions and 

gameplay data is the same.  

Let a candidate weight set, 𝑾𝒌, be defined to contain one weight per criterion {𝒘𝒊=𝟏,𝒌, … , 𝒘𝒊=𝒏,𝒌}. Let it 

be called a viable weight set if three conditions are met: ∑ 𝒘𝒊,𝒌
𝒏
𝒊=𝟏 = 𝟏, 𝒘𝒊,𝒌 ≥ 𝟎 ∀𝒊, and 𝒘𝒊,𝒌 ≤ 𝟏 ∀𝒊. 

Among the alternatives, indexed by 𝒋,  in each observed decision in the gameplay data, indexed by 𝒉 

(which vary in number as listed in Table 2.2), the alternative selected by the player is identified as 𝒂𝒋∗,𝒉. 

The gameplay record contains level-of-performance data (𝒗𝒊,𝒋,𝒉) for each criterion, for each alternative, 

for each decision observed in that gameplay trial. Value functions, 𝒇𝒊( ), linearly normalize the 

performance scores based on the minimum and maximum values of the distributions from which they 

were drawn (Table 2.1), distributions selected to be reasonable for use with linear marginal preferences. 

The MAVT equation is applied to all alternatives in each observed decision event, 𝒔𝒄𝒐𝒓𝒆𝒌(𝒂𝒋,𝒉) =

∑ 𝒘𝒊,𝒌𝒇𝒊(𝒗𝒊,𝒋,𝒉)𝒏
𝒊=𝟏 , revealing how each weight set scores the alternatives. These scores are ranked from 

highest (most preferable) to lowest for each decision. Any difference in rank for the player’s actual 

selected alternative between the MAVT model and the gameplay record (where it is ranked first by 

implication) is identified as the error of 𝑾𝒌 for that decision: 𝒆𝒓𝒓𝒐𝒓𝒌,𝒉 = |𝟏 − 𝒓𝒂𝒏𝒌(𝒔𝒄𝒐𝒓𝒆𝒌(𝒂𝒋∗,𝒉))|. 

The sum of squared error across all decisions in a gameplay trial, 𝑺𝑺𝑬𝒌 = ∑ 𝒆𝒓𝒓𝒐𝒓𝒌,𝒉
𝟐

𝒉 , is finally used 

to compare the effectiveness of 𝑾𝒌 in reproducing the player’s decision outcomes in that trial. (Note, 

squared error is used instead of absolute error to more heavily penalized greater differences in rank.) 

Brute force, enumeration approach for generating candidate weight sets 

One way to generate and use candidate weight sets in decision-model inference is through a “brute 

force” approach that enumerates an evenly spaced grid of viable weight sets. Here, the analyst first 

chooses the number, 𝒎, of evenly-spaced weights to enumerate per criterion, discretizing the 

continuous zero-to-one weight continuum. (These weights differ incrementally by 𝟏/𝒎; for example, 

using 𝒎 = 𝟐𝟎 produces weight increments of 0.05.) The choice of 𝒎 involves tradeoffs between model 

runtime and number of weight sets evaluated. Once generated, all non-viable weight sets are discarded. 

The remaining viable weight sets roughly cover all possible player weighting preferences, with greater or 

lesser granularity depending on the size of 𝒎. After all non-viable, enumerated weight sets are 

discarded, the number of remaining viable weight sets is equal to (𝒎 + 𝒏 − 𝟏) 𝑪𝒉𝒐𝒐𝒔𝒆 (𝒏 − 𝟏), a 

combination of the number of criteria in the model and the density of enumerated weights. For the 

gameplay trial data summarized in Table 2.2, the brute force, enumeration approach of decision-model 

inference is applied twice, once with 𝒎 = 𝟐𝟎, producing 10,626 viable candidate weight sets, and once 

with 𝒎 = 𝟓𝟎, producing 316,251 viable candidate weight sets (Table 2.3).  
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Table 2.3. Candidate weight sets generated in two brute force, enumeration runs per gameplay trial. 

These are used to compare results generated with lessor or greater granularity and computational effort. 

ID Number of increments in 
weight continuum 

Distance between each 
weight value tested 

Number of viable weight 
sets (i.e., that sum to one)  

B20 20 0.05 255,024 
B50 50 0.02 316,251 

 
These groups of viable candidate weight sets are evaluated by applying the MAVT equation as described 

above (producing between 796,950 applications of the MAVT equation for a trial with 𝒎 = 𝟐𝟎 and 6 

observed decisions and 32,890,104 applications for a trial with 𝒎 = 𝟓𝟎 and 26 observed decisions).The 

candidate weight set(s) with the lowest sum of squared error across all decisions in the trial, 𝑾𝒌_𝒃𝒆𝒔𝒕, 

where 𝑺𝑺𝑬𝒌_𝒃𝒆𝒔𝒕 = 𝑴𝒊𝒏𝒌(𝑺𝑺𝑬𝒌), form a Pareto-efficient frontier of weight sets that best reproduce 

the players observed decisions and, by extension, best represent the player’s preferences as expressed 

within the context of that gameplay trail. These Pareto-efficient sets are summarized and plotted in the 

results section to show the range of inferred weights for each criterion, which can potentially to inform 

future decision analysis applications in related decision contexts. 

Because the sums of squared error for all candidate weight sets are available, sets of near-Pareto-

efficient weights are also identified, having the next-lowest sums of squared error after those in the 

Pareto sets. Consideration of near-Pareto weights may be useful to analysts, stakeholders, and decision 

makers seeking to broaden the analyses conclusions, e.g., due to concerns about: the effect of MAVT’s 

simplifying assumptions, the effect of cognitive biases inherent in human decision making, having too 

few observations in the decision record to confidently justify exclusion of non-Pareto results, or having 

Pareto sets with narrower-than-anticipated ranges of inferred weights. 

Evolutionary optimization approach for generating candidate weight sets 

Another way to generate candidate weight sets for decision-model inference is through an “evolutionary 

optimization” approach that iteratively tests and refines weight sets to gradually develop weight sets 

that better reproduce the player’s decision record. Evolutionary optimization algorithms66 take their 

name and conceptual foundations from evolutionary biology, where each generation of individuals 

compete to combine and pass on a portion of their genes to the next generation, perhaps with 

mutations. In evolutionary optimization, candidate parameter sets are created and evaluated across 

many generations. Those that perform best with respect to the evaluation function pass on some 

combination of their values to candidate elements in the next generation, perhaps with modification. 

Different evolutionary algorithms draw from this type of biological inspiration to create optimization 

approaches well suited to various types of problems. 

The decision-model inference approach described here implements the Differential Evolution67,68 

algorithm (as available in the SciPy package version 1.1.0 for the Python 3 programming language) with 

a “best/1/bin” search strategy. Differential Evolution seeks to find the global minimum of a multivariate 

function (i.e., weight sets having the lowest sum of squared error from the MAVT model across all 

observed decisions in a gameplay trial) through stochastic search rather than gradient descent. Various 

parameters control the optimization including: a differential weight (aka mutation constant), 𝒅, that is 

randomly sampled from a uniform distribution once per generation, where larger values increase the 
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search radius but delay convergence; a crossover probability (aka recombination constant), 𝒄, where 

larger values allow greater numbers of mutants to progress into the next generation but risk reducing 

population stability; and the population size, where larger values generate better candidate weigh sets 

per generation but require more computational effort to evaluate each generation. 

The initial generation, 𝒈 = 𝟏, of candidate weight sets is populated via Latin Hypercube sampling of the 

weight parameter space. These candidate weight sets are evaluated with the MAVT equation, as 

described above, and the best-performing weight set in that generation is identified, 𝑾𝒌_𝒃𝒆𝒔𝒕,𝒈. 

Candidate weight sets for subsequent generations are produced as follows. First, a mutant weight set is 

generated by taking the difference between two randomly selected weight sets from the current 

generation, multiplying that difference by the differential weight, and adding it to the best weight set 

(hence the “best” in best/1/bin) from the current generation, 𝑾𝒌_𝒎𝒖𝒕𝒂𝒏𝒕,𝒈 = 𝑾𝒌_𝒃𝒆𝒔𝒕,𝒈 + 𝒅𝒈 ∗

(𝑾𝒌=𝒓𝒂𝒏𝒅𝟏,𝒈 − 𝑾𝒌=𝒓𝒂𝒏𝒅𝟐,𝒈). Then, a combined weight set, 𝑾𝒌_𝒄𝒐𝒎𝒃𝒊𝒏𝒆𝒅,𝒈, is constructed by taking 

random draws, 𝒓𝒂𝒏𝒅𝒊,𝒌, from a binomial (hence the “bin” in best/1/bin) distribution in [0,1) for each 

criterion in each weight set and comparing those values to the crossover probability. If the random 

value is less than the crossover probability, the mutant weight for that criterion is included in the 

combined weight set. Otherwise, the existing weight for that criterion in that weight set of the current 

generation continues into the combined weight set. At least one random weight from the mutant 

weight set is guaranteed to be included in the combined weight set,  

𝒘𝒊,𝒌_𝒄𝒐𝒎𝒃𝒊𝒏𝒆𝒅,𝒈 = {
𝒘𝒊,𝒌_𝒎𝒖𝒕𝒂𝒏𝒕,𝒈, 𝒊𝒇 ((𝒓𝒂𝒏𝒅𝒊,𝒌 < 𝒄)  𝑶𝑹  (𝒓𝒂𝒏𝒅𝒊 = 𝒊))

𝒘𝒊,𝒌,𝒈, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 , where 𝒓𝒂𝒏𝒅𝒊 is a randomly 

generated index of 𝒊 in the range [1, 𝒏]. Next, the combined weight set is evaluated with the MAVT 

equation. If it has a lower sum of squared error than the weight set in the current generation, it 

becomes the candidate weight set in the next generation, otherwise the weight set in the current 

generation continues into the next generation, 𝑾𝒌,𝒈+𝟏 = {
𝑾𝒌_𝒄𝒐𝒎𝒃𝒊𝒏𝒆𝒅,𝒈, 𝒊𝒇 𝑺𝑺𝑬𝒌_𝒄𝒐𝒎𝒃𝒊𝒏𝒆𝒅,𝒈 < 𝑺𝑺𝑬𝒌

𝑾𝒌,𝒈, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
.  

For each gameplay trial in Table 2.2 the Differential Evolution optimization is run four times with 

different values for the optimization-control parameters (Table 2.4), enabling a comparison of results 

generated with quicker run times testing fewer numbers of candidate weight sets versus longer run 

times testing greater numbers of candidate weight sets. To ensure comparability, the results of all 

optimization runs shown here are generated using the same initial random seed. All remaining 

Differential Evolution parameters are left at default values for the SciPy optimization package, namely, 

the maximum number of generations is set to 1,000, the relative tolerance for convergence is set to 

0.01, the absolute tolerance for convergence is set to 0, and results polishing after convergence is used. 

The sums of squared error for all candidate weight sets evaluated in each optimization run are tracked, 

allowing both Pareto-efficient and near-Pareto sets to be identified for each run. 

Table 2.4. Combinations of optimization-control parameters are varied across four optimization runs per 

gameplay trial to compare results generated with lessor or greater computational effort (in order of 

increasing effort). 

ID Distribution for differential weight, 𝒅  

(aka mutation constant) 

Crossover possibility, 𝒄  

(aka recombination rate) 

Population size 

per generation 

O15 Uniform[0.5, 1.0) 0.7 15 
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O20 Uniform[0.5, 1.5) 0.6 20 

O25 Uniform[0.5, 1.9) 0.5 25 

O35 Uniform[1.0, 1.9) 0.2 35 

 
 

RESULTS AND DISCUSSION 

Comparison of computational effort and outcomes across analysis types and gameplay trials 

All analyses were run on a mid-level laptop PC from a recent model year using a Python 3 integrated 

development environment (IDE). No code-efficiency optimization was applied beyond that provided by 

the IDE.  

The number of candidate weight sets evaluated by the brute force, enumeration analyses was 10,626 

for each B20 analysis run and 316,251 for each B50 analysis run. The number of candidate weigh sets 

evaluated by the evolutionary optimization analyses ranged from a minimum of 240 (for 16 generations 

with an O15 analysis run) to a maximum of 350,000 (for 1,000 generations with an O35 analysis run) 

(Table 2.5; analysis parameterizations defined in Tables 2.3 and 2.4).  

Runtime for the brute force, enumeration analyses across all gameplay trials ranged from a minimum of 

34.8 seconds (with an B20 analysis parameterization) to a maximum of 54 minutes and 16.8 seconds 

(with an B50 optimization parameterization). The runtimes for the evolutionary optimization analyses 

across all gameplay trials ranged from a minimum of 2.0 seconds (with an O15 optimization 

parameterization) to a maximum of 14 minutes and 40.8 seconds (with an O35 optimization 

parameterization) (Table 2.5). 

Table 2.5. Comparison of computational effort, sum of squared error, and number of results in Pareto 

sets across analysis parameterizations and gameplay trials for both brute force enumeration and 

evolutionary optimization analysis types. Results are presented in six columns for different analysis 

parameterizations and seven sets of rows for different gameplay trials. 

Analysis Brute force, enumer. Evolutionary optimization  

Parametrization:  B20 B50 O15 O20 O25 O35 

Env8 trial 

# Candidate weight sets 10,626 316,251 345 680 1,375 7,490 

# Generations - - 23 34 55 214 

Runtime 35.0s 46m 41.3s 2.0s 3.0s 5.1s 37.1s 

SSE of Pareto set 0 0 0 0 0 0 

# In Pareto set 444 12,467 411 782 1,300 10,807 

SSE of near-Pareto set 1 1 1 1 1 1 

# In near-Pareto set 572 16,525 481 851 1,747 8,837 

Env26 trial 

# Candidate weight sets 10,626 316,251 1,470 6,640 10,425 35,000 

# Generations - - 98 332 417 1,000 

Runtime 48.0s 54m 16.8s 27.4s 2m 16.0s 3m 46.8s 14m 40.8s 

SSE of Pareto set 0 0 10 10 10 10 
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# In Pareto set 1 1 303 1,404 1,369 1,806 

SSE of near-Pareto set 2 2 11 11 11 11 

# In near-Pareto set 4 17 833 3,914 6,884 18,383 

Cost6 trial 

# Candidate weight sets 10,626 316,251 360 460 850 3,500 

# Generations - - 24 23 34 100 

Runtime 34.8s 46m 15.1s 4.1s 2.4s 4.4s 21.1s 

SSE of Pareto set 0 0 0 0 0 0 

# In Pareto set 514 14,045 552 432 826 4,437 

SSE of near-Pareto set 1 1 1 1 1 1 

# In near-Pareto set 230 6,253 158 211 315 1,824 

Cost26 trial 

# Candidate weight sets 10,626 316,251 330 1,540 1,925 24,815 

# Generations - - 22 77 77 709 

Runtime 48.0s 53m 30.7s 5.4s 23.0s 29.4s 8m 40.5s 

SSE of Pareto set 0 0 0 0 0 0 

# In Pareto set 12 374 378 1,377 1,153 19,099 

SSE of near-Pareto set 1 1 1 1 1 1 

# In near-Pareto set 44 1,167 278 1,447 1,186 23,584 

Urb&Ind21 trial 

# Candidate weight sets 10,626 316,251 1,020 1,060 12,925 35,000 

# Generations - - 68 53 517 1000 

Runtime 43.6s 51m 34.5s 8.4s 8.9s 2m 23.1s 12m 5.8s 

SSE of Pareto set 8 8 8 9 8 8 

# In Pareto set 1 2 634 598 3,287 2,470 

SSE of near-Pareto set 9 9 9 10 9 9 

# In near-Pareto set 5 98 1,391 275 13,328 24,786 

Auth20 trial 

# Candidate weight sets 10,626 316,251 240 880 1,375 35,000 

# Generations - - 16 44 55 1,000 

Runtime 54.3s 51m 8.1s 3.5s 13.9s 17.4s 12m 36.2s 

SSE of Pareto set 1 1 1 1 1 1 

# In Pareto set 13 401 379 550 1,179 30,947 

SSE of near-Pareto set 2 2 2 2 2 2 

# In near-Pareto set 47 1,671 183 683 1,287 23,123 

Auth22 trial 

# Candidate weight sets 10,626 316,251 375 1,140 1,400 32,970 

# Generations - - 25 57 56 942 

Runtime 57.1s 52m 11.4s 6.6s 16.4s 23.1s 9m 0.7s 

SSE of Pareto set 0 0 0 0 0 0 

# In Pareto set 6 155 334 503 944 26,786 

SSE of near-Pareto set 1 1 1 1 1 1 

# In near-Pareto set 24 731 372 649 1,359 33,329 
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Comparison of inferred weights across gameplay trials for the same analysis parameterizations 

The results include 42 Pareto-efficient sets from applying each of 6 analysis parameterizations to 7 

gameplay trials. Each Pareto set contains many inferred weight sets that have weights for the 5 criteria 

used in the game. These data are summarized on 42 parallel axis plots (some of which are shown on 

Figure 2.3, all of which are shown on Figures 2.6, 2.8, 2.10, 2.12, 2.14, 2.16, 2.18). Each Pareto set may 

have many inferred weight sets as members (Table 2.5), which are each represented by a line on the 

plot. Inferred weights for individual criteria in a weight set can be read from the vertical axis wherever a 

line crosses a criterion’s tick mark on the horizontal axis. (Line segments between criteria marks have no 

numerical meaning but are useful for differentiating lines from each other and for showing which 

individual weights belong together in a weight set.) The range and distribution of inferred weights for a 

criterion, across all Pareto weight sets, is shown from all lines over a criterion’s tick mark. Approximate 

line density can be judged based on line darkness, since the lines have partial transparency and thus 

overlapping lines appear darker than individual lines, and based on the broader or narrower spread of 

lines across the plot. Another version of these plots includes both the Pareto and near-Pareto sets on 

the same axis (some of which are shown on Figures 2.4-2.5, all of which are shown on Figures 2.7, 2.9, 

2.11, 2.13, 2.15, 2.17, 2.19), showing how much broader the range of inferred weights would be for the 

small increase in error in the near-Pareto set.  

One way to explore the results is to compare weights across gameplay trials, some of which shared a 

decision rule, for one analysis parameterization, e.g., the B50 or O35 analysis parameterizations that 

explore greatest numbers of candidate weight sets.  

In the O35 analysis results, the Env8 trial includes 8 observed decisions from the player, compared with 

26 decision observations in the Env 26 gameplay trial (Figure 2.3). In both cases, the analysis correctly 

identifies that the player made decisions using a weight scheme that heavily weights the environment 

and placed little weight on other criteria. Though the observed decisions in the Env8 and Env26 trials 

were both generated with the same fixed decision rule, which always choose the alternative with the 

best environmental score, the greater number of observed decisions in the Env26 trial allowed the 

analysis to identify a narrower range of inferred weights and come closer to identifying the actual 

decision rule used. When pairing these results with the runtime data (Table 2.5), we see that the Env8 

analysis ran to completion instead of timing out, finished quicker, and has fewer weight sets in its Pareto 

set than the Env26 analysis, which ran until it timed out at 1,000 generations and has a larger Pareto set. 

The median and maximum inferred weight for the environment criterion in the Env8 trial are 0.53 and 

0.89, respectively, versus 0.84 and 0.94 in the Env26 trial (Tables 2.6 & 2.7).  

The Cost6 and Cost26 results for the O35 analysis (Figure 2.3 & Table 2.5) show a similar pattern as the 

Env8 and Env26 trials, with the fewer observations in the Cost6 data leading to a quicker runtime, 

smaller Pareto set, and wider range of inferred weights than in the Cost26 gameplay trial. In both the 

Cost6 and Cost26 trials, the results correctly identify that the player made decisions using a weight 

scheme that placed a high weight on cost and little weight on other criteria. While the narrowing of 

inferred weight range between the Cost6 and Cost26 trials is not as pronounced as between the Env8 

and Env26 trials, potentially related to differences in the random alternatives available for selection in 

each trial, since a similarly fixed decision rule was applied, the Cost26 trial still comes closer than the 

Cost6 trial to identifying the decision rule used. The median and maximum inferred weight for the cost 
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criterion in the Cost6 trial are 0.57 and 0.90, respectively, versus 0.72 and 0.98 in the Cost26 trial (Tables 

2.8 & 2.9). 

The Urb&Ind21 gameplay trial (Figure 2.3) explores weight inference using a fixed decision rule that 

divides weight evenly between two criteria. (A trial with the same decision rule and a smaller number of 

observations was not included in the gameplay due to the anticipated high uncertainty in its results, 

with a more complex decision rule and so few observations.) The inferred weights in this trial correctly 

identify that the player made decisions with weights that highly preferred the urban and industrial 

criteria and had little preference for the other criteria, with median urban and industrial weights of 0.48 

and 0.46, respectively (Table 2.10). This trial infers a narrow range of weights for all criteria, with an 

average difference between minimum and maximum values of just 0.04.  

Whereas the Env8, Env26, Cost6, Cost26, and Urb&Ind21 trials were generated with a fixed decision rule 

and explore differences in the range of inferred weights with fewer or more decision observations, the 

observations in the Auth20 and Auth22 trials (in Figure 2.3) were generated using the hidden decision 

processes of an actual human, include a similar number of observations, explore variation and 

consistency in inferred weights between gameplay sessions, but lack a fixed, external decision rule for 

accessing accuracy. Though the Auth22 trial ran to completion and the Auth20 trial timed out, both 

explored candidate weight sets over a similar number of generations and have Pareto sets of roughly 

similar size. The results of both Auth20 and Auth22 trials for the O35 analysis parameterization identify 

that the player made decisions using a decision process that favored cost, urban, and environmental 

criteria over industrial and agricultural criteria. The Auth22 trial shows a narrow range of inferred 

weights for criteria and more pronounced preferences between the more-preferred and less-preferred 

groups of criteria, though it is not known if that is due differences in the alternatives shown, to a 

strengthening in player preference as a result of the gameplay experience, or to other inconsistencies in 

human decision making. Median weights for cost, urban, and environmental criteria in the Auth20 trial 

were 0.27, 0.27, and 0.21, respectively, and were 0.30, 0.41, and 0.19, respectively, in the Auth22 trial 

(Tables 2.11 & 2.12). 

When the near-Pareto sets are underlaid on these plots (Figure 2.4, blue lines), the overall patterns 

remain as described above. For most criteria in most trials, the inferred weight range is widened only 

slightly by inclusion of a near-Pareto set with the next-lowest sum of squared error. In a few cases, 

including the near-Pareto set substantially widened the weight range, such as for the cost criterion in 

the Cost6 trial and all criteria in the Env26 trial. There does not seem to be any correlation between the 

width of weight range for criteria in the Pareto set and the width of range added by the near-Pareto set.  

Consideration of near-Pareto sets may nevertheless be useful to some analysts, stakeholder, and 

decision makers. For some, seeing that the near-Pareto set adds little width to the weight ranges 

identified by the original Pareto can be interpreted as evidence in support of the weight inference in the 

original Pareto set (i.e., because sensitivity analysis to relax the optimization did not substantially 

change the results). For others, using the Pareto and near-Pareto together may increase confidence that 

appropriate weight ranges were captured, counteracting potential concerns about the influence of 

modeling artifacts or cognitive biases and errors on the results. If desired, the analyses could allow even 

greater error in the near-Pareto sets if that helped to respond to particular needs and concerns. 

The results above (Figures 2.3 & 2.4) were all produced by an evolutionary optimization analysis. It is 

useful to compare these results with those produced by brute force, enumeration analyses, e.g., the B50 
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analysis parameterization (Figure 2.5). As with the O35 parameterization, the B50 results from gameplay 

trials with greater numbers of decision observations have narrower ranges of inferred weights, and the 

shape of inferred weights in the Pareto sets correspond to the actual decision rules used reasonably 

well. One small but noticeable difference between similar trials in the B50 versus O35 parameterizations 

is that the B50 results for the urban criterion weight ranges for the Auth20 and Auth22 trials match each 

other more closely when their near-Pareto sets are included. 
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Figure 2.3. Parallel axis plots show Pareto results for the “O35” optimizations. Subplots for seven game-

play trials are identified by bold labels at the upper-left of each. Within subplots, each line represents one 

weight set in the Pareto results. Values for individual criteria weights are read off the vertical axis where 

lines cross criteria tick marks on the horizontal axis. Higher weight values represent greater preference.  
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Figure 2.4. Parallel axis plots show Pareto (black lines) and near-Pareto (blue lines) results for the “O35” 

optimization runs. Subplots for seven game-play trials are identified by bold labels at the upper-left of 

each. Within subplots, each line represents one weight set in the results. Values for individual criteria 

weights are read off the vertical axis where lines cross criteria tick marks on the horizontal axis.  
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Figure 2.5. Parallel axis plots show Pareto (black lines) and near-Pareto (blue lines) results for the “B50” 

brute force, enumeration analyses. Subplots for seven game-play trials are identified by bold labels at the 

upper-left of each. Within subplots, each line represents a weight set in the results. Values for individual 

criteria weights are read off the vertical axis where lines cross criteria tick marks on the horizontal axis. 
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Comparison of inferred weights for the same gameplay trial across analysis parameterizations 

In the subsections below, one for each gameplay trial, tables of results show the minimum, median, and 

maximum weight values found by each analysis parameterization for each criterion (Tables 2.6-2.12). 

The distributions of weights for criteria in the Pareto sets are also shown in histograms that plot weights 

across 10 bins (Appendix B Figures 2.B1-2.B7). Parallel axis plots show the Pareto sets for each gameplay 

trial by each analysis parameterization (Figures 2.6, 2.8, 2.10, 2.12, 2.14, 2.16, 2.18), or overlay the 

Pareto and near-Pareto sets on the same plots (Figures 2.7, 2.9, 2.11, 2.13, 2.15, 2.17, 2.19). 

In most cases, similar overall conclusions can be drawn from analyzing the same gameplay trial data 

with different analysis parameterizations. In cases where they differ, it is due to differing strengths and 

weaknesses of the different analysis approaches. One reason for differences in the results is that the 

evolutionary optimization analyses only generate and evaluate real-number weights and do not find 

solutions with exact 0 and 1 weight values, as are included in the gridded weights of the brute force, 

enumeration analyses. In many situations this may be irrelevant, but it does lead to differences in results 

for the gameplay trials played with fixed decision rules that uses 1 and 0 weights for all criteria. 

A second reason for differences in the results is that the brute force, enumeration analyses are limited 

to a fixed grid increment and don’t explore weights in between, leaving larger gaps between the 

candidate weight sets explored than do the evolutionary optimization analyses. For this reason, they 

generally evaluated a smaller number of candidate solutions and had fewer weight sets (sometimes with 

two or three orders of magnitude fewer) in their Pareto sets than did the evolutionary optimization 

parameterizations. 

A third reason for differences in the results is that in some cases the brute force, enumeration analysis 

parameterizations found Pareto sets with a smaller sum of squared error than was found by the 

corresponding evolutionary optimization analysis parameterizations. For example, in the Env26 trial, the 

Pareto set from the O35 analysis had a higher sum of squared error than the Pareto set of the B50 

analysis and is thus closer to the near-Pareto set of the B50 analysis than to the B50 Pareto set. 

Env8 trial 

The Env8 gameplay trial was played with a fixed decision rule that always favored the environmental 

criterion. (In case of ties, it also included a provision to secondarily favor the alternative with the better 

agriculture score, but no ties were encountered.)  Gameplay resulted in eight observed decisions made 

by the player using this decision rule. All six analysis parameterizations successfully inferred a high 

weight for the environmental criterion and little weight for the other criteria (Table 2.6, Figure 2.6).  

Of the four criteria with low inferred weight, the urban criterion consistently had highest maximum 

value. This doesn’t reflect the decision rule used, but can be explained as a artifact of the random 

alternatives presented in this trial, since the alternative with the highest environmental score also 

happened to have the highest urban score in three of the eight observed decisions. This highlights a 

danger of the analysis being misled when using too few observations, something that is less likely to 

occur in gameplay trials with greater numbers of observed decisions. 

For the Env8 trial, the B50 analysis took 80 times longer to run than the B20 analysis and produced a 

Pareto set with 28 times more weight sets (Tables 2.5 & 2.6). The consequences of this extra 

computational effort are inferred weight ranges that are an average of 0.02 wider with median weights 



26 
 

that differ by an average of 0.01, in Pareto sets with the same sum of squared error. Whether the extra 

computational effort for this difference in results is worthwhile depends on the use case, preferences, 

and needs of the analysts, stakeholders, and decision makers. 

The minimum, median, and maximum inferred weights were not exactly the same across the four 

evolutionary optimization analyses but were generally close in value, differing from each other by an 

average of 0.03. The O15 results most often had a smaller inferred weight range than the O20, O25, and 

O35 results and had median urban and environmental weight values that differed most substantially 

from the others.  

There were also a few differences between the results from the evolutionary optimization analyses and 

brute force, enumeration analyses, namely with the B20 and B50 results having slightly lower urban and 

industry criteria median weights, a moderately higher environmental median weight, and a wider 

inferred range for the environmental criterion. Other inferred weights were similar between the 

evolutionary optimization and brute force, enumeration types of analysis. 

Inclusion of the near-Pareto results (Figure 2.7) widened the inferred ranges only slightly, and not 

necessarily symmetrically (i.e., in some cases widening the range more on the upper end than the lower 

end, or vice versa.) Overall, the conclusions that can be drawn about the relative importance of the 

criteria are similar with or without consideration of the near-Pareto results. 

Table 2.6. Criterion weights inferred for the “Env8” gameplay trial via six parameterizations (in columns) 

of the evolutionary optimization and brute force, enumeration analyses. Data show the range of 

[minimum, median, maximum] criterion weights from all weight sets in the Pareto-efficient set. (See 

Table 2.2 for a summary of the decision rule used to produce the choice outcomes in this trial.) 

Env8 trial Brute force enumeration  Evolutionary optimization  

B20 B50 O15 O20 O25 O35 

Cost [.00,.10,.25] [.00,.10,.28] [.01,.09,.20] [.00,.10,.23] [.00,.13,.26] [.00,.10,.27] 

Urban [.00,.10,.35] [.00,.08,.36] [.01,.23,.34] [.00,.12,.35] [.00,.13,.32] [.00,.16,.35] 

Industry [.00,.05,.20] [.00,.06,.20] [.00,.05,.15] [.00,.07,.16] [.00,.08,.19] [.00,.05,.19] 

Agriculture [.00,.10,.30] [.00,.10,.34] [.01,.16,.29] [.00,.19,.33] [.00,.13,.31] [.00,.16,.32] 

Environ. [.40,.65,1.0] [.34,.62,1.0] [.34,.46,.72] [.36,.52,.84] [.35,.53,.87] [.33,.53,.89] 
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Figure 2.6. Six Parallel axis plots show Pareto results for the “Env8” gameplay trial from runs of each 

analysis parameterization (as identified at upper-left of each and as defined in Tables 2.3 & 2.4). Within 

subplots, each line represents one weight set in the Pareto results. Values for individual criteria weights 

are read off the vertical axis where lines cross criteria tick marks on the horizontal axis. Higher weight 

values represent greater preference.  
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Figure 2.7. Six Parallel axis plots show Pareto (black lines) and near-Pareto (blue lines) result sets for the 

“Env8” gameplay trial from runs of each analysis parameterization (as identified at upper-left of each 

and as defined in Tables 2.3 & 2.4). Within subplots, each line represents one weight set in the results. 

Values for individual criteria weights in a weight set are read off the vertical axis where the line crosses 

criteria tick marks on the horizontal axis. Higher weight values represent greater preference.  
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Env26 trial 

The Env26 gameplay trial includes 26 observed decisions made by the player following the same 

decision rule as in the Env8 trial. In this trial, there were five cases where the alternatives with the 

highest environmental scores tied and the agricultural criterion was used as a tie breaker. All six analysis 

parameterizations successfully identify that a high weight had been placed on the environmental 

criterion and low weight on the other criteria (Table 2.7, Figure 2.8). The weight ranges that resulted 

from the analyses are also much narrower than for the Env8 trial. For most of the analyses, the 

agriculture criterion ranked in second place or tied for second place, reflecting its secondary preference 

as a tiebreaker. As an artifact of the particular alternatives presented, the inferred weights for the cost 

criteria are also higher than those of the other criteria with low weight.  

For this trial, the B20 and B50 analyses produced the exact same minimum, median, and maximum 

inferred weights, which match the actual decision rule used. In this case at least, 26 decision 

observations were more than enough to identify the fixed decision rule using these analysis 

parameterizations. The sum of squared error was 0 for the Pareto sets from the brute force, 

enumeration analyses, compared to 10 for the Pareto sets from the evolutionary optimization analyses. 

Given this difference, the near-Pareto sets (Figure 2.9) for the B20 and B50 analyses, with a next-lowest 

sum of squared error of 2, most closely match the Pareto sets from the O15, O20, O25, and O35 

analyses. For most of the analyses, inclusion of the near-Pareto sets lowered the inferred range for the 

environment and agriculture criteria and raised it for the others, especially for the cost criterion. 

The minimum, median, and maximum inferred weights from the O15, O20, O25, and O35 analyses 

often, but not always matched each other and were generally within 0.01 or 0.02 of each other when 

they did not exactly match. These results do not quite reproduce the decision rule with its 0 and 1 

weights, but come close to it and lead to conclusions compatible with it. Of the evolutionary 

optimization analyses, the O35 analyses most often had the widest weight range, which is desirable for a 

given level of error since it represents more thorough identification of solution weight sets at that error 

level.  

Table 2.7. Criterion weights inferred for the “Env26” gameplay trial via six parameterizations (in 

columns) of the evolutionary optimization and brute force, enumeration analyses. Data show the range 

of [minimum, median, maximum] criterion weights from all weight sets in the Pareto-efficient set. (See 

Table 2.2 for a summary of the decision rule used to produce the choice outcomes in this trial.) 

Env26 trial Brute force enumeration  Evolutionary optimization  

B20 B50 O15 O20 O25 O35 

Cost [.00,.00,.00] [.00,.00,.00] [.03,.06,.07] [.04,.06,.08] [.02,.07,.09] [.02,.06,.09] 

Urban [.00,.00,.00] [.00,.00,.00] [.01,.01,.04] [.00,.02,.04] [.00,.01,.03] [.00,.01,.03] 

Industry [.00,.00,.00] [.00,.00,.00] [.01,.01,.03] [.01,.02,.04] [.01,.03,.05] [.01,.03,.05] 

Agriculture [.00,.00,.00] [.00,.00,.00] [.03,.07,.08] [.04,.07,.08] [.03,.06,.08] [.02,.06,.08] 

Environ. [1.0,1.0,1.0] [1.0,1.0,1.0] [.81,.84,.92] [.81,.83,.89] [.80,.82,.94] [.80,.84,.94] 
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Figure 2.8. Six Parallel axis plots show Pareto results for the “Env26” gameplay trial from runs of each 

analysis parameterization (as identified at upper-left of each and as defined in Tables 2.3 & 2.4). Within 

subplots, each line represents one weight set in the Pareto results. Values for individual criteria weights 

are read off the vertical axis where lines cross criteria tick marks on the horizontal axis. Higher weight 

values represent greater preference. 
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Figure 2.9. Six Parallel axis plots show Pareto (black lines) and near-Pareto (blue lines) result sets for the 

“Env26” gameplay trial from runs of each analysis parameterization (as identified at upper-left of each 

and as defined in Tables 2.3 & 2.4). Within subplots, each line represents one weight set in the results. 

Values for individual criteria weights in a weight set are read off the vertical axis where the line crosses 

criteria tick marks on the horizontal axis. Higher weight values represent greater preference. 
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Cost6 trial 

The Cost6 gameplay trial was played with a fixed decision rule to always favor the alternative with the 

lowest cost. (The decision rule also included a provision in case of ties to secondarily favor the 

alternative with the better agriculture score, but no ties were encountered.) Even with only six observed 

decisions in the gameplay data, all of the analyses were able to successfully infer a high weight for the 

cost criterion and low weight for all other criteria (Table 2.8, Figure 2.10), the quickest analysis doing so 

within about two seconds.  

The ranges in the Pareto sets were all very wide, from about 0.0 to 0.25 or 0.30 on the low end and 

about 0.45 or 0.50 to 0.90 or 1.0 on the high end. All analyses had a sum of squared error of 0, so had 

the potential to find the same Pareto sets. Yet, only the B20 and B50 trials reached maximum values of 

1.0. This is an example of one comparative strength of the brute force, enumeration approach that can 

include exact 0 and 1 weight values. The evolutionary optimization approaches, however, were able to 

get results that were close and with quicker runtime. The runtime for the O15, O20, and O25 analyses 

ranged from 2 to 4 seconds. This is an order of magnitude quicker than the runtimes of the O35 and B20 

analyses of 21 and 25 seconds, respectively, and vastly quicker than the 46-minute runtime of the B50 

analysis.  

Aside from reaching maximum values of only 0.84 to 0.94 instead of 1.0 for the cost criterion, the 

remaining minimum, median, and maximum weights were fairly close across the analyses, given the 

wide weight ranges inferred. Similarly, inclusion of the near-Pareto set (with sum of squared error of 1, 

Figure 2.11) added lower inferred weights for the cost criterion and higher inferred weights for 

environmental criterion, but did little to change the weight ranges for the other criteria. 

Table 2.8. Criterion weights inferred for the “Cost6” gameplay trial via six parameterizations (in columns) 

of the evolutionary optimization and brute force, enumeration analyses. Data show the range of 

[minimum, median, maximum] criterion weights from all weight sets in the Pareto-efficient set. (See 

Table 2.2 for a summary of the decision rule used to produce the choice outcomes in this trial.) 

Cost6 trial Brute force enumeration Evolutionary optimization  

B20 B50 O15 O20 O25 O35 

Cost [.50,.65,1.0] [.46,.62,1.0] [.47,.63,.94] [.46,.58,.84] [.46,.57,.92] [.45,.57,.90] 

Urban [.00,.10,.35] [.00,.08,.34] [.00,.04,.28] [.00,.08,.27] [.00,.12,.30] [.00,.10,.31] 

Industry [.00,.10,.30] [.00,.08,.30] [.00,.17,.29] [.00,.08,.25] [.00,.15,.27] [.00,.12,.29] 

Agriculture [.00,.05,.25] [.00,.06,.26] [.00,.04,.23] [.00,.09,.24] [.00,.07,.22] [.00,.06,.26] 

Environ. [.00,.10,.30] [.00,.08,.34] [.00,.07,.25] [.00,.13,.26] [.00,.08,.28] [.00,.12,.28] 
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Figure 2.10. Six Parallel axis plots show Pareto results for the “Cost6” gameplay trial from runs of each 

analysis parameterization (as identified at upper-left of each and as defined in Tables 2.3 & 2.4). Within 

subplots, each line represents one weight set in the Pareto results. Values for individual criteria weights 

are read off the vertical axis where lines cross criteria tick marks on the horizontal axis. Higher weight 

values represent greater preference. 
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Figure 2.11. Six Parallel axis plots show Pareto (black lines) and near-Pareto (blue lines) result sets for 

the “Cost6” gameplay trial from runs of each analysis parameterization (as identified at upper-left of 

each and as defined in Tables 2.3 & 2.4). Within subplots, each line represents one weight set in the 

results. Values for individual criteria weights in a weight set are read off the vertical axis where the line 

crosses criteria tick marks on the horizontal axis. Higher weight values represent greater preference. 
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Cost26 trial 

The Cost26 trial was played with the same decision rule as the Cost6 trial. All six analyses successfully 

identified that the player put a high weight on the cost criterion and little weight on the other criteria 

(Table 2.9, Figure 2.12). There were four ties in this trial where the agricultural criterion was used as a 

tie breaker and, as a result, all six analyses inferred a higher weight for agriculture than for the other 

low-weight criteria. It is encouraging for the viability of this approach for weight inference that even 

such a slight secondary preference for the agriculture criterion shows up so clearly in the results. 

The Pareto sets for all six analyses have a sum of squared error of zero, so had the potential to find the 

same weight sets. Only the brute force, enumeration analyses found a maximum inferred cost weight of 

1. The evolutionary optimization analyses found maximum inferred cost weights of between 0.86 and 

0.98. The B20 analysis found a minimum value for the cost criterion that was higher than those found by 

the other analysis (0.70 instead of 0.59 to 0.64) and maximum values for the other criteria that were 

lower than those found by the other analysis, essentially inferring a more pronounced weight 

distribution because its course grid size missed identifying viable weight sets at the lower and upper 

bounds of the Pareto space. The weight ranges inferred by the other analyses were fairly similar to each 

other.  

While the weight ranges in the Cost26 trial are narrower than in the Cost6 trial, they are wider than the 

corresponding weight ranges in the Env26 trial, presumably due to differences in the random 

alternatives shown and the degree of information gained by each selection decision between them. 

Including the near-Pareto sets (Figure 2.13) broadened the estimated weight ranges for all criteria, 

added lower weight values for cost and agriculture and higher values for all non-cost criteria. 

Table 2.9. Criterion weights inferred for the “Cost26” gameplay trial via six parameterizations (in 

columns) of the evolutionary optimization and brute force, enumeration analyses. Data show the range 

of [minimum, median, maximum] criterion weights from all weight sets in the Pareto-efficient set. (See 

Table 2.2 for a summary of the decision rule used to produce the choice outcomes in this trial.) Note, the 

median values of 0.03 (0.025 before rounding) for the Urban and Industry weights inferred in the B20 

parameterization represent averages of the two middle weights for those criteria in the Pareto sets. 

Cost26 

trial 

Brute force enumeration Evolutionary optimization  

B20 B50 O15 O20 O25 O35 

Cost [.70,.85,1.0] [.62,.78,1.0] [.63,.72,.86] [.62,.73,.90] [.64,.78,.95] [.59,.72,.98] 

Urban [.00,.03,.05] [.00,.04,.12] [.00,.05,.11] [.00,.06,.13] [.00,.04,.12] [.00,.07,.12] 

Industry [.00,.03,.05] [.00,.04,.12] [.01,.06,.10] [.00,.06,.11] [.00,.04,.11] [.00,.06,.12] 

Agriculture [.00,.10,.15] [.00,.10,.18] [.04,.09,.15] [.03,.08,.19] [.02,.10,.19] [.01,.10,.19] 

Environ. [.00,.00,.10] [.00,.04,.12] [.00,.08,.13] [.00,.08,.13] [.00,.03,.12] [.00,.05,.14] 
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Figure 2.12. Six Parallel axis plots show Pareto results for the “Cost26” gameplay trial from runs of each 

analysis parameterization (as identified at upper-left of each and as defined in Tables 2.3 & 2.4). Within 

subplots, each line represents one weight set in the Pareto results. Values for individual criteria weights 

are read off the vertical axis where lines cross criteria tick marks on the horizontal axis. Higher weight 

values represent greater preference. 
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Figure 2.13. Six Parallel axis plots show Pareto (black lines) and near-Pareto (blue lines) result sets for 

the “Cost26” gameplay trial from runs of each analysis parameterization (as identified at upper-left of 

each and as defined in Tables 2.3 & 2.4). Within subplots, each line represents one weight set in the 

results. Values for individual criteria weights in a weight set are read off the vertical axis where the line 

crosses criteria tick marks on the horizontal axis. Higher weight values represent greater preference. 
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Urb&Ind21 trial 

Unlike the gameplay trials discussed above, the Urb&Ind21 trial uses a decision rule that divides priority 

evenly between two criteria. Gameplay generated by following this decision rule resulted in 21 observed 

decisions where the player iteratively selected the alternative with the highest urban or industrial 

criterion score. All six analyses successfully identified high and approximately equal weights for the 

urban and industrial criteria and low weights for all remaining criteria (Table 2.10, Figure 2.14).  

In this gameplay trial, all but one of the analyses had the same sum of squared error (the O20 sum of 

squared error was one higher than the others). Due to the gridded weight spacing used by the brute 

force, enumeration analyses, the B20 analysis found a Pareto set with only one element and the B50 

analysis found a Pareto set with only two elements. In contrast, all of the evolutionary optimization 

analyses found Pareto sets with many elements (between 634 and 3287) and wider ranges of inferred 

weights. The weight ranges found by the O15, O25, and O35 analyses are consistent with each other, 

with most inferred values being identical or within 0.01 and all inferred values being within 0.02 of each 

other, despite the 14 times longer runtime of the O35 than the O15 analysis (Tables 2.5 & 2.10).  

Inclusion of the near-Pareto sets (Figure 2.15) broadens the inferred weight ranges somewhat. Because 

the O20 analysis found a Pareto set with a higher sum of squared error than the others, the results in its 

Pareto set look most similar to the near-Pareto sets from the other analyses. The weight ranges widened 

by inclusion of near-Pareto sets are not symmetrical for some criteria in this trial. In particular, the near-

Pareto sets predominantly add higher inferred weights for cost and environment criteria but lower 

inferred weighs for the industry criterion. Inclusion of the near-Pareto sets does not substantially change 

the conclusions about relative criteria importance that can be drawn from the results. 

Table 2.10. Criterion weights inferred for the “Urb&Ind21” gameplay trial via six parameterizations (in 

columns) of the evolutionary optimization and brute force, enumeration analyses. Data show the range 

of [minimum, median, maximum] criterion weights from all weight sets in the Pareto-efficient set. (See 

Table 2.2 for a summary of the decision rule used to produce the choice outcomes in this trial.)  

Urb&Ind21 

trial 

Brute force enumeration Evolutionary optimization  

B20 B50 O15 O20 O25 O35 

Cost [.00,.00,.00] [.00,.00,.00] [.00,.00,.01] [.00,.03,.08] [.00,.00,.02] [.00,.00,.02] 

Urban [.50,.50,.50] [.48,.49,.50] [.45,.47,.50] [.43,.47,.51] [.45,.48,.51] [.45,.48,.51] 

Industry [.45,.45,.45] [.46,.47,.48] [.45,.47,.49] [.39,.43,.48]  [.44,.46,.49] [.44,.46,.49] 

Agriculture [.05,.05,.05] [.04,.04,.04] [.03,.04,.05] [.01,.04,.07] [.03,.05,.06] [.03,.05,.06] 

Environ. [.00,.00,.00] [.00,.00,.00] [.00,.01,.03] [.00,.02,.08] [.00,.01,.04] [.00,.00,.04] 
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Figure 2.14. Six Parallel axis plots show Pareto results for the “Urb&Ind21” gameplay trial from runs of 

each analysis parameterization (as identified at upper-left of each and as defined in Tables 2.3 & 2.4). 

Within subplots, each line represents one weight set in the Pareto results. Values for individual criteria 

weights are read off the vertical axis where lines cross criteria tick marks on the horizontal axis. Higher 

weight values represent greater preference.  
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Figure 2.15. Six Parallel axis plots show Pareto (black lines) and near-Pareto (blue lines) result sets for 

the “Urb&Ind21” gameplay trial from runs of each analysis parameterization (as identified at upper-left 

of each and as defined in Tables 2.3 & 2.4). Within subplots, each line represents one weight set in the 

results. Values for individual criteria weights in a weight set are read off the vertical axis where the line 

crosses criteria tick marks on the horizontal axis. Higher weight values represent greater preference. 
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Auth20 trial 

In the Auth20 gameplay trial, the author played without using an explicit decision rule. Instead, the 

author played used his own preferences, as experienced during the moment of gameplay, to choose 

between each set of alternatives presented. Before gameplay for this trial started, it was unknown what 

the results would show. Gameplay for this trial resulted in 20 observed decisions.  

The Pareto sets from all six analysis parameterizations (Table 2.11, Figure 2.16) show the highest 

inferred weights for the urban and cost criteria, a medium weight for the environment criterion, and 

lower (but non-zero) weights for the industry and agriculture criteria. These trends are not surprising to 

the author, who played with cost consciousness and a strong concern for residential water supply. The 

differences in weight are identifiable but less pronounced than in previous trials that followed fixed 

decision rules placing full weight on one or two criteria and none on others. In this trial, the differences 

between highest, middling, and lowest inferred criteria weights are similar across analyses, with weights 

in each of these tiers differing by about 0.08 from the tier(s) adjacent to it. 

The ranges of inferred weights are similar throughout the Pareto sets, generally having a spread of 

about 0.2 for most criteria and analysis parameterizations, except for the urban criterion, which has a 

narrower range of about 0.12. As might be expected, these inferred weight ranges are wider than in 

trials with a similar number of observations that followed a fixed decision rule, resulting in substantially 

greater uncertainty than was present in the results of the Env26 and Urb&Ind21 trials and slightly more 

than the Cost26 trial. 

All Pareto sets had a sum of squared error of 1, so theoretically had accesses to the same potential 

population of efficient weight sets. With greater numbers of candidate weights explored, the B50 and 

O35 trials resulted in wider ranges of inferred weights and had Pareto sets with more individuals than 

did trials with quicker runtimes but less exploration.  

Inclusion of the near-Pareto sets (with a sum of squared error of 2) somewhat widens the inferred 

weight ranges for most criteria and substantially increases the upper bound weight estimate for the 

urban criterion. In the brute force, enumeration analyses, the near-Pareto results included lower bound 

inferred weights with a value of 0 for the agriculture and industry criteria, but without substantial 

change to their median inferred weights. 

Table 2.11. Criterion weights inferred for the “Auth20” gameplay trial via six parameterizations (in 

columns) of the evolutionary optimization and brute force, enumeration analyses. Data show the range 

of [minimum, median, maximum] criterion weights from all weight sets in the Pareto-efficient set. (See 

Table 2.2 for a summary of the decision rule used to produce the choice outcomes in this trial.) 

Auth20 

trial 

Brute force enumeration Evolutionary optimization  

B20 B50 O15 O20 O25 O35 

Cost [.20,.30,.35] [.20,.28,.38] [.19,.24,.32] [.19,.27,.38] [.19,.27,.37] [.18,.27,.38] 

Urban [.25,.30,.35] [.24,.28,.36] [.23,.27,.34] [.23,.28,.35] [.23,.28,.36] [.23,.27,.36] 

Industry [.05,.10,.15] [.02,.12,.20] [.05,.14,.21] [.03,.14,.21] [.03,.14,.21] [.02,.13,.21] 

Agriculture [.05,.10,.20] [.02,.12,.22] [.03,.13,.20] [.02,.11,.20] [.01,.10,.21] [.01,.13,.22] 

Environ. [.10,.20,.25] [.08,.20,.28] [.12,.22,.28] [.09,.20,.28] [.09,.20,.29] [.08,.21,.30] 
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Figure 2.16. Six Parallel axis plots show Pareto results for the “Auth20” gameplay trial from runs of each 

analysis parameterization (as identified at upper-left of each and as defined in Tables 2.3 & 2.4). Within 

subplots, each line represents one weight set in the Pareto results. Values for individual criteria weights 

are read off the vertical axis where lines cross criteria tick marks on the horizontal axis. Higher weight 

values represent greater preference. 
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Figure 2.17. Six Parallel axis plots show Pareto (black lines) and near-Pareto (blue lines) result sets for 

the “Auth20” gameplay trial from runs of each analysis parameterization (as identified at upper-left of 

each and as defined in Tables 2.3 & 2.4). Within subplots, each line represents one weight set in the 

results. Values for individual criteria weights in a weight set are read off the vertical axis where the line 

crosses criteria tick marks on the horizontal axis. Higher weight values represent greater preference.  



44 
 

 

Auth22 trial 

The Auth22 gameplay trial was played using the same approach as the Auth20 trial, with the author 

selecting alternatives based on his subjective preferences as experienced during gameplay instead of 

based on a fixed decision rule. Gameplay for this trial included 22 observed decisions.  

The overall conclusions to be drawn from this trial (Table 2.12, Figure 2.18) in terms of the inferred rank 

order of criteria preference are similar to those drawn from the Auth20 trial. However, the results from 

this trial are more pronounced than in the Auth20 trial, having inferred weights with greater differences 

between them and narrower ranges, though it is unknown whether this is due to a shift in the 

expression of preferences, to random differences in the alternatives shown, or to inconsistencies in 

human decision making between trials. The Pareto sets from all six analyses rank the median weights in 

order from highest to lowest as: urban, cost, environment, industry, agriculture.  

All Pareto sets have a sum of squared error of 0, so potentially had the ability to discover the same 

efficient weight sets. As has been typical, the Pareto sets from analyses with greater exploration (i.e., 

B50 and O35) have wider weight ranges than analyses that ran more quickly had less exploration, but 

only marginally so. For this trial, the inferred weight ranges across Pareto sets were quite close, with an 

average difference of only 0.01 between minimum, median, and maximum inferred weights for the 

same criteria. One noticeable difference between Pareto sets is that only B50, O25, and O35 Pareto sets 

have a lower bound for the industry criterion of 0.00 (as a rounded real number in the O25 and O35 

results). The lower bound for the agriculture criterion is 0.00 in all Pareto sets. 

Inclusion of the near-Pareto sets (Figure 2.19) widens the inferred criteria ranges slightly but does not 

substantially change the shape of the plots or the conclusions to be drawn. 

Table 2.12. Criterion weights inferred for the “Auth22” gameplay trial via six parameterizations (in 

columns) of the evolutionary optimization and brute force, enumeration analyses. Data show the range 

of [minimum, median, maximum] criterion weights from all weight sets in the Pareto-efficient set. (See 

Table 2.2 for a summary of the decision rule used to produce the choice outcomes in this trial.)  

Auth22 

trial 

Brute force, enumeration Evolutionary optimization  

B20 B50 O15 O20 O25 O35 

Cost [.25,.30,.30] [.26,.30,.34] [.25,.28,.35] [.25,.28,.34] [.25,.29,.35] [.24,.30,.36] 

Urban [.40,.40,.45] [.34,.42,.46] [.35,.40,.45] [.34,.40,.45] [.34,.40,.45] [.33,.41,.46] 

Industry [.05,.08,.15] [.00,.08,.18] [.02,.08,.14] [.01,.09,.16] [.00,.08,.16] [.00,.07,.18] 

Agriculture [.00,.00,.05] [.00,.02,.06] [.00,.03,.06] [.00,.02,.06] [.00,.03,.06] [.00,.03,.07] 

Environ. [.15,.20,.25] [.14,.20,.26] [.14,.20,.24] [.14,.20,.25] [.13,.19,.26] [.13,.19,.27] 
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Figure 2.18. Six Parallel axis plots show Pareto results for the “Auth22” gameplay trial from runs of each 

analysis parameterization (as identified at upper-left of each and as defined in Tables 2.3 & 2.4). Within 

subplots, each line represents one weight set in the Pareto results. Values for individual criteria weights 

are read off the vertical axis where lines cross criteria tick marks on the horizontal axis. Higher weight 

values represent greater preference. 
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Figure 2.19. Six Parallel axis plots show Pareto (black lines) and near-Pareto (blue lines) result sets for 

the “Auth22” gameplay trial from runs of each analysis parameterization (as identified at upper-left of 

each and as defined in Tables 2.3 & 2.4). Within subplots, each line represents one weight set in the 

results. Values for individual criteria weights in a weight set are read off the vertical axis where the line 

crosses criteria tick marks on the horizontal axis. Higher weight values represent greater preference. 
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Additional discussion 

Pareto sets are described by the ranges between their minimum and maximum and by their median 

inferred criteria weights. The weight ranges are important because they identify the bounds for 

preferences that could have produced the observed outcomes; they show what is possible. The medians 

are important when point estimates for the criteria weights are needed. In the brute force, enumeration 

analyses, these values cannot be skewed by random elements of the analysis because they have no 

random component and repeated analyses will always produce the same results with the same grid size. 

Also, since the analyses use a gridded weight space to explore candidate weight sets, every region of the 

weight space gets identical potential gets included in the analysis and is able to influence the inferred 

median and range weight values.  

In contrast, the random exploration of the evolutionary optimization analyses could be unbalanced in its 

exploration of candidate weight sets. Because repeated analyses might not produce identical results if 

they use different random seeds, the reliability or representativeness of range and median estimates 

can be questioned. However, the results from the seven gameplay trials analyzed in this chapter show 

strong agreement between the ranges and medians inferred from the evolutionary optimization 

analyses with those from the brute force, enumeration analyses (Tables 2.6-2.12). In some cases, this 

similarity even extends to small details of the inferred weight distributions. For instance, the plots of 

Pareto sets (Figures 2.3-2.19) often show similar areas of lightness and darkness across analyses, 

identifying areas with lesser and greater density of candidate weights. In one example, the Pareto sets in 

the Auth20 gameplay trial (Figure 2.16) consistently show lighter lines on the upper portions of inferred 

weights for the urban criterion, indicating that some but relatively fewer weight sets in the Pareto sets 

have high urban weights—a trend observed across all brute force, enumeration and evolutionary 

optimization analyses. 

The most complete analysis would produce Pareto sets with the widest possible ranges of inferred 

criteria weights for Pareto sets with the lowest possible sums of squared error. In this chapter, the six 

analysis parameterizations applied to the seven gameplay trials produced inferred weight ranges of 

different widths for the same criteria and sometimes found Pareto sets with different sums of squared 

error in the same trial, though differences in sum of squared error across Pareto sets were infrequent. 

Except in two cases, all analyses found Pareto sets with the same sum of squared error: In the Env26 

trial, both of the brute force, enumeration analyses found Pareto sets with a sum of squared error of 0 

but the evolutionary optimization analysis parameterizations found Pareto sets with a sum of squared 

error of 10. In this case, the brute force, enumeration analyses found identical Pareto sets having only 1 

member with weights of 1 for environment and 0 for all other criteria, exact integer values that the 

evolutionary optimization analyses were not able to find. (Interestingly, the Env26 trial also provides the 

only example where the sum of squared error in the near-Pareto set (of 2) differs by more than 1 from 

the sum of squared error in the Pareto set (of 0)). The other exception is in the Urb&Ind21 trial, where 

all analyses found Pareto sets with a sum of squared error of 8 except for the O20 analysis that found a 

Pareto set with a sum of squared error of 9 despite running to completion.  

The differences in inferred criteria ranges are more common and show consistent trends between 

analysis types and parameterizations. In comparing the results (Tables 2.6-2.12), the analysis 

parameterizations with the greatest degrees of exploration (B50 and O35) most often identified the 

widest inferred criteria weight ranges compared to other Pareto sets with the same sum of squared 
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error. For the 5 criteria in each of the 7 gameplay trials, the inferred weight ranges from the B50 analysis 

are wider than those from the B20 trial in 24 cases, are equal to those from the B20 trial in 10 cases, and 

is less than that from the B20 trial in 1 case.  

In the evolutionary optimization results, for the 5 criteria in each of the 7 gameplay trials, the inferred 

weight ranges from the O35 analysis are wider than the others 17 times, the ranges from the O35 and 

O25 analyses tie for widest an additional 12 times, the ranges from the O35 and the O20 or O15 

analyses tie for widest an additional 1 time each, the ranges from the O20 analysis are widest 3 times, 

and the range from the O15 analysis is widest 1 time. (Note results from the O20 analysis in the 

Urb&Ind21 trial are excluded from these comparisons because it’s Pareto set does not have the same 

sum of squared error as the others from that trial).  

The inferred weight ranges can also be compared between the brute force, enumeration and 

evolutionary optimization analyses for the 5 criteria in each of the 6 gameplay trials that have the same 

sums of squared error in their Pareto sets. (The Env26 trial is excluded from these comparisons because 

its Pareto sets do not have the same sum of squared error between analysis types). The inferred weight 

ranges from the evolutionary optimization methods have wider (more comprehensive for the same sum 

of squared error) ranges than the brute force, enumeration analysis for 19 of the 20 weight estimates in 

gameplay trials having more than 20 observed decisions, and have an equal weight range with the brute 

force, optimization approach 1 time. Conversely, in 9 of the 10 weight estimates in gameplay trials 

having 8 or fewer observed decisions, the brute force enumeration inferred weights have a wider (more 

comprehensive) range than those of the evolutionary optimization analyses and 1 time have an equal 

range. This interesting result suggest that different analysis types may generally be better or worse for 

inferring broader ranges of possible weights with data from gameplay trials have more or fewer 

observed decisions. 

There are tradeoffs between analysis speed and result completeness and accuracy. The analysis 

parameterizations that engage in less exploration found results more quickly (Table 2.5) but found 

results with narrower ranges of inferred weights than other Pareto sets with the same sum of squared 

error (Tables 2.6-2.12). However, the conclusions that can be drawn from these less complete results in 

terms of the rank order of criteria preference and their approximate ranges and mean weights are 

generally the similar with those from analysis with greater exploration (Tables 2.6-2.12, Figures 2.6-

2.19). So, tradeoffs between speed and completeness/accuracy should depend on the needs, 

preferences, and intended uses of the analyst, stakeholders, and decision makers in each particular case.  

In cases where decisions are needed in near real time, e.g., if results from analysis of initial gameplay 

will shape the form of later gameplay or to inform automated decisions made immediately after the 

conclusion of the game, the quickest running analyses may be most appropriate. Alternatively, for cases 

where the weight-inference analysis will be incorporated as part of a much longer decision process that 

spans weeks, months, or years, e.g., for infrastructure investment or natural resources management 

decisions, the longer running analyses may be most appropriate. Comparison of results between 

multiple analysis parameterizations can also increase completeness, if time for multiple analysis runs is 

available. When analysis runtime is not constrained, the most reliable approach may be to combine 

results across brute force, enumeration analyses that can consider 0 and 1 integer weights and 

evolutionary optimization analyses that are not limited by fixed grid spacing. A hybrid analysis that 
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incorporated elements of both gridded weight enumeration and free weight exploration may be 

promising for future development. 

The gameplay trials and analyses presented in this chapter have limitations. They demonstrate proof of 

concept but additional work is needed to further these ideas to the point where they will be ready for 

application in practice. Two types of analysis approaches were demonstrated; additional analysis 

parameterizations, combinations of these two approaches, and additional related approaches for 

inverse problem solution (see Appendix A for a brief discussion) could be implemented to refine this 

work. Additional gameplay trials could be carried out to further test the strengths, weaknesses, and 

limitations of this approach as implemented through different analysis parameterizations.  

The text-based game used to generate observed gameplay decisions is simple, and application to more 

sophisticated games remains as a future extension of this work. The decision points used in the game in 

this chapter are explicit. Future games could try applying these analyses to games with implicit decision 

points, alternatives, criteria, and/or value scores that are fluid with the game environment (see 

Appendix A for a brief discussion). Application to more complex games might also include graphic-based 

games instead of text-based games, such as strategy games with a top-down graphical view, first-person 

games with free interaction in a digital world, games that incorporate virtual or augmented reality, or 

games with more realistic resource management or system operation scenarios. 

The analyses in this chapter show that sensible weights can be inferred from gameplay analysis but do 

not address the extent to which those weights have external validity. Future human-subjects 

experiments could compare the results of traditional MCDA weight elicitation through surveys and 

interviews with the results of this novel weight inference from gameplay logs to judge whether or not 

they produce similar results. Even more sophisticated human-subjects experiments could compare the 

results of traditional MCDA weight elicitation and novel gameplay weight inference with the results of 

observational studies of real-world, physical decision making to see which weight-development 

approach more accurately predicts decision making in practice. 

 

CONCLUSIONS 

The analyses developed and applied in this chapter provide proof of concept that preference weights for 

decision models can be inferred from analysis of observed choices made during videogame play. A 

simple, text-based, water management game was developed to test the proposed approach. In the 

game, the player makes investment choices to develop water projects that they believe will create the 

best water-resources future for their region across a range of objectives. They make their decision with 

awareness of data for each alternative’s expected outcome on five criteria (and corresponding metrics) 

for cost ($K), urban (# homes), industry (% GDP), agriculture (# acres), and environment (# acres) 

outcomes. After each decision is made, these performance data are recorded for both the selected 

alternative and all non-selected alternatives. At the end of a pre-determined number of rounds, the 

game ends and the gameplay data are analyzed to identify weight sets of best fit for producing the 

observed outcomes, assuming an additive MAVT decision model with linear value-functions anchored to 

the distribution ranges from which the alternative data are drawn.  

The author played the game through seven gameplay trials. Five trials were played using fixed decision 

rules that always selected the available project alternative with the best cost score, always selected the 
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alternative with the best environment score, or iteratively selected alternatives with the best urban or 

industrial scores. Some of these trials were played in games with greater and fewer numbers of rounds, 

to enable comparison of results with differing levels of detail. Two additional gameplay trials were 

played using the author’s own implicit, subjective preferences as experienced during gameplay. Trials 

with fewer rounds resulted in 6-8 observed decisions and trials with more rounds resulted in 20-26 

observed decisions. 

After all gameplay was completed, two types of analysis were applied to the gameplay data to identify 

weight sets of best fit, each run with multiple parameterizations that traded off analysis runtime and 

completeness of results. One type of analysis used a brute force, enumeration approach that discretized 

the continuous weight space into weights spaced at fixed increments and tested all combinations of 

weight sets having those weights. Two different parameterizations were used for this analysis, having 

weight increments of 0.02 and 0.05 that generated 10,626 and 316,251 candidate weight sets, 

respectively, to test. Each candidate weight set was used in the MAVT decision model and applied to the 

recorded performance data for each alternative for each decision in each gameplay trial. The number of 

times that each weight set correctly or erroneously predicted the selected alternative was tracked and 

the sum of squared error across all decisions in a gameplay trial was used to identify weight sets of best 

fit. Most analyses resulted in a Pareto-efficient set that contained many weight sets of equal best fit 

(i.e., all sharing the lowest observed sum of squared error). A near-Pareto set was also recorded for each 

trial, containing weight sets with the next-lowest sum of squared error, to consider how a relaxation of 

fit might change the resulting conclusions. 

A second type of analysis used evolutionary optimization to generate and evaluate candidate weight 

sets. The Differential Evolution algorithm was used with a best/1/bin search strategy, leveraging 

stochastic search rather than gradient descent to seek weight sets having the lowest sum of squared 

error. The initial generation of candidate weights sets for each analysis was populated via Latin 

Hypercube sampling of the entire weight space. As above, each candidate weight set was used in the 

MAVT decision model and applied to the recorded performance data for each alternative for each 

decision in each gameplay trial. Randomly mutated recombination of the best and other weight sets in 

each generation of candidate weight sets were used to generated candidate weight sets in subsequent 

generations. Four different parameterizations were used for this analysis, using different values to 

govern the Differential Evolution search that traded off a larger search radius and greater exploration 

with quicker runtimes. At convergence or after 1,000 generations, Pareto-efficient and near-Pareto sets 

of weight sets were recorded for each analysis parameterization for each gameplay trial. 

For each of the seven gameplay trials, all six attempted analysis parameterizations successfully 

identified Pareto-efficient and near-Pareto sets having weight sets of best fit. For the five gameplay 

trials that followed a fixed decision rule, the resulting weight sets consistently led to conclusions about 

the relative priority of the criteria that were consistent with that decision rule. The Pareto sets 

sometimes but not always included the exact decision rule used, and never produced results that were 

inconsistent with the priorities expressed by the fixed decision rules. For gameplay trials following 

decision rules that ascribed integer 0 and 1 weights, the gridded weight spaces of the brute force, 

enumeration analyses were better able to find those exact solutions than were the evolutionary 

optimization analyses that generated real number candidate weights. When compared to the weight 

increments commonly used by MCDA analysts in practice, which often are no finer that 0.1 or 0.05, the 

precision of the resulting weight estimates produced by weight-inference analyses seems reasonable. As 
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would be expected, the gameplay trails that contained fewer observed decisions resulted in inferred 

weight ranges that were wider, with more uncertainty about the players actual preferences, than 

inferred weight ranges from analyses based on greater numbers of observations.  

For the two gameplay trails where the author played using his own preferences, the resulting inferred 

weight ranges led to similar but not identical solutions between trials. The general rank order of criteria 

preference was the same between trials but the magnitude of preferences expressed was more 

pronounced in the second gameplay trial. It is not known whether this reflects a strengthening of 

preference during the play experience, random differences in the alternatives available in each trial, or 

inconsistencies in human decision making between trials. If implemented in practice, one option would 

be to continue gameplay until it can be established that the inferred preferences are remaining stable 

within each gameplay session, with gameplay sessions repeated at different times to verify that the 

expressed preferences are stable across play sessions.  

Strengths and weaknesses were exhibited by both the brute force, enumeration and evolutionary 

optimization analyses. For gameplay trials having fewer decisions, the brute force, enumeration analyses 

produced slightly more comprehensive Pareto sets for the same level of error. In contrast, the 

evolutionary optimization analyses produced slightly more comprehensive Pareto sets for gameplay 

trials with more observed decisions. There was also considerable difference in the degree of exploration 

used by the analysis, with analysis testing between 240 and 316,251 candidate weight sets and taking 

between 2 seconds and over 54 minutes to run using a standard laptop computer. For use cases where 

time is of the essence, e.g., if the results of early decisions in the game will shape the scenarios 

presented in later gameplay, then quick running but less precise analyses may be more useful. In other 

cases where the results will fit into larger decision processes spanning days, weeks, months, or years, 

then longer running analyses and comparison of results across multiple analysis types and 

parameterizations may be most useful.   

Future work remains to test the utility of this approach in practice. This chapter verifies that the 

proposed approach can work and produce sensible results, but does not prove that it will always do so. 

Follow-on studies could use human subjects research with many participants to compare the inferred 

weighs found through gameplay analyses with those expressed through traditional MCDA survey and 

interview methods, or even to compare both gameplay inference and traditional elicitation methods 

with real-world, physical, observational decision experiments to test the predictive ability of each 

weight-development method in real decision-making settings. The gameplay weight inference approach 

also remains to be applied to more advanced games than the simple water-management game used in 

this proof-of-concept. For example, application to games with immersive visual graphics and games with 

implicit rather than explicit decision elements could generate play experiences that feel more like 

commercial video games less like convoluted revealed-preference exercises. 

There are many potential benefits that could come from applying this approach to MCDA in practice. 

While game and analysis development take up-front time, cost, and effort to produce, the analysis is 

vastly more scalable than traditional approaches because it avoids the need for a human analyst to be 

involved in each elicitation. Weight inference from analysis of gameplay choices may also avoid several 

types of cognitive biases and errors that are known to be triggered by traditional MCDA interview and 

survey mechanisms, which may allow greater accuracy in weight development. This could represent a 

major step forward, especially if simultaneously being more scalable and less logistically burdensome 
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than traditional approaches. This novel approach may also enable weight development for more 

extreme scenarios than other elicitation techniques while maintaining a greater degree of perceived 

realism for the player, e.g., though immersive, virtual-reality gameplay of rare or dangerous situations 

that would never be attempted using physical observational experiments and where interviews and 

surveys fail to provoke sufficient reactions for the situation.  

Overall, this work advances the literature on the development of preference weights for MCDA. 
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APPENDIX A: RELATED CONCEPTS 

Game design choices for explicit versus implicit decision-model elements 

It is envisioned that game developers and decision analysts may be able to make several design choices 

related to how the player interacts with decisions in the game in future implementations of decision-

model inference from gameplay log data. In the simple water-management game presented in this 

chapter, all decision points, alternatives, criteria, and performance scores are explicitly shown to the 

user. Future implementation could explore the viability of making any or all of these implicit, i.e., 

sensed, inferred, or estimated from the play experience rather than being directly stated. 

Implicit decision points can exist in games where the users have freer interactions with the game 

environment. Instead of being asked to make a decision at a certain point, the player decides what path 

to pursue to how to engage with different game elements. For example, a choice to navigate to and 

enter a shop in an adventure quest game where the player has full freedom of movement would be an 

implicit decision point. If a list of items is available for purchase in the shop, the selection of one or more 

would be from explicit alternatives. However, if the player can mix a potion from any available 

ingredients or choose an unconstrained direction to travel after exiting the shop, those would be 

decisions made between implicit alternatives. If the abilities granted by items for sale in the shop are 

clearly stated, those would be explicit criteria and/or performance scores. However, if the player can 

choose an unidentified item with unknown properties, based on look alone, that decision would be 

based on implicit criteria and performance scores. Similarly, the factors influencing the player’s direction 

of travel in a free-movement environment would represent implicit criteria.  

Analyses that incorporate implicit decision elements would be harder for the analysts and game 

designers to develop, since those elements must first be somehow inferred from the environment and 

then used in the analysis. If the types of factors that a player would is anticipated to consider in making 

their decision are recorded from the game environmental data, then the implicit decision elements can 

potentially be inferred from that data. However, this process would introduce additional uncertainty 

since the factors assumed to influence a player’s decision may differ from those that actually do. 

Moreover, the player’s evaluation of implicit performance may not exactly match the performance 

inferred from the game environmental data. If many potential criteria are inferred, pre-analyses that 

look for correlations between them can help to streamline the weight-inference analysis. 

A few existing efforts in the literature have successfully inferred choices between alternatives from free-

form movement or gameplay, though the inferred elements have not been incorporated into MCDA 

models as proposed by this chapter. Kooij et al.69 use a non-parametric Bayesian model based on 

machine learning techniques to identify common movement behavior patterns in spatial movement-

track data. They compare these unnamed, found movement-patterns with both real-world and virtual 

(non-gaming) environments. Smith and Vogt50 allow players to design custom warfighting equipment, 

which represent implicit alternatives, that are then tested in play on virtual battlefields. They follow 

Kooij et al. in reporting on data mining to identify clusters of gameplay actions and discuss the 

importance these action clusters in achieving desirable game outcomes. While these techniques 

automatically generate clusters of common behaviors, any labels for them must be supplied by an 

analyst.  
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Tastan and Sukthankar70 share an inverse reinforcement learning model used to train AI-controlled bots, 

which can switch between three modes of play, to play more similarly to human players. Here, the 

alternative modes of play are explicit but the criteria are implicit and inferred from the data.  

Application of these types of techniques to future game-based decision-model inference efforts that 

extend the work of this chapter could avoid the need to inject forced decision points into otherwise 

free-form gameplay, enabling gameplay to achieve greater realism. 

Other potential analysis approaches 

This chapter used two analysis approaches to solve the weight-inference problem and identify solutions 

of best fit: brute force enumeration and evolutionary optimization. In principle, this type of model-

fitting inverse problem can be solved by a variety of analysis methods that use different approaches to 

achieve similar results. For reference, several of these alternative approaches are briefly described 

below. 

Bayesian weight inference 

An ingenious application by Yet and Şakar71 combines Bayesian analysis with alternative rankings 

provided by the decision maker to estimate MCDA weights and utility functions. Benefits of the Bayesian 

approach include that it estimates the entire probability distributions, can handle inconsistent input 

data (which will increase uncertainty in the resulting distributions), can use partial rankings if the input 

data are incomplete, and can be adjusted to incorporate prior knowledge from rankings, constraints on 

feasible weight values, or prior weight distributions. Their approach is applied in two case studies about 

financial investments and university rankings. While the method is different, several of the benefits of 

their approach are also realized with the two analysis approaches applied by this chapter. 

Conjoint analysis 

Conjoint analysis72,73 is a prominent survey-based method from market research that helps product 

designers discover consumer preferences and tradeoffs. It is one of the most widely used tools in 

consumer product development.74 Here, a set of alternative products is presented to the user to rate or 

choose between; these vary along multiple attribute dimensions of interest to the product developer 

(e.g., brand, size, quantity, price, packaging). The presentation of alternatives and recording of choices is 

repeated many times with alternatives that span a wide range of attribute levels. Analysis of the user’s 

choices reveal “part-worth utilities” that represent their tradeoffs for relative attribute importance in 

the product-choice decision. Many modern versions of conjoint analysis present the consumer with a 

computer-based survey where they are able to choose between simulated products, and adaptive 

algorithms in choice-based conjoint studies use respondent choices from prior product-selection 

iterations to create the set of products to present in the next product-selection iteration that will 

maximize the analyst ability to finely discern preferences and tradeoffs in the fewest number of 

iterations, which is not possible with static conjoint product-rating methods.73,75 Part-worth utility 

inference in conjoint analysis has many parallels with the game decision analytic concept we propose, 

chiefly that it decomposes choice decision problems with respect to an additive combination of per-

criterion utility that users derive from each alternative with respect to the attributes of interest, and 

that conjoint methods can be viewed as a special case of more general random utility theory.76 Conjoint 
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analysis does not include a story arc, entertainment elements, or play objectives as it is not incorporated 

into gameplay. 

Conjoint analysis has occasionally been combined with decision analysis to identify prominent criteria 

and infer weights in non-gaming context, and Hermans and Erickson77 suggest that inferring criteria 

weights through conjoint analysis can reduce bias over best-of-class elicitation approaches in traditional 

decision science. Hermans et al.78,79,80 use conjoint analysis in a decision analysis process with a 

stakeholder group to quantify preferences (weights) for environmental criteria in watershed 

management. Clement81 uses conjoint analysis with decision analysis to identify weights for criteria 

related to energy policy decision-making in Vermont. Ng and Sargeant82 use conjoint analysis and 

decision analysis to identify the weights of 21 criteria for evaluating zoonotic diseases in Canada. Several 

others have used conjoint analysis to identify preferences for criteria used in decision making, but 

without formal connection to decision science. 

Discrete choice 

Discrete choice models seek to predict user choices between alternatives based on presumed utility 

functions and are consistent with general utility theory.83,84 Discrete choice experiments are frequently 

used in economics, marketing, and civil and environmental engineering/science to infer an individual’s 

preferences. The user is presented with a set of hypothetical alternatives that each vary on several 

attributes, and indicates their choice for their most preferred alternative. Responses are used to infer 

the priority of the attributes, assuming the user is rational and utility-maximizing. Logistic and Probit 

regression can be used to solve discrete choice models. Because all attributes of an alternative and 

preferences of an individual cannot be known, the individual’s choice behavior is described 

probabilistically and the resulting discrete choice models estimate the chance that a person will choose 

a particular alternative based on a combination of knowledge about their preferences and the 

alternatives. 

Discrete choice experiments have occasionally been combined with decision analysis to identify 

prominent criteria and infer weights in non-gaming context. Mirelman et al.85 use discrete choice 

experiments with decision analysis to assess weights between criteria for efficiency and equity in health 

interventions across several countries. Youngkong et al.86 use discrete choice experiments to identify 

high priority criteria for targeting HIV/AIDS interventions in Thailand, and then apply those in a decision-

analytic framework to rank project alternatives.87 Baltussen et al.88 use discrete choice with decision 

analysis to identify the relative priorities of criteria for health-priority setting in Ghana. Neslo & Cooke89 

use probabilistic inversion with discrete choice models and random utility theory to validate stakeholder 

preference models in a health-care scenario. 

Multiple linear regression 

Multiple linear regression90 is a common approach for parameter estimation used across many 

disciplines. It is a statistical approach used to model the relationship between several independent 

predictor variables with a single dependent outcome. The coefficients of each independent variable 

estimate the expected change in the dependent variable with a unit change in the independent variable. 

Multiple linear regression benefits from a robust mathematical framework and broad usage. It could be 

applied to fit a decision model to observed gameplay outcomes, with the multivariate model coefficients 
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informing the weights in an MCDA model. The results of multiple linear regression, however, typically 

include a single solution of least residual error rather than a Pareto-efficient solution set.  

For examples of application, Luu et al.91 use multiple linear aggression with the technique for order of 

preference by similarity to ideal solution (TOPSIS) MCDA method to attribute weights in a flood risk 

model for Vietnam. Hwang et al.92 use multiple linear regression with MCDA in a content-based 

recommendation system. And Vivas et al.93 use multiple linear regression with the preference ranking 

organization method for enrichment evaluation (PROMETHEE) MCDA method to assess the 

sustainability of a Brazilian oil and gas firm.  

Other approaches  

Principle component analysis could be used with the type of analysis presented in this chapter if there 

were a need to assess the degree of correlation between many criteria and potentially eliminate those 

that are highly correlated. This could expedite the analysis, for example, if a large number of implicit 

criteria were to be inferred from the gameplay environment. Latent factor analysis achieves some 

similarity in outcome, but its substitution of interpretable criteria for latent factors with unknown 

meaning is generally less helpful when the results need to be used and interpreted in other decision 

models. Lastly, several existing software packages are available for solving inverse problems, such as 

UCODE and Dakota, often with geophysical data. These tools could be applied to the type of analysis 

proposed in this chapter with appropriate translation of the gameplay data into the specific input 

formats used by their software.  
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APPENDIX B: HISTOGRAMS 

The histograms in the following sections show the distribution of inferred weights for each criterion by 

each analysis parameterization in each gameplay trial, grouped by gameplay trial. 

Env8 trial 

 

Figure 2.B1. Histograms showing the distribution of weights for the criteria (labeled at top, see also 

Table 2.6) in the Pareto-efficient results for the “Env8” trial. Six subplots for different brute force, 

enumeration and evolutionary optimization analysis parameterizations are identified (labeled at left, 

defined in Tables 2.3 & 2.4). 
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Env26 trial 

 

Figure 2.B2. Histograms showing the distribution of weights for the criteria (labeled at top, see also 

Table 2.7) in the Pareto-efficient results for the “Env26” trial. Six subplots for different brute force, 

enumeration and evolutionary optimization analysis parameterizations are identified (labeled at left, 

defined in Tables 2.3 & 2.4).  
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Cost6 trial 

 

Figure 2.B3. Histograms showing the distribution of weights for the criteria (labeled at top, see also 

Table 2.8) in the Pareto-efficient results for the “Cost6” trial. Six subplots for different brute force, 

enumeration and evolutionary optimization analysis parameterizations are identified (labeled at left, 

defined in Tables 2.3 & 2.4).  
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Cost26 trial 

 

Figure 2.B4. Histograms showing the distribution of weights for the criteria (labeled at top, see also 

Table 2.9) in the Pareto-efficient results for the “Cost26” trial. Six subplots for different brute force, 

enumeration and evolutionary optimization analysis parameterizations are identified (labeled at left, 

defined in Tables 2.3 & 2.4).  
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Urb&Ind21 trial 

 

Figure 2.B5. Histograms showing the distribution of weights for the criteria (labeled at top, see also 

Table 2.10) in the Pareto-efficient results for the “Urb&Ind21” trial. Six subplots for different brute force, 

enumeration and evolutionary optimization analysis parameterizations are identified (labeled at left, 

defined in Tables 2.3 & 2.4).  
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Auth20 trial 

 
Figure 2.B6. Histograms showing the distribution of weights for the criteria (labeled at top, see also 

Table 2.11) in the Pareto-efficient results for the “Auth20” trial. Six subplots for different brute force, 

enumeration and evolutionary optimization analysis parameterizations are identified (labeled at left, 

defined in Tables 2.3 & 2.4).  
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Auth22 trial 

 

Figure 2.B7. Histograms showing the distribution of weights for the criteria (labeled at top, see also 

Table 2.12) in the Pareto-efficient results for the “Auth22” trial. Six subplots for different brute force, 

enumeration and evolutionary optimization analysis parameterizations are identified (labeled at left, 

defined in Tables 2.3 & 2.4).  
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Chapter 3 

A Multi-Criteria Decision Model and Best 

Management Practices for Sustainable 

Use of Marine Sand 
 

 

 

ABSTRACT 

Many coastal beaches erode over time, leading to increased risk of flooding and lost habitat and 

recreational value. Governments and communities with management authority may engage in coastal 

engineering projects such as beach nourishment and dune creation to counteract these effects. These 

engineering projects typically require large volumes of sand to be imported and placed on or near the 

beach, with the greatest volumes placed initially and smaller maintenance volumes required over time. 

These projects typically mine needed sand from marine deposits, referred to as borrow areas, on the 

seafloor that may either be renewable resources that slowly accreted new sand over time or finite 

resources that will be exhausted after use. There is increasing concern from stakeholders to ensure that 

these marine sand resources are used sustainably, promoting their long-term viability for future uses 

and respecting the competing environmental, social, and economic considerations motivating project 

planning and operations. This chapter reports on a multi-criteria decision analysis (MCDA) workshop 

with dredging and coastal engineering stakeholders and subject matter experts from state and federal 

government, academia, and industry on the topic of sustainable use of marine sand resources. Results 

from the workshop include a generalized MCDA criteria hierarchy to be used for evaluating alternative 

borrow areas and use plans, suggested metrics and scoring considerations for those criteria, best 

management practices to promote borrow area sustainability, and a list of remaining observed 

challenges and future considerations related to using marine sand sustainably. 

 

INTRODUCTION 

Coastal beaches often erode over time due to wave action. This narrows the beach, resulting in 

increased risk of coastal flooding, lost recreational opportunities, and lost ecological habitat. Even where 

beaches are normally stable or accreting, episodic erosion from large storm events, such as from 

Hurricane Katrina or Superstorm Sandy, can rapidly erode the shoreline.1,2 In response, coastal 

communities and local, state, and federal government agencies often engage in beach nourishment 
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projects that import and deposit sand to replenish those beaches. Beach nourishment projects typically 

place a large volume of sand on the beach during an initial construction project phase, followed by a 

maintenance phase where smaller volumes are placed periodically to offset continued erosion. Once 

placed, the new sand shifts and settles with the tides and waves, eventually stabilizing as a widened 

beach.  

Beach nourishment is an important tool for coastal communities seeking to proactively reduce flood risk 

and susceptibility to sea level rise. Related projects to build or restore sand dunes can further absorb 

wave energy and reduce the chance of flood damage to homes, businesses, and infrastructure3,4. While 

early coastal engineering projects often used hard rock and concrete structures to armor shorelines, 

planners in recent decades have prioritized beach nourishment and dune construction projects as more 

nature-based solutions to reduce coastal flood risk. The use of sand for coastal engineering projects may 

also provide aesthetic, ecological, and recreational benefits that hard structures do not typically 

provide.3   

These large coastal engineering projects often require hundreds of thousands or millions of cubic yards 

of sand for their initial construction and ongoing maintenance. Given the large quantities of material 

involved, there is increasing interest from stakeholders to ensure that the extraction and placement of 

sand for these projects is done sustainably. Sustainability, in this context, includes prolonging the useful 

life of the sand resource (known as a “borrow area”) for future uses and extracting and placing the sand 

to achieve a balance of environmental, social, and financial objectives that maximize the benefits and 

minimize impacts from construction activities and resulting changes to the landscape.  

This chapter presents a generalized multi-criteria decision analysis (MCDA) framework to support and 

evaluate decisions about the sustainable extraction of sand from marine (i.e., ocean) borrow areas and 

the use of that sand for coastal engineering projects such as beach nourishment, with suggested metrics 

and scoring considerations. It also presents a list of best management practices for planning and 

operating coastal engineering projects that use marine-sand borrow areas. A preliminary list of MCDM 

criteria was developed as a starting point for discussion, from review of the literature. A facilitated 

MCDA workshop convened stakeholders and subject matter experts involved in dredging and beach 

nourishment to: develop a final MCDA criteria hierarchy, suggest metrics and scoring considerations for 

those criteria, develop a list of best management practices for sustainable borrow areas use, and 

provide further observations and recommendations on remaining challenges and future opportunities. 

These materials are intended to support decisions regarding the development, evaluation, and selection 

of scoping-level plans to use individual or combinations of borrow areas (or borrow-area regions) for 

repeated sand dredging for coastal engineering projects.  

This chapter is organized as follows: A background section provides context relevant to the topic. A 

methods section describes the preliminary criteria list and the MCDA workshop, especially with respect 

to the process of developing the final criteria hierarchy, suggested metrics, best management practices, 

and additional observations and recommendations. A results section presents the final MCDA criteria 

hierarchy and related discussion, the suggested metrics and scoring considerations, the best 

management practices, and the identified remaining challenges and future considerations. A discussion 

section comments on how these results compare to the findings of others. A conclusions section 

summarizes these contributions and their potential usefulness for implementation. 
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BACKGROUND 

Physical processes 

Modern beach nourishment and dune construction projects typically extract sand from deposits nearby 

on the ocean floor.1,2,5 In previous decades, coastal engineering projects tended to use sand mined from 

terrestrial locations, usually excavated from “borrow pits” on land with otherwise low economic and use 

value. Changing social and environmental concerns, population growth, trucking costs, logistical 

barriers, and supply exhaustion have reduced reliance on terrestrial sand sources.6 Alternative terrestrial 

construction material, such as crushed rock or fine gravel, are sometimes used in coastal engineering 

but typically provide material that is a poor match for existing beach sand and still face trucking cost and 

logistical barriers. Material excavated from concurrent navigational dredging projects can be efficient to 

use for beach nourishment, though its use is complicated by the need to align project timing, logistics, 

sediment compatibility, and transport-distance concerns. (Future changes to navigational-dredging and 

sediment-placement policies may lower some of these barriers.) Even when used beneficially for coastal 

engineering projects, the grain sizes, geotechnical characteristics, and silt fractions from navigational 

dredging material may pose problems for the receiving beach. In practice the simplest and most 

economical sand source for coastal engineering projects in recent decades has typically been to mine it 

from available nearby marine sediment deposits (known “borrow areas,” the aquatic equivalents of 

terrestrial borrow pits). 1,6  

Marine sediment typically consists of small rock and fine particles such as sand, gravel, and silt, often 

mixed with shell and organic matter. Marine sediment typically originates from terrestrial soil, created 

through weathering and erosion. Sediment is transported to and deposited in the ocean by river and 

ocean currents and wave activity, often driven by prevailing winds and current, storms, and long-term 

sea level changes. Sediment mixing is driven by these currents and by biotic activity, such as the 

burrowing of benthic invertebrates. Sediment particles that are smaller, less dense, and have higher 

surface area to volume ratios are typically the first to dislodge and be picked by currents and the last to 

settle. Stronger currents also may transport larger and heavier particles, such as sand, over farther 

distances. Rather than being uniformly distributed, interactions between currents and seafloor 

topography lead to the development of shoals that have defined areas of unconsolidated sediment 

detached from the surrounding seafloor. Shoals of similarly graded sediments tend to develop in regions 

where currents transition from higher to lower energy (e.g., at bends in rivers or changes in seafloor 

topography).7,8 Shoals with areas of high sand content are promising as borrow areas for coastal 

engineering projects. 

Near the shore, sediment composition and characteristics on the ocean floor are closely tied to physical 

processes on their adjacent landmasses. Here, sediment deposits contain particles with a wide variety of 

sizes and have accumulation rates commonly in the range of a few millimeters per year. Sediment 

deposits near a shoreline or river mouth are most likely to actively accrete greater volumes of new 

sediment. Somewhat farther into the ocean, on the outer continental shelf (OCS), fewer deposits 

actively accrete much new sediments. Shoals on the OCS within a few miles of the mouths of large rivers 

can receive substantial sediments from powerful river currents flowing into the ocean. Some offshore 

ocean currents are strong enough to transport heavier particles to lower energy areas of the OCS. 

However, most OCS sediment deposits were created by terrestrial, riverine, or wave-driven physical 

processes in past eons with lower sea levels (e.g., throughout the Holocene), when areas of today’s OCS 
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were active rivers, lakes, glacial till, marshes, dunes, beaches, lagoons, bays, or spits, etc. These deposits 

are finite, non-renewable resources that can be exhausted if mined. Much farther into the ocean are 

deep ocean sediments so removed from land that they only receive deposition of small, clay-sized 

particles at rates of a few millimeters per millennium.8,9,10,11 

Legal and regulatory context 

In the United States, seafloor resources near the coast are legally owned and managed by each state. 

The legal extent of state waters is defined by the Outer Continental Shelf Lands Act of 1953 to generally 

be within three miles of shore, with a few exceptions. Beyond state waters, the OCS Land Act ascribes 

OCS seafloor resources to US federal ownership up to the edge of the US exclusive economic zone, 

generally 200 nautical miles offshore, with a few exceptions, an area of 2.5 million square miles.12,13 

Seafloor resources beyond the US’s exclusive economic zone are governed by international law at the 

United Nation and regulated by the International Seabed Authority.14  

Within the zone of US federal ownership, the US Submerged Lands Act of 1953 establishes the federal 

government’s exclusive sovereign claim to all natural resources in the waters, seabed, and subsoil, both 

living and nonliving, and over their exploration, use, management, and conservation. This enables the 

government to take management actions to protect, develop, or extract various resources. Within this 

authority, the US Geological Society (USGS) leads many seafloor surveys and the US Bureau of Ocean 

Energy Management (BOEM) manages, protects, and grants leases that authorize the use of seafloor 

resources, including sand shoals, to interested parties.15 Amendments to the OCS Land Act in 1994 and 

1999 allow BOEM to negotiate and provide non-competitive leases to marine resources intended for use 

in beach nourishment, shore protection, and similar coastal engineering projects, and to further make 

these resources available without charge to federal, state, and local governments. When coastal 

engineering projects lack a suitable sand source nearby within state waters, BOEM leases and 

interagency agreements for sand use can be an attractive alternative.  

Federal OCS sand leases and interagency agreements are typically used to mine sand for beach 

nourishment and coastal engineering projects by the US Army Corps of Engineers (USACE, the federal 

agency with the greatest responsibility for coastal risk reduction) or state and county agencies, with the 

actual removal of material done with government or contracted commercial dredging equipment. 

Through the end of 2020, the BOEM Marine Minerals Program had executed 60 leases authorizing 

removal of 167 million cubic yards of sand for projects in 8 states on the Atlantic and Gulf coasts to help 

restore 388 miles of coastline.16  

Under current federal policy, each OCS leasee drafts an independent lease with BOEM that only 

concerns their use of an area. These leases are typically drafted to address the current needs of the 

leasee without consideration of future uses. Within state waters, most coastal states have their own 

policies, funding programs, and/or permitting processes for beach nourishment using dredged sand, 

with details varying by state.17 There is increasing concern among stakeholders that an overemphasis on 

current project needs (e.g., to extract the necessary sand volume at minimum cost) may limit the future 

usability of a site. As the use of marine sand for coastal engineering projects increases, it is important to 

ensure that resource extraction occurs in a sustainable way that balances environmental, social, and 

economic concerns and promotes long-term site useability.  

Dredging operations 
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Dredging is the process of removing sediment from the bottom of waterways and water bodies such as 

rivers, lakes, ports, harbors, and the ocean. Government agencies, companies, and organizations 

authorize and pursue dredging projects for purposes such as to clean up contaminated waterways, 

enable ship navigation, or mine sand or silt for use in environmental and infrastructure projects. 

Dredging equipment has been used to excavate sediment from waterways of interest for at least two 

thousand years.18,19  

Modern dredging equipment uses two main types of mechanisms to raise sediment to the surface: 

mechanical dredges scoop up the sediment and lift it to the surface, and hydraulic dredges use suction 

to pull the sediment up a pipeline to the surface. Mechanical dredges may be as simple as excavator on 

a barge that scoops sediment into a large, flat, adjacent scow or barge that transports it to a placement 

location, or may use custom-manufactured, self-propelled ships with large, crane-like clamshells or 

buckets that excavate the material. Hydraulic suction dredges have strong pumps that suction a slurry or 

water and sediment up a pipe to the surface. They sometimes use a rotating cutterhead to breaks up 

rock and sediment on the underwater surface. The sediment may then be pumped into a storage 

compartment on the dredging ship, into an adjacent scow, through a long pipeline to its placement site 

on the shore or elsewhere. Less common variations of dredging techniques include knockdown dredging 

where a implement is dragged along the underwater surface to smooth out high spots impacting ship 

traffic, and water-injection dredging, where a fluid slurry is created from sediment on the underwater 

surface, that then flows along the river bottom until it fills in other areas without ever being brought to 

the surface.20,21  

Planning considerations for using marine sand borrow areas for beach nourishment 

The texture and topographic variability of sand shoals support biodiversity in aquatic environments and 

provide habitat for a wide range of aquatic plants and animal species that can be affected by dredging. 

When dredging disrupts the local ecology, stable and productive conditions may not recover for many 

years. Differences in ecological resources at risk in different borrow areas, and under different potential 

dredging plans, can affect the intensity and spatial extent of environmental impacts and the site’s 

recovery. Estimating these impacts in advance helps project managers design and select better project 

alternatives.  

Dredging creates a variety of environmental impacts to the borrow area ecosystem. A common impact is 

the mortality of benthic organisms in the removed sediments. Reductions in benthic organism 

productivity also can reduce food availability for larger sea life. Changes in sediment transport and wave 

activity from an altered seafloor geometry also can change local ecosystems. The repeated dredging of 

sensitive areas, e.g., re-dredging the same linear route through a recovering benthic community, can 

further hamper recovery of the local seafloor ecology, as does failure to leave untouched “refuge 

patches” within the borrow area from which healthy seafloor flora and fauna can spread to repopulate 

recently dredged locations. Deep dredged pits may become anoxic, impacting sea life in that area. The 

removal of non-renewable sand features can cause loss of spawning grounds, essential fish habitat, and 

areas of refuge. Fish larvae, mobile invertebrates, fish, and turtles can become entrained in the dredging 

equipment and killed. Increased turbidity from dredging can temporarily harm mobile sea creatures and 

bury benthic organisms, eggs, and larvae. Marine mammals can collide with dredging equipment during 

transport and dredging operations have disrupted feeding ability and lead to loss of prey due to the 
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dredging noise.27,32,33,22 When designing a project’s dredging plan, it is important to use best 

management practices that minimize ecological impacts at the borrow area. 

The heavy mineral content in marine sand is often of interest during project planning, either related to 

potential commercial value23 or potential environmental impacts. For example, there may be a loss of 

groundwater buffering capacity and mobilization of metals and metalloids that originate in pyrite 

oxidation after sand with a high heavy mineral content is brought from an anaerobic marine 

environment to an aerobic seashore environment.24 The presence of contaminants, for example from oil 

exploration in OCS environments or pesticide runoff and industrial activity in terrestrial environments, is 

also of interest for its potential to cause of environmental and ecological impacts in beach or dune 

ecosystems. Sediment-born contaminants such as polychlorinated biphenyls (PCBs) and 

Dichlorodiphenyltrichloroethane (DDT) metabolites, are linked to abnormal reptile development, 

decreased sea turtle egg survival, and impacts to the sex and health of the turtle hatchlings. 32 In 

addition to causing impacts at the placement site, the dredging process can re-suspend contaminants in 

the water column, making them available for bio-uptake by nearby aquatic life. 

In addition to minimizing impacts, it is desirable to match as many physical characteristics as possible 

between the borrow area and beach or dune placement site, when identifying suitable sand sources for 

coastal engineering projects. Having compatible sediment characteristics ensures that the resulting 

geotechnical beach or dune profiles, ecological function, and aesthetics, etc. are compatible with the 

project design expectations for that area.25 To the extent possible, sand color should match between 

borrow and placement areas. Color affects the aesthetic value of recreational beaches26 and also affects 

beach thermal conditions, due to differences in absorption of solar radiation, with impacts to turtle 

nesting conditions and hatchling sex.27 A common way to measure color is with the Munsell 

classification system that quantifies a color’s hue (basic color), value (degree of lightness or darkness), 

and chroma (color intensity or saturation).28  

Sand mineralogy, or mineral composition, is another factor important to match between the borrow 

area and destination beach. In addition to sand mineralogy’s influence on color and heat retention, 

mismatched mineralogy can increase sand-particle wear, erosion, and turbidity and decrease the re-

nourished beach’s durability.29,30 Sediment texture is another important factor to match between 

borrow area source and destination beach, including grain size, sorting (standard deviation of mean 

grain size), skewness (degree of asymmetry in the grain size distribution), shape, and the percent of 

different types of particles such as fine sediment, sand, gravel, rock, and shell, with implications for 

beach fill longevity.31 Levels of silt or clay in the placed sediments that are high compared to the native 

sediments can increase compaction and cementation of the beach as they dry, affecting both 

recreational value and ecological burrowing and nesting activity, e.g., for sea turtle and shorebird nests. 

32 Placed sediment that is too coarse or high in shell content compared to native sediment can reduce 

the ability of shorebirds to retrieve food in the sand, whereas placed sediment that is too fine can 

increase water turbidity, which affects shorebird feeding in other ways.33 Sediment sources with a low 

overfill ratio, all else being equal, are typically preferred for logistical and economic reasons; the overfill 

ratio is the ratio of the volume of sand needing to be dredged at the borrow area to achieve the desired 

placement volume on the beach or dune after accounting for losses from fine sediments washing away 

and screening to remove coarse sediments. 
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With long-term resource leases available from federal and state agencies, sand for both the initial 

construction and ongoing maintenance components of coastal engineering projects is often taken from 

the same offshore borrow area. This can lead to the same or adjacent areas being repeatedly dredged 

for decades, compounding any dredging impacts on the resource and depleting the resource.  

In areas with limited sand availability, multiple users may need to compete for or share different parts of 

the same resource. And since the use of offshore sand has been increasing, while supplies are largely 

limited, resource conflicts are expected to increase in the future. Most agencies performing coastal 

engineering projects with marine sand plan their projects independent of other uses of the offshore 

resource and without considering long-term sustainability. For example, commercial dredging contracts 

to extract the sand are typically awarded to the lowest bidder, constrained only by logistic factors such 

as regulatory timing and equipment availability, without consideration of broader sustainability 

concerns, dredging and coastal engineering best practices, effects of dredging intensity, potential 

impacts to the seafloor ecology, or potential impacts to other concurrent or future users of the site.  

Dredging also can create physical impacts that threaten the resource itself. Project effects that change 

the flow of currents around and morphology of the sand body can erode the remaining shoal or lead to 

the loss of features that previously captured new sand or sediment from ocean currents. Cost effective 

but shortsighted techniques, such as dropping dredging rock back onto the surface of the shoal, can lead 

to “armoring” or “pavementing” of the shoal surface, making remaining sand beneath the new rock 

layer uneconomical to retrieve. Dredging plans or dredge imprecision that leave a highly variable surface 

topography can make it more difficult and costly to dredge that borrow area in the future. Dredging that 

leaves a thin remaining sand layer may effectively result in loss of that resource if it cannot be 

economically dredged in the future without also excavating undesired underlying material. In areas with 

both sand and fine sediment, dredging that leaves pits or holes may risk having them filled in with fine 

silt or mud, blocking economical access to remaining sand beneath that new layer. Most potential 

physical impacts are compounded by increased dredging duration and frequency. Estimating the spatial 

extent and intensity of physical impacts in the project planning and design phases can help project 

managers design and select less impactful dredging plans. 

The choices of borrow area and dredge equipment type affect the effective dredging depth, distance, 

time delays, coordination needs, and material yield, etc., of a project, which in turn affect project 

efficiency, duration, and cost. The choices of dredging equipment and conveyance mode from borrow 

area to the beach directly affect project cost and duration. Borrow areas in shallow water will require 

more maneuverable dredge equipment, while those in deeper water will require more powerful 

equipment. Trailing suction hopper dredges, self-propelled suction dredging ships that transport the 

sediment to the placement site in a hopper compartment within their own hull, are used most often for 

borrow areas on the OCS due to water depth, transport distance, and oceanographic conditions. 

Cutterhead dredges, dredges that pump a sediment slurry in pipelines between the borrow area and 

placement site, are often used when pipeline distances are short enough to be logistically feasible 

(generally less than a few miles). Their use is typically more sensitive to differences in distance than 

hopper dredges due to the effect of increased pipeline length on project cost. The use of tugboats and 

scows to transport sediment from the dredge site to the beach can help when conditions require extra 

maneuverability, e.g., when dredging near an offshore oil field or busy navigation channel. Other types 

of dredges are used on occasion.1  
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Site obstructions can create hazards for dredge operators and/or reduce sand yield, even if some 

obstructions are manageable. Environmental and regulatory timing constraints (e.g., that restrict dredge 

operating windows for sensitive species at some times of the year) increase total project duration and 

cost. Resource conflicts with other users, jurisdictional issues, permitting difficulties, and legal 

challenges can increase project lead time. Being aware of such external controlling factors can help 

project managers design and select better coastal engineering projects. 

Stakeholder and local community interests and concerns differ between projects but may substantially 

influence project design and operation. Diverse stakeholder interests and concerns may include effects 

on birds, fish, shell fish, benthic organisms, mammals, plants, and other ecological receptors, impacts to 

the air, terrestrial, and aquatic environmental media themselves, human health and social welfare 

considerations, and short-term and long-term economic considerations.34 Some environmental impacts 

may benefit from being considered from a life-cycle analysis (LCA) perspective.35 Stakeholders also may 

express concern with project operations or outcomes that interfere with recreational use of the beach, 

surf, and shore or that are visually unappealing. Some stakeholder groups, such as surfers or fishermen, 

may be overlooked for inclusion in formal project planning without intentional effort to contact and 

include them, even if these groups may be vocal in society at large.36 The goals of different stakeholder 

groups often conflict, especially between proponents of environmental and economic interests, though 

information sharing, participatory project processes, and efforts to promote compromise can help.37,38,39  

Project managers should invest in assessing stakeholder acceptability and community opinion when 

sustainable project alternatives are being developed and selected. 

Sustainability concepts 

One component of the classic interpretation of sustainability asserts that sustainable resource use 

occurs when its rate of use does not leave it depleted, so that it can provide value for future generations 

as well.40 This interpretation can be applied to many sand shoals nearer to the coast and to a small 

fraction of shoals on the OCS that accrete sediment. For these resources, it is worth considering the 

extent to which sand extraction should be limited to match accretion rates.  

While resource exhaustion may be a binary event, it is also useful to compare degrees of sustainability 

between project alternatives. For example, extracting sand from a renewable resource at a rate greater 

than its accretion rate may not be sustainable in the long term, but may be more sustainable than an 

alternative that permanently consumes a nonrenewable resource. Whenever possible, discussions of 

sustainability marine sand use should include a long-term, multi-generational perspective. 

Another component of the classic interpretation of sustainability suggests that sustainable decisions 

about natural resources use should balance the three broad, co-equal goals of supporting economic 

development/providing economic benefit, promoting societal welfare, and safeguarding the 

environment.41 This conceptualization of the three pillars of sustainability can be applied to both 

renewable and finite marine sand resources. From this perspective, sustainable dredging decisions 

should consider dredging costs, project timing, operational logistics, and sand compatibility alongside 

factors related to ecological impacts and benefits and stakeholder concerns related to aesthetics, 

equitable access, recreation, health impacts, and social impacts from the construction process, etc.42,43 

Care should be taken to include advocates for the environment in the decision-making process, so that 

political and financial factors do not exclusively shape the perception of what is considered sustainable 

sand resource management.38  
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The sustainable use of marine sand resources has not been previously dealt with in the academic 

literature. Moreover, only a few publications in either the academic or secondary literature have 

discussed the somewhat related topic of sustainability for navigational dredging. Examples include a 

discussion applying the three-pillars concept of sustainability to the placement of sediment from 

navigational dredging in a hypothetical case study,42 an evaluation of the challenges of incorporating 

ecological requirements in sustainable dredging planning without compromising cost effectiveness,44 an 

industry book on the role of dredging in planning sustainable port and harbor infrastructure using the 

three-pillars view of sustainability,45 and an trade-magazine article discussing sustainable placement of 

dredged sediment in the Niger Delta.46 However, these examples provide limited guidance for 

sustainably managing marine sand resources such as borrow areas since they assume that dredging is 

necessary to remove undesired sediment and focus on the problem of placing the sediment sustainably 

rather than on the problem of preserving a marine sand deposit for as long as possible and trading off 

environmental, social, and economic effects from its use. 

Stakeholder engagement through MCDA workshops 

With so many considerations and competing objectives, decision-making for marine sand resources can 

be improved with MCDA methods. MCDA has been applied in other dredging contexts but not yet to 

sustainable marine sand use. The extension of MCDA to problems of sustainable borrow-area evaluation 

and selection is a natural next step.  

Collaborative MCDA workshops and decision conferences are useful for developing MCDA models in 

situations where stakeholders and/or subject matter experts need to work together to frame and 

evaluate the problem.47,48 In these types of interactive workshops, a facilitator guides the workshop 

participants through a detailed exploration of the problem to identify and prioritize key elements to 

include in the MCDA model. The workshop focus is on the participants’ collaborative problem framing, 

with the facilitator guiding and focusing the discussion so all necessary components are covered with 

sufficient deliberation. Clear expectations must be set before the start of the meeting about its purpose, 

process, and intended outcomes.  

The facilitator’s role is to guide the process towards the desired outcomes. This includes ensuring that 

ground rules are followed, all workshop participants have an opportunity to contribute, the group 

progresses in developing the desired outcomes in the time available, misunderstood concepts are 

clarified, a summary of what has been discussed is reflected back to the group, and the modeling 

decisions made by the group are captured and summarized. This includes giving attention to nonverbal, 

emotional, and interpersonal dynamics to promote positive interactions and efficient progress. The role 

of the workshop participants, depending on the workshop scope and desired outcomes may include one 

or more of: proposing alternatives for evaluation and potential selection, proposing MCDA process 

recommendations, proposing criteria for evaluating alternatives, proposing metrics for assessing 

alternative performance with respect to criteria, proposing value functions that quantify the value or 

benefit of different levels of alternative performance on each metric, and/or proposing weights that 

quantify differences in priority among the criteria. By the end of a successful workshop, participants 

should feel that their perspectives and interests have been heard and sufficiently considered in the 

jointly developed MCDA model. Ideally, the group will have generated a shared understanding of the 

problem and, if relevant, a mutual commitment to action based on the developed model.47,48  
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Applications of MCDA in other dredging contexts 

Prior studies have applied MCDA methods to other types of dredging problems such as navigational 

dredging and contaminated-sediment remediation, often identifying criteria related to sustainability. 

Examples related to navigational dredging include Yeh et al. (1999), who develop and apply a fuzzy 

MCDA model for dredge equipment dispatching, under uncertainty, based on a number of cost, 

efficiency, performance quality, safety, and reliability criteria.49 Collier et al. (2014) worked with a 

stakeholder group to develop an MCDA model for sediment placement from navigational dredging that 

includes 18 criteria and sub-criteria for effects to the environmental media, ecological receptors, human 

health and social welfare, and short- and long-term economics.34 Manap and Voulvoulis (2014) present 

an MCDA framework for evaluating potential dredging options with criteria that include environmental, 

socio-economic, management, and technical concerns combined with a screening analysis based on 

sediment contamination.50 Jeong et al. (2016) develop an MCDA-based optimization model for river 

dredging management, based on dredging cost, social impact, and environmental impact criteria.51  

Examples related to contaminated sediment remediation include Linkov et al. (2005), who compare 

MCDA and comparative risk assessment methods for contaminated sediment management and apply a 

hypothetical MCDA model with cost, public acceptance, human health, and ecological health criteria.52 

Critto et al. (2006) implement an MCDA model to rank contaminated sediment remediation 

technologies with criteria including technology reliability, hazard, effectiveness, cost, community 

impacts and acceptability, and logistical/technical complexity.53 Kiker et al. (2008) develop an MCDA 

model for contaminated sediment management that uses weights supplies by decision makers and 

includes a mix of ecological risk, human health risk, land use (public acceptability), and cost criteria.54 

Kim et al. (2009) develop an MCDA model with stakeholder-supplied weights for contaminated sediment 

remediation with criteria for human and ecological risk, technical feasibility and project duration, social 

acceptability, and economic cost.55 Sparrevik et al. (2012) and Bates et al. (2014) develop and apply 

MCDA models for contaminated sediment management that balance environmental effect, human 

health risk, societal benefit, and financial cost.43,56  

Other examples include Sudel et al. (2008), who use MCDA to plan the schedule equipment used in 

dredging operations to reduce environmental risk to sensitive species.57 Read et al. (2014) present an 

MCDA framework for operationalizing sustainable sediment management through the “triple bottom 

line” framing of sustainability and balance environmental, economic, and social criteria.42 Bates et al. 

(2018) implement an MCDA approach for weight of evidence analysis to evaluate potential sediment 

placement sites in a navigational dredging context, with criteria for cost, historical management, 

technical suitability, environmental risk concerns and regulatory requirements, and socio-political 

concerns.58 Todaro et al. (2021) use LCA and MCDA to evaluate the sustainability of reactive capping 

alternatives to remediate contaminated sediment, combining criteria for economic costs, engineering-

based remediation effectiveness, and LCA-derived ecological impacts.59  

Best management practices for beach nourishment 

Consulting a list of best management practices can be helpful when designing and operating a project. 

While an MCDA model is useful for evaluating and selecting the alternatives, best management practices 

aid in developing the project plan and design, including identification of the borrow area, dredging 

equipment, sediment transport equipment, mitigation measures, etc. A few efforts have suggested best 

management practices for beach nourishment. Rice (2009) introduces best management practices to 
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reduce environmental impacts in various types of coastal ecosystems.60 Haney et al. (2007) include 13 

best management practices for beach nourishment projects in Massachusetts to minimize erosion, 

minimize impacts to natural resources, promote sediment reuse, and expedite regulatory review.61 

Rosov et al. (2016) summarize 7 best management practices to protect benthic communities.62 In Elko et 

al. (2020), some of the same authors apply 7 best management practices for coastal inlet engineering 

projects.63 

Guilfoyle et al. (2019) summarize some best management practices for reducing impacts to shorebirds 

and sea turtles from coastal engineering activities, primarily drawing from practices identified in agency 

regulatory environmental impact reports. They conclude that a need exists to improve existing and 

identify additional best management practices to improve beach nourishment and coastal engineering.64 

In summarizing the history of beach nourishment in the US over the past century, Elko et al. (2021) also 

conclude there is a need to develop additional best management practices for beach nourishment.65 

While some of the existing lists of best practices consider environmental impacts at the dredge site, they 

are generally unconcerned with the long-term persistence of the sand resource itself. 

 

METHODS 

Preliminary criteria list 

After reviewing the literature on marine sediments beach nourishment and coastal engineering, 

dredging logistics, environmental effects, community concerns, sustainability principles, and MCDA, as 

cited above and in the introduction to the dissertation, and after discussion with select subject matter 

experts, the author developed a preliminary list of criteria anticipated to be broadly relevant for 

sustainable borrow-area use decisions. Only criteria that could help differentiate between potential 

borrow area sites and dredging plans were included. These criteria cover project logistics, project costs, 

sand composition and compatibility, environmental and ecological impacts, and impacts to the physical 

resource (Table 3.1).  

Table 3.1. List of 18 preliminary criteria in 4 thematic areas for sustainable use of marine-sand borrow 

areas. These were identified from the relevant literature and discussion with select subject matter 

experts. This list was presented to dredging and coastal engineering stakeholders and experts to seed 

discussion during a collaborative MCDA workshop. Workshop participants added, subtracted, 

reorganized, and changed items from this list to develop a final MCDA criteria hierarchy. 

Sediment suitability 

Presence of contaminants Salinity Grain sorting 
Color hue Grain size Grain skewness 
Color lightness/darkness Grain shape Grain mineralogy 

Borrow area access 

Travel distance Site obstructions Jurisdictional issues 
Dredge access Species environmental windows  

Environmental concerns 

Scale of impact to borrow site  Impacts to adjacent regions  

Future site usability 

Physical site impacts Future accessibility  
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MCDA workshop to develop the final criteria hierarchy, suggested metrics, best management 

practices, and additional observations and recommendations 

A one-and-a-half-day MCDA workshop sponsored by BOEM and USACE was held with a group of 

dredging and coastal engineering stakeholders and experts. The workshop’s purpose was to develop a 

final MCDA criteria hierarchy, suggest quantitative or scorable qualitative metrics for those criteria, and 

develop a list of best management practices for the sustainable use of marine-sand borrow areas. A 

total of 101 individuals were invited to the MCDA workshop based on their: prior participation with the 

Florida Sand Management Working Group or the Gulf of Mexico Offshore Sand Management Working 

Group; federal, state, or local government agency role; academic interests; work in the dredging and 

beach nourishment industry; being known to the author as subject matter experts in the field; or having 

been recommended by other invitees. (The two Sand Management Working Groups convene 

government, academic, and non-governmental organization stakeholders interested in the sustainable, 

resilient, and ecologically sound management of marine resources.)  

A total of 40 participants beyond the author and facilitators/note takers joined the meeting, including 11 

in person participants and 29 via webinar connection. These included participants from 4 federal 

agencies, 6 state agencies, 4 universities, and 8 industry organizations (Table 3.2). 

Table 3.2. Participant from 22 organizations joined the MCDA workshop to develop the final MCDA 

criteria hierarchy, suggest criteria metrics, develop a list of best management practices for the 

sustainable use of marine-sand borrow areas, and provide other observations and recommendations. 

Federal Government Academia 

Bureau of Ocean Energy Management Mississippi State University 

US Army Corps of Engineers University of Rhode Island 

National Oceanic & Atmospheric Administration University of Georgia 

Gulf Coast Ecosystem Restoration Council University of New Hampshire 

State Government Industry 

Florida Department of Environmental Protection Applied Technology & Management 

Coastal Protection & Restoration Authority of 

Louisiana 

Chicago Bridge & Iron Company (McDermott 

International) 

Geological Survey of Alabama Applied Coastal Research & Engineering, Inc.  

South Carolina Department of Natural Resources Coastal Technology Corporation (G.E.C., Inc.) 

Virginia Department of Mines, Minerals, & Energy Alpine Ocean Seismic Survey, Inc. 

St. Lucie County Erosion Control District, FL Coastal Systems International 

 Taylor Engineering, Inc. 

 Humiston & Moore Engineers 

 

Workshop participants were presented with an overview of the problem and its various facets, 

introduced themselves relative to the problem, were presented with an overview of MCDA methods, 

and participated in a group discussion on the applicability of MCDA methods to borrow-area use 

decisions. They also were presented with the preliminary list of criteria, participated in group 

discussions to develop the final MCDA criteria hierarchy, participated in group discussion to suggest 
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metrics and scoring considerations for as many criteria as possible, and participated in group discussion 

to develop a list of best management practices. 

When considering the preliminary list of criteria and developing the final MCDA criteria hierarchy, 

participants were asked to consider which aspects of a dredging or coastal engineering project would 

differ from one borrow area or region to another or from one dredging plan to another. They were 

asked to focus on aspects that would differentiate borrow-area use sites and plans from one another. 

They were especially asked to add new criteria missing from the preliminary criteria list and to identify 

which criteria from the preliminary list should be removed, reworded, split into multiple sub-criteria, or 

otherwise changed. They were asked to consider how factors might change over space and time, and to 

draw from any project-scoping considerations already in use. 

When suggesting metrics for the criteria, the participants were asked to consider which measurements 

or data would be needed to evaluate the criteria, including quantitative data, qualitative data for the 

criteria that could be scored, and enumerated lists over which value could be specified. The participants 

were asked to consider whether the factors discussed would be broadly applicable, regionally 

applicable, or project specific. (Criteria for which the metrics will be project specific do not have metrics 

suggested on the final list of suggested metrics.) The participants also were asked to consider whether 

the criteria being developed were exhaustive and non-redundant, to consider whether the MCDA 

framework being developed would meet the stated objectives, and to look for ways the developing 

MCDA model could be improved. 

When developing the list of best management practices for sustainable borrow area use, participants 

were asked to consider practices that could maximize the useful life of the borrow area, minimize 

unnecessary costs for future dredging events, and encourage responsible use of the shared resource. 

They were asked to consider long-term resource availability, cumulative effects, various 

time/hassle/economic costs and benefits, and to whom those costs and benefits would accrue. Several 

questions and topic suggestions (Table 3.3) were shared with the participants to prompt ideation of best 

management practices related to different aspects of sustainable use of marine-sand borrow areas for 

coastal engineering projects. In addition to the best practices contributed during the workshop, 

participants were invited to send additional best management practice suggestions after the meeting. 

Table 3.3. Questions and topic suggestions shared with the MCDA workshop participants to prompt 

ideation of best management practices for the sustainable use of marine-sand borrow areas. 

What strategies could…: 

Reduce the cumulative impact of dredging on the borrow area? 
Preserve or perhaps enhance habitat value at the borrow area? 
Other borrow-area users (in a multiple-user scenario) implement now to make your job easier/better 
the next time that you use the borrow area? 
Prevent unnecessary cost or hassle during future dredging events? 
Avoid prematurely removing portions of the resource from future use? 
Better (more sustainably) balance short term and long-term needs? 
Better (more sustainably) balance economic, environmental, and stakeholder, etc. needs? 
Reduce the cumulative need for dredging frequency or dredging intensity? 

Consider best management practices related to: 

Dealing with oil, gas, and utility crossings efficiently while leaving the site most usable for the future. 
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Developing a spatial layout for the dredging plan that leaves the site most usable for the future. 
How to deal with encountered rocks to leave the site most usable for the future. 
How to share sand quality fairly among current and future users. 
How to fairly share the available sand volume with future users. 
How to know when a borrow area is being overused (and how to reduce overuse). 
How to coordinate use between projects with similar locations and timelines to improve efficiency. 
Other site or project concerns. 

 

During the workshop, participants offered many additional observations on existing challenges and 

recommended improvements. While these comments do not fit the structure of the MCDA criteria 

hierarchy, suggested metrics, or list of best management practices, they remain useful and insightful. A 

summary of participants’ other observations and recommendations related to remaining challenges and 

future considerations appears in the results section. 

 

RESULTS 

Final MCDA criteria hierarchy and related discussion 

A major product of the MCDA workshop was a final MCDA criteria hierarchy to guide project 

planning/scoping decisions concerning sustainable use of marine-sand borrow areas. Subject matter 

experts and stakeholders who participated in the workshop from state and federal agencies, academia, 

and industry collectively added, removed, adjusted, and refined the draft list of 18 preliminary criteria 

into a final MCDA criteria hierarchy of 35 criteria that best represented the group’s joint beliefs, 

knowledge, and wisdom about the subject. The final MCDA criteria hierarchy is suggested for use when 

evaluating potential borrow-area sites/regions and their dredging plans for use in beach nourishment, 

dune creation, and similar coastal engineering projects (Figure 3.1). 



81 

Figure 3.1. Final MCDA criteria hierarchy developed at the MCDA workshop by stakeholders and experts 

from state and federal agencies, academia, and industry. The hierarchy has five top-level criteria, four of 

which have second-level sub-criteria and two of which have third-level sub-criteria. These criteria capture 

the most important factors for evaluating marine-sand borrow areas or borrow-area regions for beach 

nourishment, dune creation, or similar coastal engineering projects, as judged by the workshop 

participants. The 35 right-most criteria, for which metrics and site-evaluation scores will be provided 

when used, are highlighted in bold and underlined text. 

The final criteria hierarchy develop by the MCDA workshop participants (Figure 3.1) was based on the 
preliminary list of criteria (Table 1) presented as a starting point for discussion. In the course of group 
dialog, the preliminary list was transformed in the following ways: The sub-criteria in the sediment 
characteristics preliminary criteria group were reorganized by MCDA workshop participants to better 
reflect their collective priorities for site evaluation. Specifically, criteria for heavy mineral content and 
the overfill ratio were added. Color was made a second-level criterion defined by third-level sub-criteria 
of value, hue, and chroma, reflecting the common Munsell color characterization system. (These 
changes provide more specificity than the color hue and lightness/darkness criteria from the 
preliminarily list.) Workshop participants anticipated that, of the three color sub-criteria, value would 
typically be most important. They also noted that sand color may change after beach placement and 
oxidization. Grain mineralogy was broadened slightly and reworded to be mineralogy/composition. 
Texture was made a second-level criterion defined by third-level sub-criteria of grain size, percent fines, 
percent sand, percent gravel, percent rock, percent shell, grain shape, sorting, and skewness. 
Participants anticipated that grain size would often be the most important characteristic to match 
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(followed by color). They anticipated that grain shape, which includes grain angularity and roundness, 
would not be much of a distinguishing consideration for sand sources on the OCS. The percent of fines, 
sand, rock, gravel, and shell material were all added to the criteria hierarchy. Participants anticipated 
that, except for offshore oil spill areas, the presence of contaminants criterion would be most relevant 
for sand sources near the coast. When used, the sub-criteria for color, texture, and 
mineralogy/composition will need to be evaluated based on their closeness of match for the specific 
beach, dune, or other coastal engineering application.  

The workshop participants also added an additional top-level criterion for stakeholder acceptability and 
community opinion. Because stakeholder and community concerns will vary from project to project (e.g., 
based local community, environmental groups, industry, etc.), no second-level criteria were added to 
this general final MCDA criteria hierarchy; they can be developed for local projects as needed. 

The workshop participants reframed the preliminary environmental concerns into an environmental and 

physical impacts criterion with sub-criteria for the spatial extent of environmental and physical impacts, 

the intensity of environmental and physical impacts, and the time for environmental recovery. While 

workshop participants anticipated that all factors might differ between borrow areas, the extent and 

intensity of impacts were judged as less likely to differ between different parts of the same borrow area 

than the time to recovery. Regions of borrow areas with greater horizontal distance to exposed hard 

bottom (bedrock) were anticipated to have fewer environmental impacts resulting from use because 

filter feeders, coral, and other organisms that live on hard bottom would be exposed to fewer impacts 

from increased turbidity. 

The sub-criteria for the preliminary future site usability criterion also were entirely replaced by 

workshop participants. The final future site usability criterion is defined by sub-criteria related to the 

likelihoods of reduced future site usability from pavementing/armoring of the surface or creation of 

challenging corners or geometry, changed abilities of the sediment source to be preserved, and support 

of the site for future accretion of useful material. Workshop participants anticipated that if dredging 

operations newly exposure hard bottom, this hard bottom may need to be protected by a non-

dredgeable buffer zone in future dredging operations. It would also generally limit future site usability if 

dredged depressions infill with mud in subsequent years (though in some niche cases mixed sand-mud 

material is still valuable, e.g., as material for island construction).  

For the borrow site controls criterion, the preliminary species environmental windows sub-criterion was 

combined by workshop participants with other potential timing delays and replaced with a sub-criterion 

for total dredging time, including expected project delays from safety concerns, inclement weather, and 

environmental windows, etc. Similarly, the jurisdictional issues sub-criterion was combined with other 

potential coordination needs and re-envisioned by workshop participants as a sub-criterion for expected 

permit/coordination lead time, including coordination for tribal concerns, jurisdictional issues, regional 

state/county concerns about future resource availability, concerns about dredging in military-use areas, 

and special-circumstance permits such as USACE permits to dredge in a defined navigational safety 

fairway, etc. The travel distance sub-criterion was replaced with a conveyance sub-criterion that 

includes third-level sub-criteria of conveyance mode and distance. The dredge access sub-criterion was 

replaced with a water depth/bathymetry sub-criterion that includes third-level sub-criteria to assess 

whether a site is too shallow or too deep for the necessary equipment. The site obstructions sub-

criterion was expanded to include third-level sub-criteria for the percent yield with obstructions, 
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residual hazard, and percent of obstructions that are manageable (i.e., that are clearable or 

controllable).  

Workshop participants provided several points of discussion related to borrow site controls. Specifically, 

they noted that presence of site obstructions is closely related to bathymetry and space available to 

safely maneuver; if a site is surrounded by linear features and closed-in, dredgers may have to cut a 

clearing first to create enough space to maneuver safely. Percent yield relates to the fraction of available 

suitable sand volume that is actually accessible in practice. The presence of unsuitable material beneath 

suitable sand and the depth over which the material transitions also may affect percent yield. 

Environmental resources have buffers around them that should be included in the obstructions to avoid. 

The presence of munitions and explosives of concern and unexploded ordinance (MEC/UXO) from past 

military activity could affect percent yield and residual hazard sub-criteria. Archaeological resources 

such as ship wreaks or Paleo-Indian sites (from when ocean levels were lower) also need to be avoided.  

Suggested metrics and scoring considerations  

While the workshop participants generally agreed that many metrics for these criteria will depend on 

project-specific context, some potentially useful metrics and scoring considerations were suggested, as 

summarized below. (The participants agreed that the criteria weights should be developed on a project-

by-project basis through consultation between the project management teams and stakeholder and 

community groups.) These suggestions are organized using the bullet-point format shown below, 

progressing through the criteria hierarchy from left to right and top to bottom: 

Example first-level criterion: Suggested metrics and scoring considerations. 

• Example second-level sub-criterion: Suggested metrics and scoring considerations. 

o Example third-level sub-criterion: Suggested metrics and scoring considerations. 

The intent of the suggestions presented here is to guide rather than dictate development of project-

specific metrics and scoring rubrics. The suggested metrics and scoring considerations are as follows. 

Sediment characteristics: 

• Presence of contaminants: Measure as a binary variable based on whether the presence of 

contaminants is anticipated to be pose an issue or non-issue for project operations.  

• Heavy mineral content: Measure as a percent.  

• Color: Measure in terms of Munsell Value, Hue, and Chroma, which each have their own 

standardized scales. However, if quantitative color analysis will not be done, color suitability 

could be scored as a single second-level sub-criterion (i.e., without value, hue, and chroma third-

level sub-criteria) on a Likert-type qualitative scale estimating the overall degree of color 

suitability for sand use at the placement site. If scoring color suitability qualitatively, consider: 1) 

how well the color matches existing material at the placement site and 2) how well suited the 

color is for any intended animal habitat.  

• Texture: 

o Grain size: Measure in millimeters or phi units (common measurement units for sands, 

where phi is related to the negative log of grain diameter).66,67  

o Percent fines, percent sand, percent fine gravel, and percent rock: Measure by the 

percent of grains passing an appropriate size sieve. 
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o Percent shell: Measure as the visual estimation of the percent of shell and shell 

fragments in the sediment.  

o Grain shape: Estimate as rounded, sub-rounded, sub-angular, or angular and score on a 

Likert-type qualitative scale estimating project suitability.  

o Sorting and Skewness: Measure in phi units.  

o Alternatively, if quantitative texture analysis will not be done to score texture suitability 

on these sub-criteria, the overall texture can be scored on a Likert-type qualitative scale 

estimating the overall degree of texture suitability, considering: 1) appropriateness of 

grain shape, grain size, and grain size distribution; 2) how well texture matches existing 

placement site material; and 3) how well-suited texture is to achieve the beach slope or 

other placement-site design performance requirements. 

• Mineralogy/composition: Either measure as a percent difference or score on a Likert-type 

qualitative scale estimating how well suited the sand source is for the intended placement site 

(e.g., as “highly unsuitable,” “somewhat unsuitable,” “somewhat suitable,” “highly suitable,” 

etc.).  If scoring the mineralogy/composition sub-criterion qualitatively, consider: 1) how well 

the sediment composition matches existing material at the placement site, independent of color 

or texture; 2) the relative composition of carbonate, silica, or exotic mineral constituent; and 3) 

if any required project threshold for mineral composition is likely to be met.  

• Overfill ratio: Measure as the ratio of the volume of sediment needing to be dredged to the 

volume of sediment delivered at the placement site. 

Stakeholder acceptability and community opinion: Develop metrics on a project-by-project basis to 

reflect whatever sub-criteria are identified as important by stakeholder and community groups for that 

project. In absence of sub-criteria, this criterion can be scored overall on a Likert-type qualitative scale 

estimating how acceptable to the stakeholders and community the sand source is perceived to be for 

the intended placement site. If scoring qualitatively, consider: 1) a broad range of relevant stakeholders, 

such as residents, county agencies, state agencies, federal agencies, environmental organizations, labor 

or economic groups, etc.; 2) a broad range of potential topics of concern, such as water quality, 

threatened and endangered species, migratory species, noise, visual aesthetic impacts, etc.; 3) past 

stakeholder and community member responses to similar work in the region; and 4) whether any recent 

or proposed legislation for the current work might be considered precedent-setting and how the 

stakeholders and community members would react to that new precedent. 

Environmental and physical impacts:  

• Spatial extent of environmental impact: Score on a Likert-type qualitative scale, considering: 1) 

regional context and area of habitat impaired relative to available habitat of that type in the 

region; 2) extent to which nearby habitat will be accessible to biological communities that will 

need to relocate; 3) potential for increased turbidity compared to local baseline turbidity; 4) 

potential for suspended sediment plumes from dredging to move beyond the dredge site, 

especially in areas with coral reefs; and 5) the full picture or extent of spatial impact, including 

both at the dredge site and over the sediment transport pathway. 

• Intensity of environmental impact: Score on a Likert-type qualitative scale, considering: 1) the 

species present (especially considering that if any endangered species are present, as impacts to 

them from disturbances may have exceptionally high consequences); 2) the amount of benthic 

habitat to be removed relative to the total amount of benthic habitat at the borrow area; 3) 
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how rare the habitat is that will be impacted; 4) the duration and/or frequency of the dredging 

activity related to the ability/thresholds of local species to withstand disruption; 5) changes to 

the substrate characteristics and sediment landscape (e.g., from holes, mounds, or new 

geometric formations) that may affect the distribution of species at the borrow area; 6) impacts 

to water qualify (e.g., anoxic depressions) if no infilling occurs; 7) impacts to future breeding at 

the site; 8) important sub-populations of affected species (e.g., juveniles, females); 9) the rate of 

recovery for individual species, which may be different that the overall time for ecosystem 

recovery; and 10) how much is known about the ecosystem at the borrow area and the 

uncertainty surrounding that knowledge, for example knowledge about the spatial distribution 

of species, their concentrations in the area, the size of the special populations at the borrow 

area relative to in the region overall, whether some regional species congregate in high density 

at the borrow area, why they congregate there, and if whether they are anticipated to stay or 

move elsewhere if impacted. 

• Time for environmental recovery: Score on a Likert-type qualitative scale, considering: 1) 

whether the disrupted species are likely to return or to be permanently displaced; 2) what the 

short- and long-term effects are expected to be for migrating species that only periodically use 

the area; 3) what the short- and long-term effects are expected to be for the benthic 

community; 4) whether full ecosystem recovery can be expected or just biomass recovery, 

where full ecosystem recovery involves a complete return to the pre-dredging species types, 

species distributions, and food chains; and 5) regional recovery rates and habitat-specific 

accretion rates. Note, recovery rates will vary by location but may typically be on the order of a 

few years.  

• Spatial extent of physical impact: Score on a Likert-type qualitative scale, considering: 1) 

changes in wave attenuation due to sand removal; 2) changes in coastal erosion rates relative to 

the historical record; 3) the length of coastline impacted by changes in wave energy; 4) changes 

in sediment transport, including the potential to impact shoals between the borrow area and 

shoreline; and 5) changes in water energy and direction on scour, erosion, and accretion for the 

nearest coastline. Note, physical impacts to other features are most common within an 

approximately 1,000-foot range of the borrow area, which is why many archeological artifacts 

and existing pipelines are given a 1,000-foot buffer. It is also most common to see wave regime 

effects when the dredge site is in water that is 40-feet deep or less. 

• Intensity of physical impact: Score on a Likert-type qualitative scale, considering: 1) the volume 

of sediment to be removed relative to the volume of the marine-sand resource as a whole; 2) 

the distribution of the total sediment volume to be removed and whether a greater portion will 

be removed from the shore side or off-shore side of the sand feature; 3) changes in sediment 

characteristics that may affect the stability of the sand feature, potentially leading to its collapse 

or rapid settling; 4) changes to the relative height or shape of the sand formation, e.g., due to 

holes, linear scars, created ridges, etc.; 5) whether any physical changes are within the depth of 

closure where wave height may be affected (note, the depth of closure is the depth nearest to 

shore beyond which there is no significant net sediment exchange between the nearshore and 

offshore systems); 6) how any changes in wave climate in one dredged region of a borrow area 

will affect the rest of the borrow area; 7) how any changes in wave climate will affect wave 

height at the shore; 8) the importance of any affected onshore resources, such as infrastructure, 

landmarks, or recreation sites, etc., and 9) the expected frequency of dredging activity at the 
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borrow area. Note, any evaluation of the effects of changes in wave height will need to be site 

specific. Commonly, a change of 10-20% in wave height may be acceptable if monitored for 

effects, whereas greater changes in wave height may lead to more serious effects. Note also 

that some National Marine Fisheries Service regions have standards for the maximum fraction of 

sand that it is acceptable to remove from a habitat area. 

Future site usability: 

• Reduced future site useability due to pavementing or armoring of the surface: Score on a Likert-

type qualitative scale, considering: 1) whether the site will or will not ever be used again; and 2) 

the likelihood that the planned dredging method will lead to pavementing or armoring of the 

surface of the borrow area by filtering out or dumping larger rock back on the surface. 

• Reduced future site use ability by creation of challenging corners or geometry: Score on a Likert-

type qualitative scale, considering: 1) whether the site will or will not ever be used again; 2) the 

thickness of desirable sediment layers and the characteristics and acceptability of the substrate 

material; 3) the type of dredge head to be used and its precision with respect to depth and 

lateral tolerances; 4) whether the dredging plan includes penalties for dredging over-depth that 

may incentivize dredgers to leave some suitable sand at the site in thin layers that will be 

difficult to recover in the future; 5) the configuration of any existing pipelines, archeological 

features, or potential MEC/UXO, along with their required buffers; and 6) whether the dredging 

operations will expose new hardbottom that will need to be protected by a buffer in the future, 

thus excluding sandy material in the buffer zone from use. Note, some examples of challenging 

corners or geometry include small, disconnected pockets of remaining suitable material, non-

linear dredge-area boundaries for remaining suitable material, and remaining suitable material 

left in thin layers.  

• Changed ability for the sediment source to be preserved: Score on a Likert-type qualitative scale, 

considering: 1) whether the site will or will not ever be used again; 2) the quality and stability of 

offsite features that provide sediment to the area; 2) the sediment transport processes in the 

area; 3) the likelihood for hurricanes or major storms to change sediment transport processes to 

the site; 4) changes to the erosional environment that may result in the loss or degradation of 

surface material in the borrow area, including redistribution of the existing sand volume into a 

layer that is too thin to dredge; and 5) if the sand can naturally replenish, how the 

replenishment rate or ability will be affected. Note, at 1 mile offshore, a sustained 

replenishment rate of 1/10 foot would commonly be considered very slow. At 3 miles offshore, 

sediment transport processes are even slower and most sand removal can effectively be 

considered permanent. Replenishment is also a function of water depth; in the Gulf of Mexico, 

recovery in 3-5 years could be considered rapid but in the deeper Atlantic, recovery in in 5-10 

years could be considered rapid. 

• Support for future accretion of useful material: Score on a Likert-type qualitative scale, 

considering: 1) whether the site will or will not ever be used again; 2) whether post-dredging 

bathymetry will affect the type of material being accreted at the site; 3) whether the 

development of any new features or geometry adjacent to the site would act as natural screens 

or change flow rates to alter the fraction of coarse vs fine material accreted; 4) whether changes 

to the wave-energy regime will impact the amount and type of new sediment being deposited; 

5) if the type of material accreted changes, the utility of the expected new material for future 

anticipated sediment needs in the region (some regions may be able to beneficially use accreted 
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mud and silt while others may only be able to beneficially use accreted sandy material); and 6) 

the likelihood for hurricanes or major storms to change sediment transport processes to the 

site. 

Borrow site controls:  

• Conveyance:  

o Conveyance mode: Measure as the number of conveyance modes feasible for that 

borrow area. 

o Conveyance distance: Measure in miles or kilometers.  

o Alternatively, if better suited for the project considerations, conveyance can be scored 

as a single sub-criterion on a Likert-type qualitative scale estimating the overall degree 

of conveyance suitability, considering: 1) the number of dredge types that are feasible 

for use at that site and how constrained their operations would be; 2) the distance of 

sediment transport between the borrow and placement areas; 3) the efficiency of the 

anticipated dredge and transport equipment types; and 4) the complexity of the sand 

body and suitability of different types of drag heads for it. 

• Water depth/bathymetry:  

o Not too shallow: Measure in feet or meters. 

o Not too deep: Measure in feet or meters.  

o Alternatively, water depth/bathymetry can be scored as a single sub-criterion on a 

Likert-type qualitative scale estimating the overall degree of water depth/bathymetry 

suitability, considering: 1) how much of a challenge the water depth and bathymetry at 

the borrow area will present for dredging operations; 2) the maximum and minimum 

water depths at the site and any constraints that water depth imposes on the type or 

timing of equipment use; and 3) any entrance channels to the borrow area or other 

bathymetric features that influence the direction from which the borrow area can be 

accessed. 

• Total time including project delays: Measure in weeks or months.  

• Expected permit/coordination time: Measure in weeks or months. 

• Site obstructions:  

o Percent yield with obstructions: Measure as the percent of suitable sand in the borrow 

area that is effectively available for dredged given the presence of site obstructions. 

Alternatively, if quantitative calculation of percent yield with obstructions will not be 

performed, yield suitability can be scored on a Likert-type qualitative scale, considering: 

1) the presence of rock, the presence of MEC/UXO, site geometry, undesirable cover 

material above the suitable sand, shipping routes to avoid, oil and gas pipelines, 

underwater communications cables, wind farms, archeological artifacts, hard bottom 

habitat, essential fish habitat, and aquaculture; 2) required buffers around any of those 

features; and 3) any resulting increase in the complexity of dredging operations or 

reduction in percent yield as a result of the obstructions.  

o Residual hazard: Measure on a Likert-type qualitative scale estimating the residual 

hazards to dredging at the site after any removable obstructions have been removed, 

considering: 1) the known presence of MEC/UXO and hazardous underwater cables; and 

2) the possibility of unidentified or unmarked hazards such as MEC/UXO or underwater 

cables that will require extra caution to be exercised over much of the dredging site.  
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o Manageable obstructions: Measure on a Likert-type qualitative scale estimating the 

extent to which obstructions to dredging at the site are clearable or controllable, 

considering: 1) the number of active oil and gas pipelines and/or cables crossing the site 

and the extent to which they are adequately covered by a protective layer of material; 

2) any legacy oil and gas pipelines that failed to be removed (e.g., if the owners secured 

a removal waiver from BOEM); 3) any existing site obstructions that can be removed or 

managed to reduce interference with dredging operations; 4) the effort and time 

required to remove, clear, or control any manageable obstructions; and 5) the timing of 

whether the obstructions will be removed at the time of dredging or before.  

Best management practices for the sustainable use of marine-sand borrow areas  

The following best management practices were contributed by subject-matter-expert and stakeholder 

participants at the MCDA workshop on sustainable use of marine-sand borrow areas and in subsequent 

correspondence. Some practices relate to specific activities while others provide general considerations 

to be incorporated into project planning and implementation. The motivation to catalog these practices 

is to help borrow area users delay resource depletion, limit environmental and physical impacts from 

dredging, balance short- and long-term objectives, reduce project cost and hassle, and ensure equitable 

borrow-area access across multiple present and future users. These practices are grouped into four 

thematic areas of project planning and design, physical effects, environmental effects, and stakeholder 

engagement and coordination between multiple users. 

Project planning and design 

1) Plan with a holistic view of the beach erosion and sand-replacement cycle. Before withdrawing 
resources from a marine sand deposit to replace eroded beach sands, prioritize alternative 
erosion control methods and implement strategies to extend the presence of existing beach 
sands. 

2) Beneficially use suitable sediments from other dredging projects. If the dredged sediments 
from another project (e.g., from navigational dredging) are suitable for use with a coastal 
engineering project and would otherwise be disposed of without or with lesser benefit, 
prioritize their beneficial use for the coastal engineering project before using limited virgin sands 
from a marine borrow area.  

3) Develop a Borrow Area Conservation Plan. This plan should outline where and how much the 
dredger should dredge to efficiently conserve and allocate the resource across current and 
future uses. For example, it could be used to ensure that all suitable sand gets taken from a sub-
region in clean cuts, leaving an uncomplicated surface geometry and volumes suitable for future 
dredging with minimal loss.  

4) Encourage dredge operators performing the work to be precise and thorough. Provide detailed 
specifications, guidance, and incentives for dredgers to take enough time to be precise in 
dredging instead of rushing a project in ways that may reduce current operating costs at the 
expense of future dredging efficiency. Promote and reward sustainable dredging.  

5) Limit use of renewable sites to their renourishment rate. Dredging at a rate similar to or less 
than a site’s renourishment rate will help prevent overuse and potential permanent loss of a 
renewable feature. Plan projects so the projected time between the initial dredging for project 
construction and subsequent dredging for project maintenance is similar to or exceeds the time 
needed for renourishment. (This is most applicable to sand deposits near the coast since many 
deposits on the OCS are relic sand features that do not have appreciable renourishment.)  
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6) Avoid leaving small, scattered sand pockets. It is preferable that each dredging operation either 
leave behind enough sand for the next dredging cycle or no sand at all since small, scattered 
pockets of remaining sand may not be economical to dredge in the future. This can help reduce 
long term costs and extend the collective life borrow areas in the region. 

7) Avoid leaving behind sand layers that are too thin. Leave any remaining sand layers with 
sufficient vertical depth to be economically dredged in the future. If the sand layer is too thin, it 
may be difficult or costly to dredge again without also capturing unsuitable underlying material. 

8) Consider the infilling rate and sediment type when creating the dredging plan. For example, if 
infilling material (new material that replaces removed material over time) is primarily mud, aim 
to remove most available sand on the first pass so that little sand will be left to be covered by 
mud, becoming unviable for later dredging for most coastal engineering uses. 

9) Do not automatically exclude borrow areas with slightly elevated silt content. When dredged 
material is placed it often has slightly different characteristics than when it was dredged, for 
example some fine sediment often washes away during dredging and placement. This may 
result in placed sediments being more compatible than what was characterized at the borrow 
site. (For example, in some circumstance it might be more feasible to use sand from an under-
utilized area with 85% sand content rather than an over-utilized area with 90% sand content.) 

10) Do not automatically exclude borrow areas if wave models show only small potential increase 
in erosion along the shoreline. There is always uncertainty in wave modeling. When selecting a 
borrow-area, consider the accuracy of the wave model projection compared to any predicted 
increase before excluding a borrow area.  

11) Consider tradeoffs between dredging efficiency and cost. Since many marine sand resources 
are finite, removal operations should be done with highly efficient recovery rates even if that 
increases near-term cost. For example, using a shorter dredge pipe may increase cost but will 
increase recovery rate because less energy will be used at the dredge head, stirring up less 
material to be washed away and potentially lost. Using a longer dredge pipe may be cheaper in 
the near term but uses more energy at the dredge head, stirring up more material and reducing 
capture efficiency. Short-term costs that improve recovery rates can delay long-term costs 
related to exploration for alternative marine sand resources and increased transport distance 
from farther borrow areas.  

Physical effects 

12) Avoid armoring the post-dredging surface. Avoid dredging that leaves or drops dredged rock 
back onto the surface of the sand, armoring it and leaving remaining sand uneconomical to 
retrieve under the new layer of rock. Prioritize the use of uniform sand ridges that have little 
gravel in them to avoid leaving a gravel layer behind on the post-dredging surface.  

13) Rotate regions used in renewable dredge areas. Dredge renewable borrow areas in a rotating 
pattern, similar to a farm crop or grazing rotation system, to allow sand sources to refill and the 
ecology to recover more effectively.  

14) Selectively dredge the accreting or leading edge of a sand deposit. Prioritize dredging at the 
recently accreted or leading edge of the feature. This will allow the feature to remain more 
stable and it will better support natural physical recovery for future use. (Sand dredged from 
other parts may be less likely to renew).  

15) Define the maximum dredge depth based on each sand resource. Consider the context of the 
resource when defining a reasonable maximum dredge depth. A one-size-fits-all recommended 
dredge depth may not be optimal for every borrow area. Also, since different dredgers may 
interpret depth differently in difference circumstances, specify any depths and clearances in 
clear terms that the dredger can understand with respect to their equipment. 
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16) Construct reinforced side slopes. If the post-dredging slope is steep or vertical, the sand 
structure may adjust or redistribute too quickly and destroy habitat. Avoiding this may require 
leaving a small amount of material behind to reinforce the slope. When making step cuts, also 
make sure that the wall sizes between cells are consistent.  

17) Leave behind a flat surface and avoid digging holes. The priority should be to dredge away 
elevated shoals first. It is generally better to remove sand to a flat surface rather than to start 
with a flat surface and create a hole.  

18) Consider the tradeoffs between shallow and deep cuts. Consider whether to take the sand 
volume from the entire surface area, in a shallow layer, or from a deeper cut into just a portion 
of the surface area. The first option prevents holes that may change wave propagation, while 
the second option preserves surface area vital to the benthic community. Balance maintaining 
surface area for benthic organisms with leaving a geometry that maintains wave propagation.  

19) Consider trade-offs between unnecessary use of MEC/UXO screens and future borrow area 
usability. Screens on dredge intakes are sometimes used to prevent capture of MEC/UXO that 
may have been left on the ocean bottom from past military exercises. MEC/UXO screening 
typically also screens out rock and can lead to rock armoring of the post-dredging surface. This 
can render the site unusable and lead to premature loss of remaining sand resources. Make risk-
informed judgements about areas where MEC/UXO screens are needed.  

20) Use dredged rock to protect sand resources. Sometimes dredgers screen for rock and then have 
a rock disposal area adjacent to the borrow area. A potentially helpful alternative would be to 
use that rock to build a ridge to trap new fine material washing in to prevent it from covering 
sand on the existing surface of the borrow area. 

21) Consider screening for rock on the beach. Screening for rock on the beach rather than at the 
dredging site may improve dredging efficiency and better prolong the useful life of the borrow 
area (by preventing armoring). Some beachgoers may be interested in collecting or playing with 
screened rock at the beach. 

Environmental effects 

22) Designate an environmental “refuge patch” within the borrow area. Leaving un-dredged 
refuge patches can speed recolonization to dredged areas. If ecological communities are 
expected to be densest on the crest of a shoal, for example, leaving a portion of that crest intact 
should help seed flora and fauna recovery across the shoal.  

23) Prioritize borrow areas that will replenish with the same type of habitat. For example, given 
borrow areas that will replenish excavated sand with either more sand or with mud, selecting 
the one that will replenish with more sand will encourage habitat consistency.  

24) Use dredged rock to create habitat. Fish habitat tends to occur where sediments are poorly 
graded (more diverse) rather than well graded (more uniformly sized), often including rock. 
Dredged rock could be used to create essential fish habitat. If the habitat is created away from 
the sand resource, the new habitat should not preclude future dredging. 

25) Use species-specific environmental mitigations to reduce dredging impacts. For example, 
include species-specific considerations in the design of a turtle deflector/excluder.  

26) Prioritize borrow areas that support maximum ecosystem recovery. Some ecosystems may 
recover from perturbations more quickly than others. Prioritizing those that recover quickly 
should reduce cumulative environmental impacts across multiple dredging events. 

27) Minimize cumulative dredging intensity for benthic communities. To decrease the degree of 
disturbance experienced by the benthic community in a borrow area, avoid repeating 
excavations in sensitive areas, e.g., avoid following the same linear route through a recovering 
benthic community.   
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28) Consider tradeoffs between efficiency and overall dredge time when planning dredging 
geometry. Dredging in strips rather than a large square may have lower impact on the 
macroinvertebrate system but may increase impacts on elements of the ecosystem sensitive to 
suspended sediments from longer dredge times. Seek a dredging plan that will help protect the 
most sensitive and valuable habitat at each site. 

29) Optimize dredging geometry to minimize environmental and physical impacts. If an 
assessment shows that a dredging plan will cause unnecessary environmental and physical 
impact, then the geometry should be reassessed and models rerun to identify a better dredging 
plan that will leave a post-dredging geometry that minimizes environmental impact. For 
example, instead of taking the entire volume from the top of a shoal, take it in evenly spaced 
increments and leave a rolling ridgeline or make a cone shape. Alternatively, collect the volume 
from the slope of the ridge rather than the top. 

30) When planning the dredging geometry, consider tradeoffs between impacts to the physical 
feature vs to the macroinvertebrate ecosystem. Wide, shallow, uniform dredging may maintain 
the shape of the feature but removes macroinvertebrates from the entire top layer, whereas 
dredging focused on specific areas may have a lower impact on macroinvertebrates but a large 
impact on feature shape. Consider tradeoffs in potential impacts from dredging geometry in the 
context of what is present at the resource. For example, while a large, shallow depression may 
harm more benthic organisms during removal, it may increase dissolved oxygen level and 
accelerate recovery if the environment can sustain the oxygen demands of recovering 
organisms. In contrast, small, deep holes that harm fewer benthic organisms during removal 
may be more harmful over the long term due to lower dissolved oxygen levels in the hole and an 
inability to sustain a productive ecosystem in that area. 

31) Use notches to mitigate effects of lost surface area. For benthic organisms that rely on the 
surface area of a shoal, lost surface area from dredging may be partially offset by creating 
notches in the dredging geometry that increase the shoal’s surface area.  

32) Use turbidity curtains when coral reefs are down-current. Turbidity curtains can help prevent 
settling silt from harming corral. 

33) Consider tradeoffs between different environmental impacts when evaluating risks to high 
value resources. Removing sand in a way that reduces risk to a high value resource may be 
preferable in some cases even if it increases turbidity and other resulting ecosystem impacts. A 
mild ecosystem disturbance from one type of impact may be acceptable if it allows dredgers to 
avoid operating at a site that poses a risk to a higher value environmental resource.  

34) Consider tradeoffs in the use of different dredge equipment types. If suspended sediment is of 
critical concern, prioritizing a trailing suction hopper dredge may reduce turbidity.  

Stakeholder engagement and coordination between multiple users 

35) Form a stakeholder working group to share plans and data. A working group with stakeholders 
in a region, including potential project sponsors and other interested parties, is encouraged to 
openly disclose information about planned use of shared sand resources, including discussion of 
planned projects, volumes, timing, etc. These working groups can serve as a mechanism for 
reviewing data and discussing the results of physical and biological monitoring efforts. Sharing 
data may prevent the need for multiple users to perform duplicate assessments.  

36) Include commercial fishing groups in pre-dredge planning. By including commercial fishing 
groups, specific high-value fishing areas at a borrow site can be removed from planned 
dredging. Early compromises with commercial fishing stakeholders may save a project team 
from expensive borrow area investigations and also may reduce long-term litigation costs.  

37) Share projections of future resource use. When developing a coastal engineering project that 
will require repeated nourishment over time, estimate the ballpark timeframe and volumes of 
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future dredging events and share this information with interested parties who may also have a 
stake in marine sand use in the region.  

38) Maximize transparency and cooperation between stakeholders. All stakeholders, including 
federal/state/regional agencies, regulators, the fishing industry, community interest groups, 
etc., can help avoid political disputes, resentment, and litigation by eliminating non-transparent 
and non-cooperative practices that result in short-term gains for one party but long-term 
impacts for other borrow-area users in the region as a whole.  

39) To help prevent site-use conflicts, federal partners should proactively reach out to state and 
local borrow-area users. State and local government users may also be planning dredging 
operations, but are less likely to be involved in the federal planning process. 

40) Develop a detailed inventory of marine sand resources to manage stakeholder expectations. 
Knowing exactly what is available and where can help manage expectations for long-term 
shared resource use and encourage conservation of finite resources. Knowing the spatial 
distribution and volumes of resources available can provide greater flexibility to stakeholders in 
planning their dredging geometries. Having a resource inventory can also help with 
communication between stakeholders; if other stakeholders understand that volume is limited, 
they may be more willing to compromise to preserve the resource, e.g., through volume 
controls and allowing longer periods between dredging events. 

41) Perform a detailed regional Environmental Impact Statement before allowing multiple 
stakeholders to share sand resources in a region. A single, simple Environmental Assessment 
may not be thorough enough to evaluate all impacts to essential fish habitat, ecological recovery 
times, archaeological features, and the needs and future resource uses of other stakeholders in 
the region.  

42) Consider resource uses and dredging distances for other stakeholders when selecting a 
borrow area. Developing a shared understanding of the long-term dredging needs of all 
stakeholders in the region will support the coordinated selection of borrow areas to preserve 
everyone’s best options.  

43) Consider replacing the term “competitive use” with “shared use” in project discussions. 
“Competitive use” implies that there is a winner and a loser. The objective of coordination 
between multiple users should be reasonable compromise between the stakeholders without 
resentment.  

44) Share sand quality fairly. It is recommended to not unilaterally take the best sand for one’s own 
project and leave less useful remaining deposits for other stakeholders. To encourage 
exploration while sharing fairly, consider offering some advantage to the party that performed 
the assessments to identify a viable resource.  

Remaining challenges and future considerations 

Beyond contributing to the MCDA criteria hierarchy and list of best management practices, the MCDA 

workshop participants shared many observations and recommendations on existing challenges and 

future potential improvements for sustainable use of marine sand borrow areas. The bulleted list below 

summarizes observations and recommendations grouped by topics related to multiple borrow area uses 

and users and project implementation.  

Challenges and considerations related to multiple uses and users 

• The concept of multiple-use borrow areas should be expanded to capture more than just 

multiple users of the same resource. It should also include using a borrow area for multiple 
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purposes, e.g., for sand extraction, for an underwater communications cable pathway, for a 

commercial fishing hot spot, or for the foundation for an offshore wind farm, etc. 

• A cooperative agreement developed between 13 states after Hurricane Sandy provides a good 

avenue for coordination between state and federal users. 

• Inter-agency politics complicate planning and coordination. These are often related to not-in-

my-backyard preferences and perceptions of entitlement to resources based on proximity. 

• BOEM leases are non-exclusive, meaning that two agencies could be granted use of the same 

sand resource at the same time (e.g., one using it for single-use emergency beach re-

nourishment after a large storm and another for ongoing, extended beach-nourishment 

maintenance. There could be conflicts about priority should both users want to extract the same 

sand. 

• BOEM leases are typically for 3-5 years but state leases may be for 15 years. Non-USACE users 

also may need a USACE permit for yet another timeframe. While there are reasons for these 

different timeframes, bringing them into sync would help users. 

• BOEM often grants wavers to the requirement to remove sediment-slurry delivery pipelines 

after dredging operations are finished. However, the accumulation of abandoned pipelines in a 

borrow area decreases usefulness to future users. 

• Sharing the cost of removing abandoned pipelines in a borrow area may help prolong its useful 

life. For example, a new project sponsor could pay a portion of the total cost to gain access to 

the sand, the state or federal lease owner could pay a portion to improve the quality of the 

resource, EPA could pay a portion to achieve water quality improvements, and/or the past 

pipeline owners could pay a portion to responsibly retire the asset, etc.  

Challenges and considerations related to project implementation 

• GIS data are available, but not all available in one place. It would help to have a centralized 

online data portal that could integrate or link to different existing GIS data. 

• Sand compatibility is important for engineering performance and aesthetics. Yet, dredging 

contract specifications that are overly specific with respect to sand compatibility make the 

dredgers’ job more difficult and increase project cost. 

• A major challenge for project sponsors is knowing locations of suitable sand resources, e.g., 

finding sands of color, shape, and grain size, etc. that are compatible with the intended use.  

• For recreational beach nourishment, it is preferable for the borrow-area sand to be a close 

visual match to the native beach sand, which complicates finding a suitable borrow area. 

• Placing sand on a beach that is coarser than the native sand can lead to a steeper beach profile. 

(If dramatic enough, this may increase beach hazard for the public.) 

• Sometimes, borrow areas are so deep offshore that contractors with lower-power suction 

dredges are only able to pull up smaller grain sizes, leaving the surface littered with rock, which 

complicates future use. 

• The material content in a borrow area is generally well known from surveys before dredging 

begins, so one could estimate in advance how much rock will be left given a proposed dredging 

plan.  

• If the dredging plan will change the composition of the bottom habitat (e.g., by armoring the 

surface with discarded rock or creating a depression in a sandy feature that will fill with mud), 

then that change could be made part of the permitting process.  
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• If much rock will be encountered, it would help to require a rock management plan. Rock is not 

valueless and can be useful in the right places.  A plan needs to be in place for how to deal with 

and minimize impacts and create benefits. 

• More awareness is needed of the implications of the choice of dredging equipment on the post-

dredging borrow-area composition. Some equipment choices may coarsen the post-dredging 

surface. In other cases, sand left behind due to equipment choices may soon be covered by 

infilling mud, leaving it uneconomical to recover in the future. 

• In some cases, dredgers leave millions of cubic yards uncaptured because dredging more 

completely would be more difficult (and costly), because they don’t want to get close to 

noncompatible material, or because they don’t want to risk going over their planned dredging 

depth. It would be useful to quantify, in such cases, how much extra it would cost to require 

dredging more completely. (This would inform long-term cost-benefit tradeoffs since dredging 

more completely should delay the need to access new borrow areas.) 

• It should not be assumed that all changes to post-dredging borrow-area bathymetry have a 

negative impact. Some bathymetry changes may improve habitat value in some conditions for 

some species. 

• Some cutterhead dredgers are required to have their drag heads firmly in the ground to not 

endanger turtles, which increases dredging complexity. 

• Hopper dredges are often required to have a turtle excluder device on the dredge head. This 

type of technology has not evolved significantly since it was developed and was not developed 

with dredge efficiency in mind. There is a need to develop innovative turtle excluders that 

support greater dredging efficiency. 

 

DISCUSSION 

The criteria hierarchy, suggested metrics and scoring considerations, best management practices, and 

other shared challenges and considerations presented above reflect central themes in the sustainability 

literature and share some details with other applications of MCDA to different types of dredging 

problems. Simultaneously, they also include details that are unique to the sustainable use of marine-

sand borrow areas and that have not been previously presented in the literature. The following 

discussion compares and contrasts the products developed through the MCDA workshop with the 

broader literature on sustainability and dredging MCDA. 

Interpreting products of the MCDA workshop in the context of sustainable development 

Many of the products developed through the MCDA workshop can be interpreted to reflect different 

themes of sustainable development. Classic conceptualizations of sustainable development describe 

sustainability as a balance between environmental wellbeing and human social wellbeing and economic 

development, and assert that environmental impacts from present development should not 

compromise the ability of future generations to meet their resource and development needs. In the 

hierarchy developed at the MCDA workshop, the criteria and suggested metrics related to maintaining 

future site usability and limiting environmental and physical impacts reflect classic sustainable 

development’s interest in protecting intergenerational resource needs. The best management practices 

related to reducing the need to dredge for beach nourishment in the first place, avoiding armoring the 
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site’s surface, protecting a feature’s capacity to accrete, promoting feature stability, and not creating 

challenging geometry, etc., also address this concern, as do some of the remaining challenges and future 

considerations that describe accommodating multiple uses and users also reflect this interest. 

In the criteria hierarchy, the criterion and suggested metrics related to stakeholder acceptability and 

community opinion reflect classic sustainable development’s interest in human social wellbeing. So do 

the best management practices related to stakeholder engagement and coordination between multiple 

users and some of the described challenges and future considerations related to multiple uses and 

users. 

In the criteria hierarchy, the criteria and metrics related to sediment characteristics and borrow site 

controls (many of which are proxies for project efficiency, time, and cost), reflect classic sustainable 

development’s interest in economic development. So does some of the motivation behind the criteria 

and metrics for physical impacts and future site usability, some of the best management practices about 

physical effects and project planning and design, and the described remaining challenges and 

considerations about project implementation.  

In the criteria hierarchy, the criteria and metrics related to environmental impacts reflect classic 

sustainable development’s interest in environmental wellbeing. So do the best management practices 

related to environmental effects and some of the remaining challenges and considerations related to 

project implementation. 

Taken together, the themes of classic sustainable development are well represented in the products 

developed through the MCDA workshop. 

Comparing the criteria hierarchy developed through the MCDA workshop to those developed in MCDA 

applications to other dredging problems 

Many of the high-level themes of the criteria hierarchy developed at the MCDA workshop also occur in 

applications of MCDA to other dredging problems. This is especially true of the top-level criteria, where 

concern for sediment characteristics, stakeholder acceptability and community option, environmental 

and physical impacts, and borrow site controls are relevant for many different types of dredging and 

sediment decisions. While the criteria hierarchy developed by the workshop participants does not 

explicitly contain a cost criterion, as many of the other dredging and sediment MCDA applications do, 

the borrow site controls criterion is closely related to project operating costs. There is less commonality 

between the criteria hierarchy presented here and those in other MCDA applications with to the future 

site usability criterion since that is so uniquely linked to the themes of sustainable development, which 

most other dredging and sediment MCDA applications do not consider. There is also less commonality 

between this and other MCDA applications throughout the sub-criteria and suggested metrics and 

scoring considerations, which are more specific to sustainably using marine sand for coastal engineering 

projects. 

With respect to sub-criteria for the sediment characteristics criterion, concerns related to the presence 

of contaminants are included in many MCDA applications. However, most other MCDA applications that 

mention sediment contamination are related to sediment remediation and use criteria that assess 

differences in pre- and post-remediation levels of contamination at the site.43,52,53,54,55,56,59 While these 

applications do consider sediment contamination, their purpose is quite different from the purpose of 



96 

this application to assesses the sustainable use of sand resources. Of prior applications, the most closely 

related are from Manap and Voulvoulis (2014), who perform a screening-level analysis to check for 

sediment contamination prior to their MCDA evaluation,50 and Bates et al. (2018), who consider 

sediment toxicity as a line of evidence in an MCDA framework to assess the suitability of different 

potential recipient sites for dredged sediment placement. Most other MCDA applications do not 

consider the sediment’s heavy mineral content since heavy minerals are likely to remain stable if not 

brought to the aerobic environment of a beach or dune. (Other MCDA applications that consider 

contamination tend to focus on chemical contamination from past human industrial activity.) 

Consideration of sand mineralogy/composition, overfill ratio, color (including its value, hue, and 

chroma), and texture (including its grain size, grain shape, sorting, skewness, and percent fines, sand, 

gravel, rock, and shell) are unique to evaluating sand for engineering uses and do not have parallels in 

other applications to contaminated-sediment remediation or navigational dredging and sediment 

placement; these criteria are believed to be unique to this application of MCDA to sustainable marine 

sand resource use. 

Criteria related to stakeholder acceptability and community option are also often included in 

applications of MCDA to dredging and sediment problems. While the stakeholder acceptability criterion 

developed in this application leaves the sub-criteria and metrics to be developed on a project-by-project 

basis, the workshop participants’ suggested sub-criteria, metrics, and scoring considerations consider a 

broad range of stakeholders and topics of concern and have parallels in other MCDA applications. e.g., 

34,52,53,54,55 More unique are the workshop participants’ suggestions to consider past stakeholder and 

community responses to similar work in the region and whether this proposed projects might set 

unwelcomed precedents for the region, a suggestion that could have applicability to other types of 

sediment and dredging problems. 

Explicit consideration of the environmental impacts created by the dredging or sediment-remediation 

process sometimes occurs in other MCDA applications, predominantly those not dealing with 

contaminant remediation. e.g., 34, 42,43,50,51,56,57,59 However, only Collier et al. (2014) also suggests that 

metrics include physical impacts from changed seafloor shape, e.g., related to wave propagation and the 

surfing community’s interest in wave patterns generated by nearby seafloor geometry.34  

Inclusion of criteria related to future site usability (including armoring of the surface, creation of 

challenging geometry, changed ability for the sediment source to be preserved, and support for future 

accretion) are believed to be unique to this MCDA application.  

Some of the sub-criteria for borrow site controls appear in other MCDA sediment and dredging 

applications. For example, MCDA-based sediment placement optimizations by Yeh et al. (1999) and 

applications of the D2M2 software (Ford 1984, Ford 1986, and chapter 4 of this dissertation) consider 

conveyance mode and/or conveyance distance.49,68,69 Yeh et al. (1999) and Suedel et al. (2008) also 

consider criteria related to dredging equipment type and project timing.49,57 The broader (i.e., non-

MCDA) literature for dredging optimization frequently considers objectives similar to conveyance mode, 

conveyance distance, water depth, total time including project delays, and site obstructions. However, 

considerations of expected permit/coordination lead time, percent yield with obstructions, manageable 

obstructions, and residual hazard are not common.  

Comparing the suggested best management practices developed through the MCDA workshop to 

those identified in the literature 
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The best management practices suggested by the MDCM workshop participants include many new 

contributions to the literature. Some of the practices suggested by the MCDA workshop participants 

have been suggested in prior lists of best management practices, but most of these lists focus on 

practices related to effects at the beach or dune placement site and not on practices related to the 

sustainability of the borrow site. Where prior lists do suggest practices relevant for marine borrow 

areas, few were not repeated in the criteria, metrics and scoring considerations, and best management 

practices suggested by the MCDA workshop participants. Most of prior lists are also shorter than the list 

developed through the MCDA workshop and contain significant overlap with each other.  

Rice (2009) discusses many best management practices to reduce the environmental impact from 

shoreline stabilization projects.60 Almost all of these practices are focused on limiting environmental 

impacts at the placement site (i.e., dune, beach, or nearshore environment). This is in contrast with the 

environmental best management practices suggested by the MCDA workshop participants, which focus 

on limiting impacts at the borrow area (which is fitting given the topic of the workshop). Of the few 

practices that Rice suggests for the borrow area (i.e., to use shallow dredge cuts, leave refuge patches, 

not dredge valuable habitat, not create holes on the seafloor, and not significantly alter the local 

bathymetry), most were also included in the MCDA workshop participant’s list of best practices or 

suggested metrics and scoring considerations. The only environmental practice for borrow areas that 

Rice suggests that does not directly match those developed by the workshop participants is to leave a 

post-dredging surface at the borrow area that matches the original sediment layer as closely as possible 

to better promote recolonization.  

Haney et al. (2007) present best management practices to minimize erosion, minimize impacts to 

natural resources, promote beneficial reuse of dredge material, and expedite regulatory review. These 

practices are suggested for beach nourishment projects that either reuse sediment from navigational 

dredging or use sand from terrestrial sources and explicitly omit practices for projects that mine sand 

from marine borrow areas. This difference in scope reduces the overlap in practice topics between their 

work and the products of the MCDA workshop. Many of the practices recommended by Haney et al. 

focus on effects at the beach placement site or consider the match between a navigational dredging 

project and beach placement site. A few of their suggested practices related to comparing the grain size 

distributions between source and placement sites to determine suitability and compatibility can be 

extended to borrow areas, a theme also covered in the criteria hierarchy developed through the MCDA 

workshop, in the sediment characteristics sub-criteria. 

Rosov et al. (2016) review impacts from beach nourishment activities on benthic organisms, 

summarizing several best management practices and lessons learned from others.62 Of the seven 

practices they present, five are directly covered in the recommendations by the MCDA workshop 

participants, including to:  select borrow areas that are likely to refill with useful sediment, dredge a 

rolling ridgeline with shallow cuts and leave refuge patches, avoid creating deep pits, dredge from the 

leading edge of a shoal to support future accretion, and use sediment that is compatible between the 

source and placement areas (which is covered by the sediment characteristics sub-criteria of the MCDA 

criteria hierarchy). Two additional practices, to avoid project activity during peak recruitment seasons 

for benthic larvae and to complete project activity before the seasonal decline in population abundance 

(to support recolonization), capture the same sentiment as various practices suggested by the MCDA 

workshop participants to use species-specific mitigations and to minimize impacts to the benthic 

community, but with greater specificity.  
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Seven best management practices are suggested by Elko et al. (2020).63 These are presented in the 

context of managing coastal inlets but have broader applicability to other types of marine borrow areas. 

Of these, five were at least partially suggested by the MCDA workshop participants, including to: 

implement regional sediment management, use compatible sand, modify dredging equipment and 

practices, design borrow areas that are renewable, and limit the frequency, duration, and area of 

impact. Two additional practices, to follow environmental windows and conduct monitoring, were not 

covered by the workshop participants but are often required for regulatory compliance as a routine part 

of project operations.  

Other than those repeated from Rice, the practices suggested by Guilfoyle et al. (2019) for reducing 

impacts to shorebirds and sea turtles from coastal engineering activities do not consider activities at the 

borrow site.64 However, it is noteworthy that they mention: the cost effectiveness of implementing best 

management practices, that monitoring is needed to ensure effectiveness for the target species, and 

that best practices are anticipated to be most effective when implemented with regional coordination. 

Overall, of the 44 best management practices suggested by the MCDA workshop participants, 5 have full 

overlap with practices included in the lists cited above, 9 have partial overlap with these lists, and 30 

have little or no overlap with previously suggested practices. Since the focus of the practices suggested 

through the MCDA workshop is on the sustainable use of marine sand borrow areas and the focus of 

many of the prior lists is on effects at the placement site, total sustainability can better be achieved and 

environmental impacts better minimized by consulting both types of lists during project development. 

Discussing the remaining challenges and future considerations shared by the MCDA workshop 

participants 

The remaining challenges and future considerations shared by the MCDA workshop participants are 

grouped into two broad categories but cover a breadth of topics. They discuss issues of: coordination, 

cooperation, and sharing between multiple users and uses; geographic resource conflicts; sharing spatial 

data; unaligned timing; impacts from abandoned pipelines and how to fund their removal; tradeoffs 

between sand compatibility and cost; effects of using incompatible sand; knowing where to find 

compatible sand; dealing responsibly with rock; implications of choice of dredging equipment; extra 

costs of dredging more completely; post-dredging bathymetry; and turtle-exclusion technology.  

While some of these considerations can be incorporated into the planning for individual projects, most 

of them deal with broader issues that must to be addressed at the inter-agency level. These topics 

would be profitable for discussion at future regional sand management working group meetings, though 

some may require federal or state agency policy changes for resolution. Academia can also play a role in 

these discussions, for example by hosting data exchanges and engaging in research about physical and 

environmental effects. Several of the identified remaining challenges and future considerations could be 

developed into research agendas for sustainable borrow area sharing and use. 

 

CONCLUSIONS 

This chapter reports on the process and outcomes of an MCDA workshop about the sustainable use of 

marine sand. Stakeholders and experts from state and federal government, academia, and industry 

collaborated through this facilitated workshop to develop an MCDA criteria hierarchy for evaluating 
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potential marine sand borrow areas to be dredged for beach nourishment and similar coastal 

engineering projects. The workshop participants suggested metrics and scoring considerations for the 

criteria in the hierarchy, recommended best management practices for sustainably using marine sand 

borrow areas, and shared observations about remaining challenges and future considerations for this 

topic.  

The criteria hierarchy developed by the MCDA workshop participants is the first application of MCDA to 

marine borrow areas. Sub-criteria in the hierarchy are grouped through top-level criteria of sediment 

characteristics, stakeholder acceptability and community opinion, environmental and physical impacts, 

future site usability, and borrow site controls. The participants suggested metrics and scoring 

considerations for most criteria but recognized that some will need to be specified in the context of 

individual project needs. While most of the criteria are unique to this application, some have been used 

in prior literature applying MCDA to navigational dredging and contaminated sediment remediation. The 

suggested criteria well achieve their goal of incorporating sustainability into marine sand borrow area 

management, reflecting classic sustainable development’s interests to balance economic, social, and 

environmental concerns and to promote inter-generational resource availability.  

Of the best management practices suggested by the workshop participants 11% are duplicated in prior 

lists of best practices for beach nourishment, 20% have partial but not complete overlap with practices 

in those lists, and 68% represent unique practices contributed to the literature on marine resource 

management. The high uniqueness of the best practices developed through the MCDA workshop is 

partially because prior lists of practices have mainly focused on the placement site with limited 

treatment of the borrow area. Many of the best practices and criteria suggested by the workshop 

participants can be extended to other types of dredging and coastal engineering problems, especially 

those promoting resource sustainability. The remaining challenges and future considerations shared by 

the workshop participants reflect a need for inter-agency cooperation and coordination to remove 

additional barriers, and could be used to inform a research agenda on the sustainable use of marine 

sand resources.  

This chapter represents both the first application in the academic literature of MCDA methods to marine 

sand borrow areas and the first application of the concepts of sustainable development to borrow area 

management. The products developed through the MCDA workshop can be useful to researchers and 

practitioners seeking to incorporate sustainability considerations into the analysis and management of 

marine sand borrow areas. Future work will be needed to expand these products and apply them to 

individual projects. 
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https://tamug-ir.tdl.org/bitstream/handle/1969.3/29263/bchbod.pdf
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Chapter 4 

Advancement and Application of D2M2 

for Multi-Objective Dredging 

Optimization 
 

 

 

 

ABSTRACT 

The Dredged Material Management Decisions (D2M2) software is a multi-objective optimization (MOO) 

modeling tool to identify efficient long-term, systems-level, sediment-allocation strategies through 

networks of dredging, temporary storage, and final placement sites. D2M2 provides a model-building 

interface that can accommodate any mix of financial costs and other user-defined impacts, benefit, or 

effect objectives in a multi-criteria-decision-making (MCDM) model of mass-balance sediment allocation 

using mixed (binary) integer linear programming optimization. The original version of the software was 

developed in the 1980s for the US Army Corps of Engineers to support navigational dredging decisions. 

The version presented here has been redeveloped in the Java programming language with an improved 

user interface and new modeling functionality to better represent cost/impact/benefit/effect 

relationships and system constraints. This chapter introduces the redeveloped D2M2 software, 

summarizes its enhancements, and applies it in a case study using site data for eight different financial, 

environmental impact, and beneficial-use criteria applied to dozens of dredging and placement sites 

along the Gulf Intracoastal Waterway (GIWW) in the region of Galveston, TX.  

 

INTRODUCTION 

Waterborne transport is of crucial importance to many nations with coasts or major rivers. Having 

navigable coasts and rivers enables low-cost transportation of commercial goods for foreign and 

domestic trade, commercial and recreational fishing, recreational boating, and coastal protection and 

naval defense, among other uses. However, rivers, coasts, and their adjacent ports and harbors are not 

static. Without human intervention, there is no guarantee that waterways previously navigable by ship 

traffic will remain so with gradual infilling of new sediment over time or after large storm events. 

Navigational dredging is dredging specifically undertaken to increase or maintain the depth of water in 

certain locations so that ships can safely and efficiently navigate through that area. Navigational 
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dredging is undertaken by different organizations at smaller and larger scales. National and state 

governments tend to pursue large-scale dredging of rivers, shipping channels, and major ports and 

harbors, while local port authorities, yacht clubs, and similar entities undertake smaller projects so that 

vessels can access their facilities. 

The dredging equipment used for navigational dredging is typically similar to that used to mine sand for 

coastal engineering projects, relying heavily on mechanical and hydraulic dredgers that remove 

sediment from choke points in the navigational channel. Navigational dredging has an added 

complication that suitable placement sites must be found for the dredged sediment that is removed 

from the channel. Placement sites may include open or confined sites adjacent to the dredged channel 

or in a designated area farther away in open water, in shallow water near the shore, on the shore, 

upland, transported to a landfill or reprocessing plant, or beneficially use for habitat restoration or 

industrial processes. Sediment with levels of contamination that make them unsuitable for some 

purposes may need to be isolated from the environment or treated before placement.  

Beside mechanical and hydraulic dredging, other techniques that relocate sediment within the 

waterway are also possible, such as dragging, water-injection, and resuspension dredging. These can be 

financially and environmentally effective when used in combination with typical navigational dredging 

programs, but are not modeled in this chapter as they do not require involve the allocation of sediment 

to placement sites. 

Dredged-material placement sites are chosen based on a range of criteria, including sediment 

characteristics, equipment constraints, transport costs, environmental impacts and benefits, and 

stakeholder interests, etc. Historically, dredged sediment was viewed as a waste product to be disposed 

of. To limit project costs and coordination challenges, dredged sediment was historically deposited in 

placement sites that could be reached at low cost but that were not designed for sediment reuse (i.e., 

the later removal of placed sediment for use as a resource in another process). In modern times, 

however, dredged sediment is increasingly being thought of as a valuable resource with reuse potential 

for engineering and environmental benefit.1,2,3  

In the US, the US Army Corps of Engineers (USACE), is responsible for maintaining over 12,000 miles of 

waterways and dredges more than 200 million cubic yards (MCY) of sediment from waterways every 

year to maintain waterway navigability, at an annual cost of well over one billion dollars.4 The USACE has 

an interest in optimizing dredging and dredged-material placement to reduce costs and environmental 

impacts and to provide environmental and social benefits for the ecosystems and communities near 

dredging and sediment placement sites, making the overall best use of dredged sediments. Potential 

beneficial uses of sediment include its use in beach nourishment to provide storm protection, to 

enhance the natural environment, to create marshes and islands for fish and wildlife habitat, and for 

commercial and industrial uses such as in brick making, in mulch, or for landfill cover.  

Early research on dredging optimization between the 1970s and 1990s applied linear programming and 

related operations research methods with a systems-based approach to evaluate dredging management 

plans.5,6,7,8,9,10,11,12,13,14 These studies recognized how well suited dredged-material management 

problems are for optimization solution techniques, since dredging needs differ from year to year based 

on system constraints and require re-evaluation of scheduling and costs. For example, Hochstein et al.8 

propose an optimization model to re-evaluate authorized dredging depths and conduct reconnaissance 

studies on four harbors in the U.S. to recommend channel depths for dredging and channel 



105 
 

maintenance. Their results indicate significant cost savings are achievable when channel depth dredging 

decisions are made more regularly and are directly related to the economic value of the channel and its 

cargo. Risk-based approaches also were introduced to handle uncertainty with regard to sedimentation 

rates10,15 and channel maintenance.9   

Many early dredging optimization studies primarily had objectives to minimize total costs and determine 

optimal project scheduling, rather than to quantify and avoid impacts and provide benefits to the 

environment, ecology, or stakeholder community. As environmental concern has grown more 

prominent in society and policy in recent decades, the need for least-cost-and-least-impactful solutions 

has expanded the types of questions asked and optimization techniques used. Now, multiple competing 

criteria are now often considered when selecting dredging management plans. For example, Abood16 

proposes applying the ‘Leadership in Energy and Environmental Design’ (LEED) sustainability framework 

to award points for selecting renewable and least-impact materials for dredging and dredged-material 

placement, and for building innovation in dredging practices. Blazquez et al.17 explicitly consider 

“environmental dredging” in their system optimization, employing environmentally-protective changes 

to the dredging operations to minimizing sediment contamination; they use this formulation to explore 

ways to both reduce losses in productivity and reduce costs for environmental dredging. 

In an additional application of multi-criteria dredging planning, Agee et al.18 describe a collaborative 

project where the City of Annapolis, MD, local stakeholders, and USACE worked together to dredge the 

harbor and channel while simultaneously completing an environmental restoration project. Ratick and 

Garriga19 developed a spatial decision support system for USACE that trades-off project costs and 

channel reliability for maintenance dredging. Van Noortwijk and Peerbolte20 built a decision model to 

aid sand nourishment placement that considers three types of costs and the risk of permanent erosion. 

A more recent effort engages stakeholders and managers in this type of system-level optimization 

through the development of web-based project management systems such as that of Skibniewski and 

Vecino21, where a life-cycle cost and benefit assessment of operations is coupled with a management 

system to create a framework for evaluating the performance of dredging alternatives.  

Several recent examples are employing advanced and combined methods of optimization to assess 

dredging management plans based on multiple qualitative and quantitative criteria. Mitchell et al.22 and 

Nachtmann et al.23 implement mixed integer programming and heuristic solution algorithms to optimize 

dredging management based on budget allocation and find that including project interdependencies 

affects the overall plan. Righini24 develops a network flow model using a linear program to find the 

maximum capacity of the Northern Italy waterways considering cargo load, economics, and robustness 

of the solutions under different system profiles. Hashemi et al.25 propose a rank-based method to 

identify port projects that accounts for a wide range of project risks and estimated confidence intervals 

using a bootstrap method.  

In practice, prior to selecting a management plan to implement for a specific region, USACE projects are 

mandated to perform an alternatives analysis to assess feasible strategies; a process that often relies on 

experts’ judgements to choose the final best strategy. Reliance on direct expert judgment for synthesis 

and evaluation of alternative strategies becomes increasingly harder and less justifiable at larger scales, 

over longer time horizons, and with growth in network complexity26,27,28. As a response, the Dredged 

Material Disposal Management (D2M2) dredging optimization software was created to enumerate, 

evaluate, and compare alternatives and determine the least cost plan for transporting and disposing of 
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dredged sediments with limited placement area capacity and various transportation and other costs5. 

D2M2 was initially applied to dredging along the Delaware River to select the least-cost plan using a 

network-based approach.6 D2M2 has been updated several times and the more recent versions 

explicitly support consideration of multiple project objectives in addition to financial costs. The most 

recent prior version of D2M2 was released in 2010 (US Army Corps of Engineers, 2010).  

Unlike many of the other multi-objective optimization29 (MOO) dredging models mentioned above that 

have a specific MOO problem already specified within them, D2M2 is not a MOO dredging model itself 

but is a MOO-dredging-model builder. D2M2 users can either upload site data via project templates or 

use its graphical user interface to specify a system-scale network of dredging, transfer, and placement 

sites, add various system constraints, and then optimize that system model to discover efficient plans 

for moving all required material from dredging to placement sites at least cost and/or greatest benefit 

over a multi-year timeframe. D2M2 models can be optimized based on a completely customizable set of 

user-defined criteria. Typical criteria used in recent USACE D2M2 case studies include a mix of financial, 

environmental impact, and stakeholder-interest criteria.  

Once a system model has been specified through the D2M2 software, it can be described using a MAVT 

framing of the MOO problem in terms of an aggregated MAVT score that is minimized/maximized, 

subject to various constraints and model data and relationships. D2M2 uses linear programming solver 

to develop an optimal plan for system operation. The purpose of the MOO problem is to transfer all 

required dredging volumes in each time period from each dredging site to various available placement 

sites to achieve the greatest benefit and/or least cost or impact for all objectives specified by the user. 

The D2M2 software readily supports scenario and sensitivity analysis, where users can explore 

differences in weighting, addition or exclusion or additional sites or volumes, and/or application of 

different unit costs or constraints to see how those variations change the recommended optimal 

solution. 

Ford5 describes the original D2M2 mathematical problem formulation, solution technique, software 

development process, software structure, and application in a Delaware River case study to model a 

subsystem of the river between Philadelphia and the sea that included 19 dredge sites and 8 disposal 

sites over a 50-year time period, with input data provided by the USACE Philadelphia District. Ford6 later 

furthers the Delaware River case study by applying the software to investigate potential effects of 

developing different alternatives for expanding sediment-placement-site capacity. Willey (1989) 

describes further use of the software to support strategic planning in the Delaware River system related 

to sediment placement strategies and capacity expansion.  

A USACE SPN (1994) report introduces an updated version of the software to improve the user interface, 

to implement modifications needed for long-term dredging planning by the USACE San Francisco 

District, and describes two case study applications that model 25-year dredging planning in the San 

Francisco Estuary, including 14 dredging projects and 40 existing and proposed placement options 

optimized for financial cost under different scenarios for potential management constraints and 

material placement alternatives. This version of D2M2 was included in the Automated Dredging and 

Disposal Alternatives Management System modeling suite described by Schroeder et al.30 This version 

was used by the USACE Portland District in the mid-1990s for dredging planning along the Columbia 

River. They modeled dredging from the mouth of the Columbia River through Vancouver, Washington 

and used D2M2 to efficient allocate sediment placement between upland, beach nourishment, and in-
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water sites (personal correspondences with Jon Gornick and Laura Hicks, USACE Portland District, 

7/10/2019 and 7/15/2019). A next updated version of D2M2 was introduced in 2010 when the software 

was upgraded from a Microsoft DOS to a Microsoft Windows application to gain an initial graphical user 

interface and a few other capability enhancements.31 

An agency report by Poindexter-Rollings32 recommends use of D2M2 as a best management practice to 

increase the useful life of sediment placement areas. Another agency report by Bailey et al.33 

recommends using D2M2 to account for beneficial uses of sediment in dredged material management 

plans, as one of eight research and development recommendations to enable sustainable, long term 

placement area capacity management. An agency report by Banks & Gerhardt Smith34 summarizes a 

workshop on regional sediment management and engineering with nature approaches. In it, the 

participants recommend the use of decision support tools such as D2M2 to “increase understanding and 

create cooperative agreements with stakeholders.” 

This chapter introduces a new and updated version of D2M2, resulting from a project led by the author 

with the USACE Engineer Research and Development Center. This D2M2 version includes new modeling 

functionalities for specifying cost/benefit/effect relationships and system constraints, for improving the 

modeling process, and for improving the user interface. Implementing some of these enhancements 

required the D2M2 optimization solver to switch from using a traditional linear programming 

formulation to a mixed (binary) integer linear programming (MILP) formulation. The new version uses a 

MILP solver called Cbc (COIN-OR branch-and-cut; available from COIN-OR Foundation as part of the 

COIN-OR Optimization Suite). The software has been completely redeveloped from previously 

fragmented FORTRAN and C code into a single Java-language tool that can run on any Windows, Linux, 

or Mac operating system. This new version of D2M2 is rechristened as the “Dredged Material 

Management Decisions” software, removing a connotation in prior version that dredged material is a 

waste material to be disposed rather than a resource that can be used beneficially.  

This new version of D2M2 is applied in a case study using site data for an 81-mile portion of the Gulf 

Intracoastal Waterway (GIWW) system near Galveston, TX. The case study includes data for 8 different 

financial, environmental impact, and beneficial use (BU) objectives that reflect a broader range of 

sustainability-related considerations than have been implemented in past D2M2 applications or other 

known dredging optimizations. The case study includes 6 dredging reaches and 62 existing and potential 

placement sites where the sediment can be stored or beneficially used, including potential site 

expansions to accommodate 20-year dredging capacity needs. These data are used by D2M2 to identify 

an optimal dredging plan under 9 scenarios that vary the objective weighting and site availability in the 

system network. 

 

CASE STUDY DESCRIPTION 

GIWW system overview 

The Gulf Intracoastal Waterway (GIWW) is an inland waterway for marine transportation along the Gulf 

of Mexico. It stretches over 1,100 miles from the southern tip of Texas through the Florida panhandle 

(Figure 4.1). It is used primarily for barge traffic and commercial shipping and, to a lesser extent, by 

recreational vessels. As a protected, inland waterway it provides safe harbor for shipping when transit of 



108 
 

the open ocean would be threatened by high seas. At 125-feet wide and with a project depth of 12-13 

feet, this man-made navigational channel is the third-busiest inland waterway in the US. Nearly 285,000 

vessels used the waterway to transport more than 110 million short tons of commercial cargo in 2018 

(for example, as in Figure 4.2).  

 

Figure 4.1. The Gulf Intracoastal Waterway is an inland, man-made waterway along the coast of the Gulf 

of Mexico that runs over 1,100 miles from the southern tip of Texas through the Florida panhandle. It is 

dredged on an ongoing basis to maintain sufficient depth for commercial and recreational marine 

transportation (image: Texas Department of Transportation, 2020).35 

 

Figure 4.2. The GIWW where it connects to Galveston Bay. This photo is looking east northeast with 

Galveston Bay at left, the GIWW channel at center, the town of Port Bolivar, TX at center right, and the 
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Gulf of Mexico at upper right (image: US Army Corps of Engineers Galveston District and Texas 

Department of Transportation, 2018).36  

Sediment is continually deposited in the GIWW channel from wind, waves, tides, major storms, shore 

erosion, and the rivers and streams that enter the GIWW. Regular dredging is needed to keep all 

channel reaches at suitable depths for ship passage. Dredged material management remains a concern 

with limited capacity available at existing defined placement sites. As federal sponsor, the USACE 

monitors and maintains the waterways and, as non-federal sponsors, the State of Texas acquires real 

estate to use for dredged material placement areas and participates in projects to use the dredged 

sediments beneficially for environmental restoration and other purposes when suitable projects can be 

identified, though project timing, permitting, land ownership, and other logistical barriers constrain 

beneficial use projects.35 

D2M2 GIWW case-study site and network data  

This case study focuses on dredged material management decisions for an 81-mile portion of the GIWW 

in Texas between High Island and Brazos River, near Galveston Bay and the Houston Ship Channel.37 For 

the purposes of modeling, the case-study segment uses 6 channel reaches based on natural and 

constructed transition points in the channel and its crossings (note, they are not all similar in length; 

Figure 4.3). Geospatial locations and geometries for channel reaches are taken from the USACE 

enterprise navigation geospatial web service.38  
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Figure 4.3. Case study area of an 81-mile portion of GIWW between High Island and Brazos River, near 

Galveston, TX. For modeling purposes, this portion of the GIWW is divided into six channel reaches, 

shown in alternating colors for better visual discrimination, based on natural and constructed transition 

points along the channel (note, they are not all similar in length). The centroid of each reach is shown 

with a blue circle and labeled. 

Average annual sedimentation rates for each of these six reaches were previously estimated by the 

USACE using the Corps Shoaling Analysis Tool39 with historical hydrographic survey data provided by the 

USACE Galveston District. The total average volume of annual sedimentation in the case study area is 

over 1.5 million cubic yards per year (CY/yr) (Table 4.1). To maintain this portion of the GIWW at a 

consistent depth suitable for shipping and other marine navigation, this average amount of annual 

sediment needs to be removed each year (on average) to avoid net infilling.  

Table 4.1. Dredging reaches in the case study area of the GIWW for which average historical sediment 

shoaling data have been estimated. (Data from the USACE Galveston District.) 

Reach Description D2M2 Reach ID  Average Volume (CY/yr) 

High Island to Port Bolivar GI_02_HIB_2                 698,198 

Port Bolivar to Galveston Causeway GI_03_BGC_3                   33,810 

Galveston Causeway to Chocolate Bayou GI_04_GCC_4                 155,028 

Chocolate Bayou to Freeport Harbor GI_05_CBF_5                 217,614 

Freeport Harbor to Brazos River GI_06_FBR_6                 458,342 

Brazos River Crossing GI_08_BRC_8                   12,259 

  Total:  1,575,251 

 

Using sediment placement sites strategically in the GIWW remains an ongoing challenge. This D2M2 

case study model connects the 6 aggregated dredging reaches to 62 placement areas (Figures 4.4 & 4.5). 

Geospatial locations and geometries for the placement areas are taken from the USACE enterprise 

sediment placement area geospatial web service.40 These sites differ in terms of type, status, capacity, 

acquisition and improvement cost, and other multi-criteria outcomes from sediment placement. The 

sites range in capacity from 30,000 CY to over 1,000,000,000 CY, with a median of 622,220 CY and a 

mean capacity of 17,672,834 CY (Table 4.2 & Appendix Table 4.A1). 
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Figure 4.4. Case study area of the GIWW, showing the geometry of existing sediment placement areas as 

dark red polygons, the GIWW as a gray line, and adjacent channels that cross or connect to the GIWW as 

light blue lines. 
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Figure 4.5. The D2M2 GIWW case study network of dredging sites (blue circles), existing sediment 

placement sites (red triangles), proposed or hypothetical sediment placement sites (orange triangles), 

and sediment-transportation routes (dark lines). The centroid of each placement area or channel reach is 

used as its representative location for calculating transportation routes and distances in the D2M2 

model. 

In terms of site status (as of when these data were produced), the collection of placement areas 

includes 28 existing active sites used regularly in current management, 8 existing but inactive sites not 

used in current management but that have beneficial use potential if improvements are made to return 

them to operational status, 24 proposed sites with beneficial use potential that could be added to future 

operational use with permitting, construction, and management effort, and 2 hypothetical expansions 

to placement areas that are not currently proposed but that provide additional placement capacity 

needed for modeling the system (Table 4.2 & Appendix Table 4.A1).  

In terms of differences in site type, the existing sites without beneficial use include 16 active sites that 

are upland confined placement areas, 1 active site that is an upland partially confined placement area, 

and 5 active sites that are open water placement areas. The existing sites with beneficial use potential 

include 3 active sites and 4 inactive sites that are beneficial use islands, 2 active sites and 4 inactive sites 

that are beneficial use shoals, and 1 active site that is a beneficial use wetland. The proposed sites, 

which all have beneficial use potential, include 5 sites with beneficial use for bars or shoals, 2 sites for 
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beach nourishment, 1 delta site, 2 island creation or restoration sites, and 14 wetland sites. The two 

hypothetical sites are modeled as expansions to existing sites (namely to add 5,000,000 CY each to sites 

PA 38 and DA 88) to increase capacity in the system. They include 1 upland confined placement area and 

1 beneficial use island (Table 4.2 & Appendix Table 4.A1). 

In terms of acquisition and improvement costs, existing active sites without beneficial use potential are 

assumed to be already available without additional cost. However, existing active sites with beneficial 

use potential are assumed to require $25,000 each for improvements so their beneficial use potential 

can be realized and for special sediment handling needs. Existing inactive sites (which all have beneficial 

use potential) are assumed to require $75,000 each in improvement cost to restore them to operational 

readiness and for special handling so their beneficial use value can be realized. The proposed sites 

(which all have beneficial use potential) are assumed to require $100,000 each in acquisition and 

construction cost to make them operationally ready and for special handling so their beneficial use value 

can be realized. The hypothetical expansion sites are assumed to require $200,000 each in acquisition 

and construction cost to make them operationally ready. Site acquisition and improvement costs are 

only incurred in the D2M2 model if the optimization solver chooses to use that site for sediment 

placement (Table 4.2 & Appendix Table 4.A1). 

Table 4.2. Abbreviated table showing 10 rows of placement areas included in the D2M2 case study 

model, differentiated by site name, type, current status, sediment capacity, and acquisition and 

improvement cost. See Appendix Table 4.A1 for full table with 62 rows of data. 

Name Type Status Capacity  

(CY) 

Acquisition & 

Improvement 

Cost 

 …    

PA 70 Upland Confined Existing Active 1,445,340               . 

DA 79 BU Island Existing Inactive 30,000 $75,000 

DA 86 Upland Confined Existing Active 1,905,710               . 

DA 87 Upland Confined Existing Active 1,445,872               . 

DA 88 Upland Confined Existing Active 2,246,260               . 

PAEX1 (similar to PA 38) BU Island Hypothetical 5,000,000 $200,000 

PAEX2 (similar to DA 88) Upland Confined Hypothetical 5,000,000 $200,000 

Bird Island Cove Potential BU Wetland Proposed 1,506,853 $100,000 

Bolivar Ferry Landing/Little 

Beach 

Potential BU Beach Proposed 400,000 $100,000 

Bolivar Marsh Potential BU Wetland Proposed 250,000 $100,000 

 …    

 

While the actual distance between the dredging equipment and the sediment placement area varies 

with every movement of the dredge, for the purpose of modeling, the centroids of each channel reach 

and placement area are used as standardized, representative points for calculating distances between 

every potential site pair. Sediment transportation distances between dredging and placement sites are 

calculated based on the actual distance along the GIWW channel centerline (and possibly connecting 

channels if needed for the route) from the centroid of the dredging reach to the place along the channel 
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where the centroid of the placement site is adjacent to the channel, and then following a straight-line 

path from the channel centerline to the centroid of the placement site, as calculated using a new D2M2 

plugin for ESRI ArcGIS geospatial software. The D2M2 GIWW case study model includes 118 routes 

(available connections) between dredging and placement sites that share a transport distance of 20 

miles or less, reflecting the limits of current management practice (Table 4.3 & Appendix Table 4.A2; 

Figure 4.5). 

Table 4.3. Abbreviated table showing 10 rows of routes of different distance between dredging and 

placement sites included in the D2M2 GIWW case study model. See Appendix Table 4.A2 for full table 

with 115 rows of data. 

Route #   Dist. (mi) Dredging Site Placement Site 

    …   

15 13.61 CESWG_GI_02_HIB_2 PA 42 

16 14.42 CESWG_GI_02_HIB_2 PA 43 

17   2.38 CESWG_GI_02_HIB_2 PAEX1 (PA 38) 

18   8.14 CESWG_GI_02_HIB_2 Pepper Grove Cove 

19   7.07 CESWG_GI_02_HIB_2 Rollover Beach Nourishment 

20   7.04 CESWG_GI_02_HIB_2 Rollover Pass Closure 

21   8.84 CESWG_GI_03_BGC_3 Bolivar Ferry Landing/Little Beach 

22   7.68 CESWG_GI_03_BGC_3 Bolivar Marsh 

23   9.96 CESWG_GI_03_BGC_3 DA 41 

24   0.75 CESWG_GI_03_BGC_3 DA 46 

    …   

 

The financial costs of sediment dredging, transportation, and placement are estimated based on volume 

and distance. Historical cost data is available for 13 dredging contracts (with 6 different dredging 

companies) that performed dredging projects that included portions of the case-study section of the 

GIWW between 2006 and 2015 (contract cost data provided by USACE Headquarters and Galveston 

district). For each contract, the total cost, total volume, and average sediment-transportation distance 

are available. A linear regression is applied to the data for distance and average cost per cubic yard, and 

the resulting equation 𝒚 =  𝟒. 𝟐𝟖𝟎𝟑 + 𝟎. 𝟏𝟑𝟕𝟕𝒙  is used to calculate financial costs in the D2M2 case-

study model, where y represents the unit cost ($/CY) of sediment dredging, transportation, and 

placement and x represents the transportation distance (mi) (Table 4.4, Figure 4.6). These data also 

exhibit a trend of increasing cost per cubic yard with increasing project size, but D2M2 does not 

accommodate piecewise cost curves where the cost-per-cubic-yard varies based on both distance and 

volume. 

Table 4.4. Historical dredging contract data for the case-study section of the GIWW. These data are used 

in a linear regression to estimate the average cost per cubic yard per mile in the D2M2 case-study model. 

Dredging Project Name Distance (mi) Volume (CY) Cost ($)   Avg $/CY 

High Island to Rollover Pass 9.12 1,448,408 $4,700,991 $3.25 

Freeport Harbor to Brazos River 1.78 389,826 $2,744,259 $7.04 

Rollover Pass and Bolivar Flare 11.91 526,069 $2,863,895 $5.44 



115 
 

Galveston Causeway to Bastrop Bayou 7.26 953,394 $3,820,509 $4.01 

High Island to Rollover Pass 10.56 620,268 $3,338,066 $5.38 

Freeport Harbor to Brazos River 3.28 1,128,776 $3,058,555 $2.71 

Rollover Pass to Galveston Causeway 

Emergency Dredging 

4.93 1,245,653 $6,821,473 $5.48 

High Island to Rollover Pass, Bolivar Flare, & 

Channel 

11.37 779,451 $4,939,881 $6.34 

Galveston Causeway to Bastrop, Dredging & 

Levees 

6.56 1,279,390 $10,661,000 $8.33 

Rollover Pass to Galveston Causeway 7.15 642,275 $2,504,099 $3.90 

Freeport to Brazos River 1.54 1,406,880 $5,120,753 $3.64 

High Island to Bolivar 11.23 984,039 $4,095,581 $4.16 

Rollover Pass to Galveston Causeway 11.77 431,816 $4,113,873 $9.53 

Minimum: 1.54 389,826 $2,504,099 $2.71 

Median: 7.26 953,394 $4,095,581 $5.38 

Mean: 7.57 910,480 $4,521,764 $5.32 

Maximum: 11.91 1,448,408 $10,661,000 $9.53 

 

 

Figure 4.6. Historical contract dredging cost data for the case-study portion of the GIWW, showing 13 

points with average project distance and cost per cubic yard. The dashed line shows the line of linear 

regression through these data (y = 4.2803 + 0.1377x). 

In additional to financial costs, four types of potential environmental impacts from dredging and 

sediment placement operations are modeled in the D2M2 GIWW case study. These impacts are 

estimated based on geospatial analysis of overlap between sediment placement sites and 

environmentally sensitive areas related to: 1) threatened and endangered species, based on a database 

of the number of threatened and endangered species historically present in the region; 2) designated 

special lands (e.g., wetlands), based on a map of special land designations in the region; 3) oyster beds, 

based on a map of oyster bed areas in the region; and 4) submerged aquatic vegetation (SAV), based on 
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a map of SAV habitat in the region (condensed maps in Figure 4.7; full-scale maps and descriptions in 

Appendix Figures 4.A1-4.A4; data for the intersection between environmentally sensitive areas and 

potential sediment placement sites were provided by USACE ERDC based on databases and maps from 

the Texas General Land Office). For the threatened and endangered species analysis, each placement 

area is scored based on the percent of the 14 total species in the database that were historically 

observed in that area; where a placement area overlaps with multiple counts of historical species 

present, an area-weighted average value is used. For the remaining three types of environmental 

impacts, the geospatial analysis shows the percent of the placement site area that overlaps with that 

type of environmental feature (Table 4.5).  

 

Figure 4.7. Condensed maps of A) the number of threatened and endangered species historically present, 

B) special land designations, C) oyster beds, and D) submerged aquatic vegetation habitat in different 

areas in the GIWW study region. Black rectangles outline the perimeter of existing placement sites and 

yellow circles outline the approximate area of potential placement sites. See Appendix Figures 4.A1-4.A4 

for full-size maps. 

In addition to financial cost and environmental impacts, three criteria related to the beneficial use of 

sediment are included in the D2M2 case study model. Two types of beneficial effects and one type of 

non-monetary cost are evaluated relatively for each BU site on a 0-100 qualitative scale. These include: 

1) the direct benefits of adding or restoring habitat area (e.g., counting increased habitat land area), 2) 
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the indirect or ancillary environmental benefits from having that increased or restored habitat (e.g., 

estimating increased ecological productivity), and 3) indirect, non-monetary costs required to carry out 

beneficial use projects (e.g., the extra time, effort, and hassle typically required to secure agreements 

for new beneficial use sites). Note, Because the case study optimization seeks to minimize the total, 

aggregated weighted score, all costs and impacts are represented with positive values and all benefits 

are represented with negative values (Table 4.5 & Appendix Table 4.A3). 

Table 4.5. Abbreviated table showing 10 rows of relative environmental impact and beneficial use scores 

per cubic yard placed. Non-monetary criteria in the D2M2 model include four different types of 

environmental impacts (to special lands, threatened and endangered species, oyster beds, and 

submerged aquatic vegetation) and three effects from the beneficial use of sediment (direct benefits 

from increased or restored habitat area, indirect environmental benefits from having increased or 

restored habitat, and non-monetary time, effort, and hassle costs typically required to carry out new 

beneficial use projects). All scores are qualitatively estimated per unit volume of sediment on either a 0-1 

scale for the environmental impacts or a 1-100 scale for the beneficial use effects (zero values are shown 

as “.”, for improved readability). Because the optimization seeks to minimize the total weighted score, 

benefits are represented as negative values. (Scores provided by the USACE ERDC and Galveston district). 

See Appendix Table 4.A3 for full table with 62 rows of data. 

Name T&E 

Species 

Special 

Lands 

Oyster 

Reef 

SAV Direct BU 

Benefit 

Indirect BU 

Benefit 

Indirect 

Cost 

 …       

PA 70 .14 .79 . .04         .       .     . 

DA 79 .21 .95 . .53   -60.42 -50 33 

DA 86 .14 .98 . .05         .       .     . 

DA 87 .14 .13 . .02         .       .     . 

DA 88 .14 .51 . .05         .       .     . 

PAEX1 (PA 38) .31 .34 . .58 -100 -60 22 

PAEX2 (DA 88) .14 .51 . .05         .       .     . 

Bird Island Cove .16 .48 . .61   -50 -40 60 

Bolivar Ferry Landing/Little Beach .45 .26 . .42   -72 -20 11 

Bolivar Marsh .17 .77 . .23   -43 -20 40 

 …       

 

Because cost, environmental, and beneficial use data are presented in different units, with different 

scales and magnitudes, they are normalized as part of weighting and aggregation. Normalization 

transforms the raw level-of-performance data, in their original units, into normalized value scores on a 

common, relative scale of desirability. Two approaches for establishing normalization ranges for MAVT 

problems are common in practice. For problems where stakeholders or decision makers have 

experience with and a good understanding of the data or are dealing with data anchored between 

known endpoints (e.g., 0-100%), they may be able to make judgements about specific value-function 

shape or the upper and lower bounds used in a linear normalizing value function. In other cases, where 

stakeholders and decision makers have less experience with the data, are less confident in their ability 

to express reasonable ranges for normalization (e.g., when level-of-performance data are expressed in 



118 
 

unfamiliar relative scores), the minimum and maximum values observed in the set of alternatives are 

often used to create upper and lower bounds used by the value function for normalization.41 

In the D2M2 GIWW case study, normalization is based on the range from zero to the maximum (or to 

absolute value of the minimum, for benefits expressed in negative terms) value observed in the site 

data, per unit volume (see Table 4.5). The financial cost of dredging is an exception because it has 

components that both vary with distance (see Table 4.3 & Appendix Table 4.A2, Table 4.4, and Figure 

4.6) and include fixed acquisition and improvement costs (see Table 4.2 & Appendix Table 4.A1). Here, 

the range used to normalize financial costs, per unit volume, is based on the maximum observed sum of 

the regressed sediment transportation cost equation applied to route distance plus the unit acquisition 

and improvement cost for that route’s placement site, calculated by dividing that site’s total acquisition 

and improvement cost by its total capacity. To achieve the normalization, the data (or the weights) are 

multiplied by a normalization factor equal to one divided by the normalization range for that criterion so 

that the data are scaled onto a consistent zero-to-one scale for aggregation (Table 4.6).  

There are many possible approaches to normalization. Benefits of the approach used in this application 

include that: 1) it preserves the negative sign of the two benefit objectives so that minimization of the 

weighted sum of objectives makes sense for all objective types, 2) it can be applied equivalently by 

multiplying each criterion weight by the normalization factor for its data type instead of by multiplying 

all input data by the normalization factor, which saves computational effort, 3) and that the normalized 

results of the optimization can simply be divided by their normalization factors again to be converted 

back into their original cost and benefit units for further analysis or post-processing. As normalization is 

applied after data development but prior to optimization, future analyses can employ different 

normalization approaches with the same case-study data to explore difference. 

Table 4.6. Normalization ranges for the D2M2 case study data. Either the criterion weights or the input 

data for all sites and transportation routes in the system network are multiplied by the normalization 

factors to re-scale the data onto a zero-to-one scale prior to aggregation. 

Objective Lower bound 

of range 

Upper bound 

of range 

Normalization 

factor 

Financial Cost 0 $8.106 0.1234 

T&E Species 0 .445 2.2493 

Special Lands 0 .978 1.0224 

Oyster Reef 0 .823 1.2155 

SAV 0 .660 1.5152 

Direct BU Benefit -100 0 0.0100 

Indirect BU Benefit -80 0 0.0125 

Indirect Cost 0 70 0.0143 

 

Dredged material placement is optimized on an annual time step over 20 years for 9 optimization 

scenarios (Table 4.7). Six scenarios explore 3 sets of physical network configurations for the GIWW 

system for each of 2 weighting schemes. The 3 physical configurations include scenarios where the 

system network includes: 1) only the existing active sites plus hypothetical expansion sites, 2) only the 

existing active and existing inactive sites plus hypothetical expansion sites, or 3) all existing active, 

existing inactive, proposed, and hypothetical expansion sites. These scenarios are combined with 2 



119 
 

weighting schemes that place: 1) 100% weight on financial cost and no weight on other criteria, or 2) 

50% weight on cost, 25% weight split between the four environmental impacts (6.25% each), and 25% 

weight split between the three beneficial use effects (8.33% each). These weighting schemes are chosen 

to represent realistic potential management interests. Combined, these site networks and weights yield 

6 scenarios. Three additional scenarios modify the 6th scenario’s constraints, weights, and capacities to 

showcase different aspects of the D2M2 software and to more broadly analyze potential operation of 

the GIWW system in ways that are of interest but which do not reflect realistic management priorities. 

The 7th scenario is identical to the 6th but places 0 weight on the financial cost and BU indirect cost 

criteria to show results from a strictly environmental perspective. The 8th scenario is identical to the 6th 

but reduces the available capacity of the 3 most used sites to force the model to identify a set of 

placement sites that are of greatest secondary importance. The 9th scenario is identical to the 6th but 

deviates from actual GIWW management to add various site and route constraints and add site 

properties that more fully demonstrate the capabilities of the D2M2 software. 

Scenario 7 uses the same network configuration as the 6th scenario but changes the following: 

• 0% weight is placed on the financial cost criterion 

• 0% weight is placed on the indirect costs of beneficial use criterion. 

Scenario 8 uses the name network configuration and weighting as the 6th scenario but changes the 

following: 

• Placement capacity for site PAEX1 (which mimics an expanded PA 38) is reduced to 0 CY. 

• Placement capacity for site PAEX2 (which mimics an expanded DA 88) is reduced to 3,800,000 

CY. 

• Placement capacity for site Long Point Marsh (another relatively large capacity site that is 

extensively used in the other scenarios) is reduced to 0 CY. 

Scenario 9 uses the same network configuration and weighting as the 6th scenario but adds the 

following: 

• Placement site PA 62 has its earliest available time period for use (earliest acquisition period) set 

to be the 5th time period. (In the solution for Scenario 6, this site was used starting in the 1st time 

period.) 

• Placement site PA 67 is limited to a maximum addition per time period of 95,000 CY. (In the 

solution for Scenario 6, in time periods when it was used, it was used for between 77,158 - 

217,614 CY per time period.) 

• Sediment reuse (i.e., removal from the system) is enabled for placement site PA 39, beginning in 

the 5th time period, with a maximum rate of 50,000 CY per time period and at a financial cost of 

$0.10 per cubic yard removed. (In the solution for Scenario 6, this site was used in only one time 

period, in which its 119,462 CY capacity was completely filled.) 

• Route 68 is limited to a maximum volume transported per time period of 100,000 CY. (In the 

solution for Scenario 6, this route transported between 7,388 - 155,028 CY in each of the 5 time 

periods where it was used.) 

• Route 9 is required to transport exactly 100,000 CY in time period 2. (In the solution for Scenario 

6, this route transported 0 CY in that time period.) 
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• Route 4 is limited to transport less than or equal to 400,000 CY in time periods 1-10. (In the 

solution for Scenario 6, this route transported 598,198 - 698,198 CY when it was used in five of 

these ten time periods.) 

• Placement site Rollover Pass Closure is given a bulking factor of 0.75, meaning that in the long 

term the mass of sediment placed takes up only 75% of the volume initially placed, due to 

compaction and shrinkage. (In the model for Scenario 6, a bulking factor of 1.0 was used for this 

site.) 

Table 4.7. The D2M2 GIWW case study optimization is run for nine scenarios that vary two weighting 

schemes, three site configurations, and various capacities and constraints. 

Scenario #: Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Scenario 

7 

Scenario 

8 

Scenario 

9 

Summary 

Description: Active, 

Cost 

Active, 

Balanced 

Active & 

Inactive, 

Cost 

Active & 

Inactive, 

Balanced 

All Sites, 

Cost 

All Sites, 

Balanced 

All Sites, 

Environ. 

All Sites, 

Balanced 

Limited 

All Sites, 

Balanced 

Modified 

Objectives Weights 

Financial Cost 100% 50% 100% 50% 100% 50% . 50% 50% 

T&E Species . 6.25% . 6.25% . 6.25% . 6.25% 6.25% 

Special Lands . 6.25% . 6.25% . 6.25% . 6.25% 6.25% 

Oyster Reef . 6.25% . 6.25% . 6.25% . 6.25% 6.25% 

SAV . 6.25% . 6.25% . 6.25% . 6.25% 6.25% 

Direct BU Benefit . 8.33% . 8.33% . 8.33% 50% 8.33% 8.33% 

Indirect BU 

Benefit 

. 8.33% . 8.33% . 8.33% 50% 8.33% 8.33% 

Indirect Cost . 8.33% . 8.33% . 8.33% . 8.33% 8.33% 

Sites Inclusion in system network configurations 

Existing active 

sites 

x x x x x x x x x 

Existing inactive 

BU sites 

. . x x x x x x x 

Proposed BU 

sites 

. . . . x x x x x 

Hypothetical 

expansion sites 

x x x x x x x x x 

Some capacities 

are reduced 

. . . . . . .   x . 

Some sites & 

routes are 

constrained 

. . . . . . . . x 
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ADVANCES IN NEW VERSION OF D2M2  

The new version of D2M2 introduced here includes several advances over prior versions to better 

represent costs, impacts, benefits, and effects (collectively referred to as “costs” in the bullet points 

below), incorporate additional system constraints, enhance the D2M2 modeling process, and improve 

the user interface.  

Model enhancements to better represents costs, impacts, benefits, and effects: 

• Because costs of sediment dredging and transportation are interrelated (e.g., by site 

characteristics and equipment choices), D2M2 models combine these costs and apply them 

to routes between dredging, transfer, and placement sites. To simplify repeated application 

of costs, these cost curves are specified for “equipment” that can be applied to one or more 

routes. Like past versions, the new version can incorporate averaged dredging and 

transportation costs per unit volume, per unit distance in these cost curves. The new version 

now additionally provides the ability to include fixed costs for using a route between two 

sites, regardless or volume or distance. This helps represent fixed equipment mobilization 

and demobilization that can be incurred when moving between locations and other non-

variable costs of route use. 

• To provide more granularity in modeling fixed cost, the new D2M2 version also allows fixed-

cost scaling factors that can be applied to any dredging, transfer, or placement site to 

increase or decrease the average fixed cost for all routes that use that site. This allows 

D2M2 modelers to adjust fixed costs for sites that are particularly harder or easier to reach 

or work with or that otherwise have fixed costs that differ from the average. 

Model enhancements to incorporate additional constraints: 

• The new D2M2 version now enables user-defined categories to be created and applied to 

any dredging, transfer, or placement site, transportation route, or type of equipment. (As 

described below, these custom categories can be used when creating system-wide 

constraints or generating network routes.)  

• System-wide constraints can now be added that force a specified sediment volume to be 

transported from, through, or to any routes, equipment, transfer sites, or placement sites in 

a specified time period based on their user-defined category. The specified volume can be 

chosen to be either equal to, greater than, or less than the specified volume. This provides 

the user with unprecedented flexibility in adjusting the model to more accurately 

incorporate unique timing and volume requirements of their system’s operation. 

• Transfer sites can now either be set to empty by the last optimization time period or be 

given the flexibility to accumulate and retain material at the end of the optimization 

timeframe (i.e., to also function as placement sites). 

Process enhancements for D2M2 modeling: 

• If user-defined equipment categories have been specified, the new D2M2 version allows any 

dredge, transfer, or placement site to be identified as compatible with one of those custom 

equipment categories. (As described below, this can be leveraged to automatically build the 

system network). 
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• With just a few clicks, the D2M2 modeler can now automatically build an entire system 

network by having the software automatically create routes between all possible sites 

combinations that share the same custom equipment category.  

• Alternatively, with just a few clicks, the D2M2 modeler can now automatically build an 

entire system network by having the software create routes between all possible site 

combinations that are within a user-defined distance of each other, based on optional 

latitude and longitude coordinates that can be provided for each site.  

• The two functionalities above can also be combined to automatically create routes of 

compatible custom category types within a desired distance of each other. 

• A new functionality has been provided to automatically perform one type of scenario and 

sensitivity analysis. With just a few clicks, the software can automatically vary the objective 

weights in the optimization, at a user-specified increment and within a user-specified range, 

and iteratively re-run the optimization solver for each one of those weighting scenarios. This 

provides an automatic way to explore how differences in weighting affect differences in 

optimal network operation or to identify a weight-range over which some features of an 

optimal solution persist in the results. 

• New functionality has been provided to automatically exclude a previously identified 

optimal solution from being considered again by the solver and then to re-run the 

optimization, forcing the solver to iteratively discover other solutions in the near-optimal 

solution space, as another type of sensitivity analysis. This can be used, for example, to 

generate alternative results in cases where the stakeholders or decision maker may not like 

the initial optimal solution for reasons not captured in the LP formulation, or for when 

seeing a range of near-optimal solutions may help the stakeholders or decision makers to 

build confidence in their management decisions.  

These types of automatic model building and scenario/sensitivity analysis, including exploration 

of the near-optimal solution space, are typically missing from dredging optimization tools. If 

subsequent solutions differ from the original solution(s) by only a small tolerance, this 

procedure can be run many times to gradually explore a broader solution space. 

Enhancements to the user interface:  

• The software now has an updated graphical user interface that includes many small usability 

enhancements. 

• The software now can import and export model input template files and model output 

result files. This helps expedite transferring data to/from the D2M2 software and promotes 

external analysis and post-processing of any constructed D2M2 model and its results. 

• A D2M2 plugin for ESRI ArcGIS software has been developed that can quickly transform 

features present in existing geospatial databases into D2M2 input model files. 

• A D2M2 results summarization macro for Microsoft Excel have been developed to aid 

further exploration and data analysis of exported D2M2 results. 

• A spatial data viewer, available to USACE intranet users only, has been created by the USACE 

Geospatial team (USACE Mobile district) to displays D2M2 results on an online digital map 

alongside data incorporated from other USACE spatial data systems. 
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D2M2 MODEL FORMULATION  

The new version of the D2M2 software uses a MILP optimization formulation, expressed below. The 

modeler enters costs (and impacts, benefits, effects) with consistent positive and negative signage and 

chooses to minimize or maximize the resulting weighted sum accordingly. The equations below are 

presented in simplified mathematical notation (i.e., using ∀, ∑, ∈, {}, [], and () symbols and 

𝑖𝑓, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 language) instead of full linear programming syntax to make them more concise, 

readable, and interpretable. A brief description is provided with the introduction of each index, variable, 

and equation.  

Indices 

𝒊  – index of a dredging or transfer site from which material is removed. If multiple sediment types 

(e.g., sandy and fine material) need to be included in the model formulation, multiple dredging 

site variants can be created with different cost curves, properties, and route connections for 

each material type. 

𝒋  – index of a transfer or placement site into which material is placed. Transfer and placement sites 

are seen identically by the optimization solver, but the D2M2 user interface restricts which 

options can be entered by the modeler for each type of site. These differences include: 1) 

material can be removed from transfer but not placement sites, 2) placement but not transfer 

sites can have some of their material completely removed from the modeled system (i.e., not 

just relocated to another site) if allocated for third-party reuse, 3) placement but not transfer 

sites can be identified as having an initial volume at the start of the first time period, 4) 

placement but not transfer sites can have a bulking factor to describe the long-term change in 

volume of material added there (e.g., to account for dewatering and compaction that occurs 

over time), 5) placement but not transfer sites can be restricted to have a maximum volume that 

can be added per time period, separate from their total capacity, and 6) transfer but not 

placement sites can be set as either able or not to accumulated material at the end of the last 

modeled time period. 

𝒕  – index of a time period (e.g., an annual time step). 

𝒕_𝒎𝒂𝒙  – index of the final time period. 

𝒌  – index of an objective. Objectives are defined by the D2M2 modeler and can include any mix of 

factors for which the stakeholders or decision makers have interest and data are available. 

Linear weights are applied to objectives to indicate their relative importance during aggregation. 

The weights supplied by the modeler are normalized by the D2M2 software to sum to one prior 

to optimization. 

𝒙  – index of a user-entered point on the piecewise-linear curve of costs to transport a unit volume 

of sediment over a route’s distance. 

𝒊, 𝒋  – note, this pairing of indices always represents a route between dredging or transfer site 𝒊 and 

transfer or placement site 𝒋.  The system network for any given D2M2 model likely only include 

a subset of all possible routes between available dredging, transfer, and placement site pairs. 

Also, the D2M2 user interface does not allow creation of circular routes, i.e., it enforces that 𝒊 ≠
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𝒋, ∀𝒊, 𝒋. When referenced, the pairing 𝒊, 𝒋 should always be interpreted to mean routes that 

actually exist in the model and not potential routes between site pairs that could be, but are not 

actually, connected in the model. 

𝒋′  – this variation of the typical site indexing is used when multiple items of the same type need to 

be referenced in the same equation. For example, to track sediment volumes both flowing into a 

transfer site and out of that site to another transfer or placement site in the same time period.  

Decision variable(s) 

𝒗𝒊,𝒋,𝒕  – the volume of sediment transported on route 𝒊, 𝒋 in time period 𝒕.  

𝒗_𝒓𝒋,𝒕  – the volume extracted from site 𝒋 in time period 𝒕 for third-party reuse. (This quantity is 

modeled as being completed removed from the D2M2 system.) 

Additional model variables 

𝒗_𝒆𝒙𝒂𝒄𝒕𝒊,𝒕  – an exact volume required to be removed from dredging site 𝒊 in time period 𝒕. The 

D2M2 software requires specific dredging volumes per time period to be specified for all dredging 

sites (this value may be zero for some time periods). This parameter is required. 

𝒗_𝒎𝒂𝒙𝒋  – the maximum (cumulative) volume capacity for transfer or placement site 𝒋.  This 

parameter is required. 

𝒕_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋  – an optional time period during and after which transfer or placement site 𝒋 is 

available to be used; the earliest time period for site acquisition. Note, the D2M2 software 

automatically sets a default value of 𝒕_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋 = 𝟎 for all transfer or placement sites for 

which a custom value is not supplied. 

𝒕_𝒍𝒂𝒕𝒆𝒔𝒕𝒋  – an optional latest time period during which site 𝒋 can be used. 

𝑺_𝒋𝒕_𝒍𝒂𝒕𝒆𝒔𝒕  – the optional subset of all transfer and placement sites that have a latest time period for 

use specified. 

𝒗_𝒎𝒂𝒙_𝒕𝒋  – the optional maximum volume that can be added to placement site 𝒋 in any given time 

period. The D2M2 software allows the modeler to specify a custom value for 𝒗_𝒎𝒂𝒙_𝒕𝒋 for 

placement but not transfer sites.  

𝑺_𝒋𝒗_𝒎𝒂𝒙_𝒕  – the optional subset of all placement sites that have a limit specified for the maximum 

volume that can be placed in them per time period.  

𝑺_𝒋𝒆𝒎𝒑𝒕𝒚  –  the optional subset of all transfer sites, 𝒋, that must empty by the end of the final time 

period. The D2M2 software allows the modeler to specify inclusion in this subset for transfer but 

not placement sites. 

𝒇_𝒗𝒋  – the optional bulking factor, the ratio of sediment wet volume to long-term dry volume per 

unit mass, which describes the eventual change in volume for sediment in placement site 𝒋 (e.g., 

due to drying and compaction). The D2M2 user interface allows custom bulking factors, 𝒇_𝒗𝒋, to 

be entered by the modeler for final placement sites but uses a fixed bulking factor of 1.0 for 

intermediate transfer sites. 
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𝒗𝒋,𝒕  – the sediment volume in transfer or placement site 𝒋 at the end of time period 𝒕. This value is 

calculated internally. 

𝒗𝒋,𝒕=𝟎  – the optional initial volume already stored in placement site 𝒋 at the start of time period 𝒕 =

𝟎.  If the modeler does not enter a custom value for 𝒗𝒋,𝒕=𝟎, the D2M2 software automatically 

provides a default initial volume of 0. The D2M2 software allows non-zero initial volumes to be 

entered for placement sites but not transfer sites. 

𝒗_𝒓_𝒎𝒂𝒙𝒋  – an optional maximum sediment reuse volume allowed per time period for placement 

site 𝒋. Reused sediment is modeled as completely removed from the system, e.g., as if the 

sediment is mined from the placement site by a third party for reuse in unrelated engineering or 

environmental project that are not included in the D2M2 system site network.  

𝑺_𝒋𝒗_𝒓_𝒎𝒂𝒙  – the optional subset of all placement sites that allow sediment reuse, up to a maximum 

rate.  

𝒕_𝒓_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋  – an optional time period during and after which sediment reuse is allowable for 

placement site 𝒋 but before which it is not. The D2M2 software automatically sets a default 

value of 𝒓_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋 = 𝟎 for all sites for which a custom value is not provided. 

𝒗_𝒎𝒂𝒙𝒊,𝒋  – an optional maximum-capacity limit on the volume of sediment that can be transported 

on route 𝒊, 𝒋 in any time period. 

𝑺_𝒊𝒋𝒗_𝒎𝒂𝒙  – the optional subset of all routes that have a 𝒗_𝒎𝒂𝒙𝒊,𝒋 type constraint. 

𝒗_𝒆𝒙𝒂𝒄𝒕𝒊,𝒋,𝒕  – an optional exact volume that must be transferred through route 𝒊, 𝒋 in time period 𝒕. 

𝑺_𝒊𝒋𝒕𝒗_𝒆𝒙𝒂𝒄𝒕  – the optional subset of all routes in time periods where an exact volume must be 

transferred on those routes in those time periods. 

𝒗_𝒎𝒂𝒙𝒊,𝒋,𝒕  – an optional maximum volume that is permitted to be transported through route 𝒊, 𝒋 in 

time period 𝒕. 

𝑺_𝒊𝒋𝒕𝒗_𝒎𝒂𝒙  – the optional subset of all routes in time periods where the volume transferred on 

those routes in those time periods must be less than or equal to the maximum specified. 

𝒗_𝒎𝒊𝒏𝒊,𝒋,𝒕  – an optional minimum volume that is permitted to be transported through route 𝒊, 𝒋 in 

time period 𝒕. 

𝑺_𝒊𝒋𝒕𝒗_𝒎𝒊𝒏  – the optional subset of all routes in time periods where the volume transferred on 

those routes in those time periods must be greater than or equal to the minimum specified. 

𝒗_𝒆𝒙𝒂𝒄𝒕𝒋,𝒕  – an optional exact total volume that must be transferred to site 𝒋 in time period 𝒕 from 

any combination of dredging sites. 

𝑺_𝒋𝒕𝒗_𝒆𝒙𝒂𝒄𝒕  – the optional subset of transfer or placement sites in time periods where an exact total 

volume must be transferred to those destination sites in those time period. 

𝒗_𝒎𝒂𝒙𝒋,𝒕  – an optional maximum total volume that is permitted to be transported to site 𝒋 in time 

period 𝒕. 
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𝑺_𝒋𝒕𝒗_𝒎𝒂𝒙  – the optional subset of all transfer or placement sites in time periods where the total 

volume transferred to those sites in those time periods must be less than or equal to the 

maximum specified. 

𝒗_𝒎𝒊𝒏𝒋,𝒕  – an optional minimum total volume that is permitted to be transported to site 𝒋 in time 

period 𝒕. 

𝑺_𝒋𝒕𝒗_𝒎𝒊𝒏  – the optional subset of all transfer or placement sites in time periods where the total 

volume transferred to those sites in those time periods must be greater than or equal to the 

minimum specified. 

𝒘𝒌  – linear weight for objective 𝒌. The objectives in D2M2 are defined by the modeler and can 

include any custom mix of interests for which they have data available. The weights are applied 

to the objectives during aggregation to reflect the relative importance of each objective 

compared to all others. Before running the optimization, the D2M2 software automatically 

normalizes the supplied weights to sum to one. This parameter is required. 

𝒄_𝒂𝒋,𝒌  – the optional, one-time acquisition cost for use of transfer or placement site 𝒋 for objective 

𝒌. This cost is incurred only on first use of a site. The D2M2 software automatically sets a default 

value of 𝒄_𝒂𝒋,𝒌 = 𝟎 for all sites for which a custom acquisition cost is not provided.  

𝒃𝒋  – binary variable identifying whether a transfer or placement site is used one or more times over 

all time periods (i.e., for determining whether the acquisition cost should be applied.) 

𝒄_𝒅𝒊,𝒋,𝒌  – the variable, distance-based transportation cost, per unit volume, for objective 𝒌, on route 

𝒊, 𝒋. (This value may be zero.) This parameter is required. 

𝒅𝒊,𝒋  – distance for route 𝒊, 𝒋 (i.e., distance between site 𝒊 and site 𝒋.) This parameter is required. 

𝒅𝒙  – a distance point on a piecewise-linear cost per unit volume curve specified by the modeler. At 

least two points on each piecewise cost curve are required. 

𝒄_𝒅𝒙,𝒌  – the cost point associated with a 𝒅𝒙 distance point on a piecewise-linear cost or benefit 

curve specified by the modeler. At least two points on the curve are required. 

𝒄_𝒇𝒊,𝒋,𝒌  – total fixed transportation cost for objective 𝒌 on route 𝒊, 𝒋. This value is calculated 

internally from the base fixed cost and fixed-cost scaling factors. 

𝒄_𝒇_𝒃𝒂𝒔𝒆𝒊,𝒋,𝒌  – the optional base fixed cost (e.g., an average fixed cost), before potentially 

adjustment by scaling factors. The value of 𝒄_𝒇_𝒃𝒂𝒔𝒆𝒊,𝒋,𝒌 = 𝟎 should be specified for routes 

without fixed costs. 

𝒇_𝒄_𝒇𝒊,𝒌  – an optional fixed cost scaling factor for objective 𝒌 for dredging site 𝒊. The D2M2 

software automatically sets a default value of 𝒇_𝒄_𝒇𝒊,𝒌 = 𝟏 for all dredging sites for which a 

custom value is not provided. 

𝒇_𝒄_𝒇𝒋,𝒌  – an optional fixed cost or benefit scaling factor for objective 𝒌 for transfer or placement 

site 𝒋. The D2M2 software automatically sets a default value of 𝒇_𝒄_𝒇𝒋,𝒌 = 𝟏 for all transfer or 

placement sites for which a custom value is not provided. 
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𝑺_𝒊𝒋𝒄_𝒇  –  the optional subset of all routes 𝒊, 𝒋 that have a fixed cost specified for their use. 

𝒃𝒊,𝒋,𝒕  – binary variable identifying whether route 𝒊, 𝒋 is used in time period 𝒕. 

𝒄_𝒑𝒋,𝒌  – an optional sediment placement cost, per unit volume, for objective 𝒌, at transfer or 

placement site 𝒋.  The placement cost is calculated based on actual volume placed, before any 

bulking factor, outgoing sediment volume, or sediment reuse volume is applied. 

𝒄_𝒓𝒋,𝒌  – an optional sediment reuse cost, per unit volume, for objective 𝒌, at transfer or placement 

site 𝒋.  

Problem formulation 

The objective function can be either minimized or maximized and includes the following components: 

• Weights for each objective. 

• One-time acquisition costs or benefits for the use of individual transfer or placement sites in 

one or more time periods. 

• Variable transportation costs or benefits, per unit volume, for each distance, for 

transporting sediment on specific routes. 

• Fixed transportation costs or benefits for routes, incurred once per time period of use, 

adjusted by fixed-cost scaling factors for individual dredging, transfer, and/or placement 

sites. 

• Placement costs or benefits for placing sediment in transfer and placement sites, per unit 

volume. 

• Material reuse cost or benefit, per unit volume, for third party extraction and reuse of 

sediment from a transfer or placement site, remove it from the modeled system. 

Minimize or Maximize:  

𝒁 = ∑ [∑ (𝒘𝒌
𝒌𝒕

∗ [∑ 𝒄_𝒂𝒋,𝒌 ∗ 𝒃𝒋
𝒋

+ ∑ ∑ 𝒄_𝒅𝒊,𝒋,𝒌 ∗ 𝒗𝒊,𝒋,𝒕
𝒋𝒊

+ ∑ ∑ 𝒄_𝒇𝒊,𝒋,𝒌 ∗ 𝒃𝒊,𝒋,𝒕
𝒋𝒊

+ ∑ ∑ 𝒄_𝒑𝒋,𝒌
𝒋

∗ 𝒗𝒊,𝒋,𝒕
𝒊

+ ∑ 𝒄_𝒓𝒋,𝒌 ∗ 𝒗_𝒓𝒋,𝒕
𝒋

])] 

Subject to:  

𝒗𝒋,𝒕 = 𝒗𝒋,𝒕−𝟏 + ∑ (𝒇_𝒗𝒋 ∗ 𝒗𝒊,𝒋,𝒕)𝒊 − ∑ (𝒗𝒋,𝒋′,𝒕)𝒋′ − 𝒗_𝒓𝒋,𝒕, ∀ 𝒕 ≥ 𝟏; ∀ 𝒋.  – the volume of sediment in 

transfer or placement site 𝒋 in time period 𝒕 is equal to the volume of sediment in that site in the 

previous time period plus the volume of incoming sediment minus the volume of outgoing 

sediment to other sites or to third-party reuse. Note, the D2M2 software allows custom bulking 

factors, 𝒇_𝒗𝒋, and initial volume values, 𝒗𝒋,𝒕=𝟎, to be entered for placement sites but not transfer 

sites. It applies a value of 𝒇_𝒗𝒋 = 𝟏 for all transfer sites and for any placement sites for which a 

custom value is not entered and applies a value of 𝒗𝒋,𝒕=𝟎 = 𝟎 for all transfer sites and for any 

placement sites for which a custom value is not entered.  
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𝒗𝒋,𝒕 ≤ {

𝒗_𝒎𝒂𝒙𝒋, ∀ 𝒋 ∉ 𝑺_𝒋𝒆𝒎𝒑𝒕𝒚; ∀ 𝒕                   

𝒗_𝒎𝒂𝒙𝒋, ∀ 𝒋 ∈ 𝑺_𝒋𝒆𝒎𝒑𝒕𝒚; ∀ 𝒕 ≠ 𝒕_𝒎𝒂𝒙

𝟎,               ∀ 𝒋 ∈ 𝑺_𝒋𝒆𝒎𝒑𝒕𝒚; 𝒕 = 𝒕_𝒎𝒂𝒙    
.  – the volume in transfer or placement site 𝒋 at the 

end of time period 𝒕 must always be less than the maximum capacity for that site. Transfer sites 

must empty in the final time period only if required by the modeler. 

∑ 𝒗𝒊,𝒋,𝒕𝒊 ≤ 𝒗_𝒎𝒂𝒙𝒋 + 𝒗_𝒓𝒋,𝒕, ∀ 𝒊, 𝒋, 𝒕.  – the volume transported to transfer or placement site 𝒋 in any 

time period may not exceed the maximum capacity volume for that site plus the volume 

removed from that site for reuse in that time period. 

∑ 𝒗𝒊,𝒋,𝒕𝒋 = 𝒗_𝒆𝒙𝒂𝒄𝒕𝒊,𝒕, ∀ 𝒊, 𝒕.  – the sum of volumes transported from a dredging site to all transfer 

and placement sites in a time period must equal the required dredging volume for that dredging 

site in that time period. 

𝒗_𝒓𝒋,𝒕 ≤ {
𝒗_𝒓_𝒎𝒂𝒙𝒋, ∀𝒋 ∈ 𝑺_𝒋𝒗_𝒓_𝒎𝒂𝒙; ∀ 𝒕 ≥ 𝒕_𝒓_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋

𝟎,                   ∀𝒋 ∉ 𝑺_𝒋𝒗_𝒓_𝒎𝒂𝒙; ∀ 𝒕                                 
.  – for placement sites that allow 

sediment reuse, the volume reused in any time period must be less than that site’s maximum 

reuse volume; this constraint is only added by the D2M2 software for the subset of placement 

sites in 𝑺_𝒋𝒓_𝒎𝒂𝒙 that allow sediment reuse up, to a maximum rate. For transfer or placement 

sites that do not allow sediment reuse, the volume reused in any time period must be zero. For 

placement sites that allow reuse only after some time period, reuse is only allowed during and 

after that earliest possible time period. 

∑ 𝒗𝒊,𝒋,𝒕𝒊 = 𝟎, ∀ 𝒋; ∀ 𝒕 < 𝒕_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋.    – if an earliest time period for use (i.e., an earliest acquisition 

period) has been specified for transfer or placement site 𝒋, then use of that site is not allowed 

before the earliest identified time period. 

𝒃𝒋 ≤ ∑ ∑ 𝒗𝒊,𝒋,𝒕𝒊𝒕 , ∀ 𝒋; ∀ 𝒕 ≥ 𝒕_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋.  – the binary variable that indicates whether transfer or 

placement site 𝒋 has been used for any volume in any time period must be less than or equal to 

the total volume transferred into the site over all time periods. (I.e., if no volume is ever 

transferred into the site, then the binary variable for its use must be zero. This binary variable is 

used when applying the site acquisition cost). 

𝒃𝒋 ∗ ∑ ∑ 𝒎𝒊𝒏(𝒗_𝒆𝒙𝒂𝒄𝒕𝒊,𝒕, 𝒗_𝒎𝒂𝒙𝒊,𝒋)𝒊𝒕 ≥ ∑ ∑ 𝒗𝒊,𝒋,𝒕𝒊𝒕 , ∀ 𝒊 ∈ 𝒓𝒐𝒖𝒕𝒆 𝒊, 𝒋; ∀𝒋;  ∀ 𝒕 ≥ 𝒕_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋.  – the 

binary variable that indicates whether transfer or placement site 𝒋 has been used for any volume 

in any time period, multiplied by the greatest total volume that could potentially be transferred 

into that site over all time periods, must be greater than or equal to the total volume actually 

transferred into that site 𝒋 over all time periods during and after its earliest allowable period of 

use. The caveat ∀ 𝒊 ∈ 𝒓𝒐𝒖𝒕𝒆 𝒊, 𝒋 is used specify that 𝒗_𝒆𝒙𝒂𝒄𝒕𝒊,𝒕 should only be included for 

dredging sites that are actually connected to transfer or placement site 𝒋. This constraint 

accomplishes three things: 1) it ensures that if any volume is ever transferred into site 𝒋, then 

the binary variable for its use must be greater than zero, 2) it ensures that the total volume 

transferred into sites j is less than or equal to the total dredging volume of all sites connected to 

it, and 3) it ensures that the total volume transferred into sites j is less than or equal to the total 

volume allowed to be transported on routes to it. 
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𝒗𝒊,𝒋,𝒕 ≤ 𝒗_𝒎𝒂𝒙𝒊,𝒋, ∀ 𝒊, 𝒋 ∈ 𝑺_𝒊𝒋𝒗_𝒎𝒂𝒙; ∀ 𝒕.  – the volume of dredged material transmitted on each 

route that has a maximum volume constraint must be less than or equal to the maximum 

allowable volume in all time periods.  

∑ 𝒗𝒊,𝒋,𝒕𝒊 = 𝟎, ∀ 𝒋 ∈ 𝑺_𝒋𝒕_𝒍𝒂𝒕𝒆𝒔𝒕; ∀ 𝒕 > 𝒕_𝒍𝒂𝒕𝒆𝒔𝒕𝒋.    – if a latest time period for use (e.g., an end of 

lease period) has been specified for transfer or placement site 𝒋, then use of that site is not 

allowed after that latest identified time period. 

∑ 𝒗𝒊,𝒋,𝒕𝒊 ≤ 𝒗_𝒎𝒂𝒙_𝒕𝒋, ∀ 𝒋 ∈ 𝑺_𝒋𝒗_𝒎𝒂𝒙_𝒕; ∀𝒊, 𝒕.  –  if a maximum volume addition per time period has 

been specified for placement site 𝒋, then the sum of volumes added to that site in any given 

time period must be less than that maximum value. 

𝒗𝒊,𝒋,𝒕 = 𝒗_𝒆𝒙𝒂𝒄𝒕𝒊,𝒋,𝒕, ∀ 𝒊, 𝒋, 𝒕 ∈ 𝑺_𝒊𝒋𝒕𝒗_𝒆𝒙𝒂𝒄𝒕.  – if an exact volume is required to be transferred on 

route 𝒊, 𝒋 in time period 𝒕, then that volume must be transferred from site 𝒊 to site 𝒋 in that time 

period. 

𝒗𝒊,𝒋,𝒕 ≤ 𝒗_𝒎𝒂𝒙𝒊,𝒋,𝒕, ∀ 𝒊, 𝒋, 𝒕 ∈ 𝑺_𝒊𝒋𝒕𝒗_𝒎𝒂𝒙.  – if a maximum volume limits the amount that can be 

transferred on route 𝒊, 𝒋 in time period 𝒕, then the volume transferred from site 𝒊 to site 𝒋 in that 

time period must be less than or equal to that maximum. 

𝒗𝒊,𝒋,𝒕 ≥ 𝒗_𝒎𝒊𝒏𝒊,𝒋,𝒕, ∀ 𝒊, 𝒋, 𝒕 ∈ 𝑺_𝒊𝒋𝒕𝒗_𝒎𝒊𝒏.  – if a minimum volume limits the amount that can be 

transferred on route 𝒊, 𝒋 in time period 𝒕, then the volume transferred from site 𝒊 to site 𝒋 in that 

time period must be equal to or greater than that minimum. 

∑ 𝒗𝒊,𝒋,𝒕𝒊 = 𝒗_𝒆𝒙𝒂𝒄𝒕𝒋,𝒕, ∀ 𝒋, 𝒕 ∈ 𝑺_𝒋𝒕𝒗_𝒆𝒙𝒂𝒄𝒕.  – if an exact total volume is required to be transferred to 

site 𝒋 in time period 𝒕, then that exact volume must be cumulatively transferred from all dredge 

sites to site 𝒋 in that time period. 

∑ 𝒗𝒊,𝒋,𝒕𝒊 ≤ 𝒗_𝒎𝒂𝒙𝒋,𝒕, ∀ 𝒋, 𝒕 ∈ 𝑺_𝒋𝒕𝒗_𝒎𝒂𝒙.  – if a maximum total volume limits the amount that can be 

transferred to site 𝒋 in time period 𝒕, then the cumulatively volume transferred from all dredge 

sites to site 𝒋 in that time period must be less than or equal to that maximum. 

∑ 𝒗𝒊,𝒋,𝒕𝒊 ≥ 𝒗_𝒎𝒊𝒏𝒋,𝒕, ∀ 𝒋, 𝒕 ∈ 𝑺_𝒋𝒕𝒗_𝒎𝒊𝒏.  – if a minimum total volume limits the amount that can be 

transferred on to site 𝒋 in time period 𝒕, then the cumulatively volume transferred from all 

dredge sites to site 𝒋 in that time period must be equal to or greater than that minimum. 

𝒄_𝒅𝒊,𝒋,𝒌 = ∑ {
(𝒅𝒊,𝒋 − 𝒅𝒙−𝟏) ∗

𝒄_𝒅𝒙,𝒌−𝒄_𝒅𝒙−𝟏,𝒌

𝒅𝒙−𝒅𝒙−𝟏
+ 𝒄_𝒅𝒙−𝟏,𝒌, 𝒊𝒇 𝒅𝒙−𝟏 < 𝒅𝒊,𝒋 ≤ 𝒅𝒙

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                                                                       
𝒙 , ∀ 𝒊, 𝒋, 𝒌; ∀ 𝒙 ≥ 𝟏.   

– the cost of transporting sediment, per unit volume, over distance 𝒅𝒊,𝒋 for criterion 𝒌, based on 

the slopes and intercept of the piecewise-linear cost curve. If any routes have distances that 

exceed those specified on the cost curve, the D2M2 solver will not run and will display a 

message to the user identifying the problematic route. While not explicit in the indexing above, 

to maintain clarity, each 𝒙 should be assumed to be specific to route 𝒊, 𝒋, though multiple routes 

may be given identical cost curves if desired. 
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𝒃𝒊,𝒋,𝒕 ≤ {
𝒗𝒊,𝒋,𝒕, ∀ 𝒊, 𝒋 ∈ 𝑺_𝒊𝒋𝒄_𝒇

𝟎,        ∀ 𝒊, 𝒋 ∉ 𝑺_𝒊𝒋𝒄_𝒇
; ∀ 𝒕.  – if a route has a fixed cost for its use but is not used in a time 

period, the binary variable associated with that fixed cost must have a value of zero in that time 

period. (If the route is used, the value of the binary variable is not dictated by this constraint.)  

𝒃𝒊,𝒋,𝒕 ∗ 𝒗_𝒆𝒙𝒂𝒄𝒕𝒊,𝒕 ≥ 𝒗𝒊,𝒋,𝒕, ∀ 𝒊, 𝒋 ∈ 𝑺_𝒊𝒋𝒄_𝒇;  ∀ 𝒕.  – if a route has a fixed cost for its use and is used in 

a time period, the binary variable associated with its use must have a value of one in that time 

period; the volume transferred must also be less than or equal to the required dredging volume 

of the connected dredging site. (If the route is not used, the value of the binary variable is not 

dictated by this constraint.) This constraint is only added by the D2M2 software for the subset of 

routes, 𝑺_𝒊𝒋𝒄_𝒇, that have a fixed cost for their use. 

𝒄_𝒇𝒊,𝒋,𝒌 = {
𝒄_𝒇_𝒃𝒂𝒔𝒆𝒊,𝒋,𝒌 ∗ (𝒇_𝒄_𝒇𝒊,𝒌 + 𝒇_𝒄_𝒇𝒋,𝒌), 𝒊𝒇 (𝒇_𝒄_𝒇𝒊,𝒌 ∗ 𝒇_𝒄_𝒇𝒋,𝒌 = 𝟎) 

𝒄_𝒇_𝒃𝒂𝒔𝒆𝒊,𝒋,𝒌 ∗ (𝒇_𝒄_𝒇𝒊,𝒌 + 𝒇_𝒄_𝒇𝒋,𝒌) − 𝒄_𝒇_𝒃𝒂𝒔𝒆𝒊,𝒋,𝒌, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
, ∀ 𝒊, 𝒋, 𝒌.  – the fixed 

cost, for criterion 𝒌, per time period, from transporting any sediment on route 𝒊, 𝒋. The effect of 

entering fixed-cost scaling factors for both source and destination of a route is additive instead 

of multiplicative. A special case is assessed by the D2M2 software if one or both of the scaling 

factors have been set to zero (i.e., if their product is zero) to prevent negative fixed costs. 

𝒄_𝒇𝒊,𝒋,𝒌 = {
𝒄_𝒇_𝒃𝒂𝒔𝒆𝒊,𝒋,𝒌 ∗ (𝒇_𝒄_𝒇𝒊,𝒌 + 𝒇_𝒄_𝒇𝒋,𝒌) − 𝒄_𝒇_𝒃𝒂𝒔𝒆𝒊,𝒋,𝒌, 𝒊𝒇 (𝒇_𝒄_𝒇𝒊,𝒌 ∗ 𝒇_𝒄_𝒇𝒋,𝒌 ≠ 𝟎) 

𝒄_𝒇_𝒃𝒂𝒔𝒆𝒊,𝒋,𝒌 ∗ (𝒇_𝒄_𝒇𝒊,𝒌 + 𝒇_𝒄_𝒇𝒋,𝒌),                               𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                               
,

∀ 𝒊, 𝒋, 𝒌.  – this calculates the fixed cost, for criterion 𝒌, per time period, from transporting any 

sediment on route 𝒊, 𝒋. The effect of entering fixed-cost scaling factors for both source and 

destination of a route is additive instead of multiplicative. A special case is assessed by the 

D2M2 software if one or both of the scaling factors have been set to zero (i.e., if their product is 

zero) to prevent negative fixed costs. 

𝒗_𝒆𝒙𝒂𝒄𝒕𝒊,𝒕, 𝒗𝒊,𝒋,𝒕, 𝒗𝒋,𝒋′,𝒕, 𝒗_𝒆𝒙𝒂𝒄𝒕𝒊,𝒋,𝒕, 𝒗_𝒎𝒂𝒙𝒊,𝒋,𝒕, 𝒗_𝒎𝒊𝒏𝒊,𝒋,𝒕, 𝒗_𝒎𝒂𝒙𝒊,𝒋, 𝒗_𝒎𝒂𝒙𝒋, 𝒗_𝒎𝒂𝒙_𝒕𝒋, 

𝒕_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋, 𝒕_𝒍𝒂𝒕𝒆𝒔𝒕𝒋, 𝒇_𝒗𝒋, 𝒗𝒋,𝒕, 𝒗_𝒆𝒙𝒂𝒄𝒕𝒋,𝒕, 𝒗_𝒎𝒂𝒙𝒋,𝒕, 𝒗_𝒎𝒊𝒏𝒋,𝒕, 𝒗_𝒓𝒋,𝒕, 𝒗_𝒓_𝒎𝒂𝒙𝒋, 

𝒕_𝒓_𝒆𝒂𝒓𝒍𝒊𝒆𝒔𝒕𝒋, 𝒘𝒌, 𝒄_𝒂𝒋,𝒌, 𝒄_𝒑𝒋,𝒌, 𝒄_𝒓𝒋,𝒌, 𝒄_𝒅𝒊,𝒋,𝒌, 𝒅𝒊,𝒋, 𝒅𝒙, 𝒄_𝒅𝒙,𝒌,  𝒄_𝒇𝒊,𝒋,𝒌, 𝒄_𝒇_𝒃𝒂𝒔𝒆𝒊,𝒋,𝒌, 

𝒇_𝒄_𝒇𝒊,𝒌, 𝒇_𝒄_𝒇𝒋,𝒌 ≥ 𝟎, ∀ 𝒊, 𝒋, 𝒌, 𝒕, 𝒙.  – non-negative variables. 

𝒃𝒊,𝒋,𝒕, 𝒃𝒋 ∈ {𝟎, 𝟏}, ∀ 𝒊, 𝒋, 𝒕.  – binary variables. 

When applied to data for the nine GIWW study scenarios, the nine resulting linear programs written and 

solved by the D2M2 software contain between 1,280 constraints, 1700 variables, and 2986 total lines of 

code for Scenario 1, the simplest scenario, and 2600 constraints, 3540 variables, and 6148 total lines of 

code for Scenario 9, the most complex scenario. 

 

CASE-STUDY RESULTS 

Summary results show the total score for each criterion in each scenario, aggregated across all sites, 

routes, and time periods (Table 4.8, Figures 4.8-4.10). These results are presented in millions of dollars 

for financial costs, hundreds of thousands of points for environmental impacts, and tens of millions of 

points for beneficial-use benefits and impacts, to make them more readable and to support easier 
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comparisons across scenarios. These total-score results show unweighted values, so data for the same 

criteria can be compared across scenarios, regardless of weighting scheme used. These data are not 

directly comparable between criteria, however, because they the criteria do not share the same units 

(i.e., represent different types of point scores or dollars).  

Table 4.8. D2M2 optimization results for nine GIWW case study scenarios that vary two weighting 

schemes, three site configurations, and various capacities and constraints. Results show total criteria 

costs, impacts, and benefits across all time periods, routes, and sites. These scenarios were run with an 

aggregated minimization objective, so positive benefits are expressed as negative values. The data are 

presented in millions of dollars for financial costs, hundreds of thousands of points for environmental 

impacts, and tens of millions of points for beneficial use benefits and impacts. 

Scenario #: Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Scenario 

7 

Scenario 

8 

Scenario 

9 

Summary 

Description: Active, 

Cost 

Active, 

Balanced 

Active & 

Inactive, 

Cost 

Active & 

Inactive, 

Balanced 

All Sites, 

Cost 

All Sites, 

Balanced 

All Sites, 

Environ. 

All Sites, 

Balanced 

Limited 

All Sites, 

Balanced 

Modified 

Criteria (units) Total aggregated cost, impact, or benefit 

Financial Cost 

($M) 161.7 162.3 161.1 162.5 154.2 156.3 163.0 171.0 156.3 

T&E Species 

(100K pts) 57.9 58.8 58.5 59.6 57.6 58.9 59.0 53.5 59.0 

Special Lands 

(100K pts) 141.9 131.2 137.4 123.6 153.7 140.1 133.1 132.3 139.5 

Oyster Reef 

(100K pts) 3.5 4.0 4.3 5.0 4.3 4.3 3.6 5.1 4.3 

SAV (100K pts) 76.8 81.0 79.3 85.8 97.3 99.9 92.8 63.4 99.7 

Direct BU Benefit 

(10M pts) -97.2 -113.5 -101.9 -122.2 -135.3 -153.2 -161.7 -86.9 -153.4 

Indirect BU 

Benefit (10M pts) -59.1 -66.9 -59.9 -70.2 -80.8 -93.3 -122.3 -59.9 -93.6 

Indirect Cost 

(10M pts) 19.8 22.5 21.8 25.0 53.6 57.4 83.3 31.2 57.6 

 
The objective function values that result from the optimization (Table 4.9) incorporate criteria weights 

and total scores so are only comparable between scenarios that share the same weighting scheme, i.e., 

between scenarios 1, 3, and 5 that share a cost-only weighting scheme or between scenarios 2, 4, 6, 8, 

and 9 that share a balanced weighting scheme; the objective function value from scenario 7 is not 

comparable with other scenarios since it alone uses an environmental weighting scheme.  
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Figure 4.8. Graphical comparison of financial costs across nine D2M2 GIWW scenarios that vary in terms 

of weighting scheme, site configuration, site capacities, and constraints. Results include financial costs 

aggregated over all time periods, routes, and sites.  

 

Figure 4.9. Graphical comparison of four types of environmental impacts across nine D2M2 GIWW 

scenarios that vary in terms of weighting scheme, site configuration, site capacities, and constraints. 

Results include scores aggregated over all time periods, routes, and sites. Blue segments represent 

impacts to threatened and endangered species, orange represents impacts to designated special lands 

(e.g., wetlands), gray represents impacts to oyster beds, and green represents impacts to submerged 

aquatic vegetation. 
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Figure 4.10. Graphical comparison of two types of environmental benefits and one type of cost across 

nine D2M2 GIWW scenarios that vary in terms of weighting scheme, site configuration, site capacities, 

and constraints. Results include scores aggregated over all time periods, routes, and sites. Gray segments 

represent the direct benefits of increasing or restoring habitat area, purple represents the indirect or 

ancillary environmental benefits from having that increased or restored habitat, and red represents 

indirect, non-monetary costs required to carry out beneficial use projects.  

Table 4.9. Objective function values that resulted from the optimization. These data are only comparable 
between scenarios that share the same weighting schemes, i.e., between scenarios 1, 3, and 5, between 
scenarios 2, 4, 6, 8, and 9, and not with scenario 7. 

Scenario # Scenario Summary Description Objective function value 

(millions of weighted points) 

Scenario 1 Active Sites, Cost Weighting 161.7 

Scenario 3 Active & Inactive Sites, Cost Weighting 161.1 

Scenario 5 All Sites, Cost Weighting 154.2 

Scenario 2 Active Sites, Balanced Weighting 25.3 

Scenario 4 Active & Inactive Sites, Balanced Weighting 25.1 

Scenario 6 All Sites, Balanced Weighting 24.5 

Scenario 8 All Sites, Balanced Weighting, Limited Capacities 26.8 

Scenario 9 All Sites, Balanced Weighting, Modified Constraints 24.5 

Scenario 7 All Sites, Environmental Weighting -0.1 

 
The detailed results for each scenario also show the total volume of sediment transported from each 
dredge site to each placement site across all time periods (Figure 4.11 & Appendix Figures 4.A5-4.A13). 
These figures show the total volume transferred (in millions of cubic yards) by bar height on the vertical 
axis, the destination placement sites on the horizontal axis, and the source dredging sites by color.  
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Figure 4.11. Condensed detailed results for Scenarios 1-9 (subplots A-I) showing the total volumes (bar 
height on vertical axis) transferred to each placement site (horizontal axis) from each dredging site 
(color). See Appendix Figures 4.A5-4.A13 for full-size charts for each scenario. Placement sites that 
receive sediment from multiple dredging sites have volume bars of multiple colors; placement sites that 
receive the same total amounts of sediment have the same bar heights regardless of sediment source(s); 
placement sites not used in a scenario are not included on that scenario’s chart.) 

The detailed results for each scenario also show the total volume of sediment transported from each 
dredge site to each type of placement site across all time periods (Figure 4.12 & Appendix Figures 4.A14-
4.A22). These figures show the total volume transferred (in millions of cubic yards) on the vertical axis, 
the types of destination placement sites on the horizontal axis, and the source dredging sites by color.  
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Figure 4.12. Condensed detailed results for Scenarios 1-9 (subplots A-I) showing the total volumes (bar 
height on vertical axis) transferred to each type of placement site (horizontal axis) from each dredging 
site (color). See Appendix Figures 4.A14-4.A22 for full-size charts for each scenario. Placement site types 
that received sediment from multiple dredging sites have volume bars of multiple colors; placement site 
types that received the same total amounts of sediment have the same bar heights regardless of 
sediment source(s). 

 

DISCUSSION 

Some of the main findings from the D2M2 GIWW case study relate to existing capacity limitations, new 

flexibility that can be gained by adding beneficial use sites, and tradeoffs between financial, 

environmental, and beneficial-use costs, impacts, and benefits from different strategies for sediment 

placement (i.e., as expressed through the priorities of different weighting schemes). 

The anticipated 20-year dredging volume needed by the system is just over 31.5 MCY. The placement 

capacity currently available across all existing active sites is only 27.7 MCY, and the capacity available 

across all existing active and existing inactive sites is only 30.0 MCY. Even before optimization, this 

comparison highlights the need to create new placement capacity in the GIWW system over the coming 

decades beyond simply revitalizing existing inactive placement sites. For the purposes of the D2M2 

GIWW case study, it is assumed that two hypothetical expansion sites of 5 MCY each (PAEX1 with the 
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same properties and location as PA 38, and PAEX2 with the same properties and location as PA 88) are 

added near either end of the system to provide the capacity necessary for the optimizations to run for 

the 20-year timeframe.  

Because routes between dredging and placement sites are limited to 20 miles, which is a liberal 

interpretation of the route distances commonly used in practice, each dredging site connects to at most 

one of these two hypothetical expansion sites. Addition of all proposed sites with BU potential 

collectively adds over 37.1 MCY of capacity in Scenarios 5-9, but the BU sites with the largest capacities 

are similarly each only reachable from a subset of all dredging sites. With these BU sites available, the 

optimization scenarios are able to find a feasible solution when PAEX1 is removed but never when 

PAEX2 is removed (e.g., Scenario 8), due to the particular distances and route connections involved.  

Without adding BU sites for sediment placement (i.e., as modeled in Scenarios 1-4), limited opportunity 

exists to make meaningful choices between sediment placement strategies since nearly all available 

capacity is needed regarding of the costs, impacts, or benefits, as noted when comparing the results 

between Scenarios 1 & 2 and between Scenarios 3 & 4 (Table 4.8, Figures 4.8-4.12, and Appendix 

Figures 4.A5-4.A8 and 4.A14-4.A17), which show greater similarly than difference when optimizing the 

same site networks for cost-only versus balanced weighting schemes. The addition of BU sites, as 

modeled in Scenarios 5-9, allows for greater variation in placement site selection (Table 4.8, Figures 4.8-

4.12, Appendix Figures 4.A9-4.A13 and 4.A18-4.A22), especially when comparing the results of cost-only 

and environmental weighting schemes.  

These results collectively highlight the importance of considering volume and location jointly when 

developing new sediment placement sites, since they demonstrate that new placement volumes must 

be added where they are reachable from the dredging sites that need them for their use to be effective. 

These results further highlight the important of promoting innovative solutions such as sediment reuse 

(e.g., as in Scenario 9) to create additional capacity at existing sites. The addition of large-capacity, open 

water placement sites may also help alleviate capacity limitations, though certain policy, political, and 

technical barriers may first need to be addressed in practice. Ultimately, a suite of solutions covering 

some or all of: beneficial use, sediment reuse, inactive site reactivation, and new site development may 

be needed for long term management. 

When comparing scenarios with cost-only weighting but different site networks, the difference in cost 

between having only existing active sites and having existing active and inactive sites (Scenarios 1 & 3) is 

negligible, amounting to savings of only $0.6M over 20 years. This shows that the reactivation of inactive 

sites, alone, is not expected to substantially improve long-term management costs for the GIWW 

system. Costs are more substantial when comparing these scenarios to the scenario with additional BU 

sites (Scenario 5), showing a potential savings of $7.5M over 20 years (Table 4.8, Figure 4.8).  

When comparing results between pairs of scenarios that share the same site network but different 

weights (i.e., Scenarios 1 & 2, Scenarios 3 & 4, and Scenarios 5, 6, & 7), it is noticed that scenarios with 

cost-only weighting have slightly lower total costs than scenarios with balanced weighting, saving about 

$1-2M each over the 20-year timeframe. While not insubstantial, cost savings of this magnitude, 

amounting to only about 1% of total project costs, may likely be overshadowed by other project 

considerations in practice. Scenario 7, which uses an environmental weighting scheme shows the 

greatest different in financial cost, being nearly $10M more costly than the scenario with the same site 

network but cost-only weighting (Table 4.8, Figure 4.8).  
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In comparing these scenario results, it is noted that tradeoffs are made between different types of 

environmental impacts and between environmental impacts and beneficial use benefits between 

scenarios, with some types of environmental impact being lower versus higher in the balanced versus 

cost-only weighting scenarios. Special lands impacts are 8-10% lower in the balanced scenarios than in 

corresponding cost-only scenarios, and 13% lower in the environmental scenario (which include 

environmental impact and BU benefit criteria) than in the cost scenario.  

Other types of environmental impact scores are higher in the balanced scenarios than in the cost 

scenarios, likely because these scenarios also prioritize BU benefits and have improvements in those 

scores. Specifically, threatened and endangered species impacts are 2% higher in each of the balanced 

and environmental scenarios than in the corresponding cost scenarios. Oyster reef impacts are 14-16% 

higher in each of the balanced and environmental scenarios than in the corresponding cost scenarios. 

SAV impacts are 3-8% higher in each of the balanced and environmental scenarios than in the 

corresponding cost scenarios (Table 4.8, Figure 4.9). The BU direct benefits, indirect benefits, and 

indirect costs are all greater in the balanced and environmental scenarios than in the corresponding cost 

scenarios. The direct BU benefits are 12-17% greater in the balanced and environmental scenarios than 

in the corresponding cost scenarios. The indirect BU benefits are 12-15% greater in the balanced 

scenarios than in the corresponding cost scenarios, and 34% greater in the environmental scenario than 

in the corresponding cost scenario. The indirect costs of implementing BU projects are also 7-13% 

greater in the balanced than in the corresponding cost scenario and 36% greater in the environmental 

scenario (Table 4.8, Figure 4.10). 

Scenario 8 uses the same “all-sites” network and balance weighting as Scenario 6, but limits the 

available capacity of the three most used sites. This results in a total financial cost that is 9% higher, 

oyster reef impacts that are 16% higher, and direct and indirect BU benefits that are 76% and 56% 

lower. However, the impacts to threatened and endangered species are 9% lower, impacts to special 

lands are 6% lower, impacts to SAV are 37% lower, and indirect costs for implementing beneficial use 

projects are 46% lower (Table 4.8, Figure 4.8-4.10). These mixed-results in terms of BU outcomes are 

because the two sites completely removed from these scenarios (PAEX1 and Long Point Marsh) both 

have BU scores that are much better than average (Appendix Table 4.A3). This scenario was created to 

force the model to explore secondary sites after the three main sites were removed or reduced in 

capacity. As a result, the number of placement sites used increases from 22 sites in Scenario 6 to 30 sites 

in Scenario 8 to accommodate the necessary dredging volume, an 36% increase in the number of sites 

used (Figure 4.11 and Appendix Figures 4.A10 & 4.A12). This results in more sediment being placed in 

existing active upland and BU sites, and less sediment being placed in hypothetical BU sites, hypothetical 

upland sites, and proposed BU sites (Figure 4.12 and Appendix Figures 4.A19 & 4.A21). 

Scenario 9 uses the same “all-sites” network and balance weighting scheme as Scenario 6, but 

introduces seven changes to the optimization for specific added features and constraints for particular 

sites and routes. The most detailed results for each route in each time period (hundreds of pages, not 

shown) verify that each of these changes is reflected in the optimization outcomes. Because the effedt 

of changes is minor compared to the total magnitudes being transported, changes in total scores for this 

scenario are less than 1% for all criteria (Table 4.8) when compared to the base-case Scenario 6. This 

scenario is of greatest interest for demonstrating the capabilities of the D2M2 software to change 

parameter values for specific sites and to introduce different types of constraints, flexibilities that will be 

valuable to some future modelers. The use of most placement sites was similar between Scenario 9 and 
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Scenario 6; the most prominent difference is that Scenario 9 does not use sites PA 36 and PA 40 at all 

and instead increases the volume going to site PA 39 (Figure 4.11 and Appendix Figures 4.A10 & 4.A13). 

The objective function values show weighted results and can be compared across scenarios that use the 

same weighting scheme. When comparing Scenarios 1, 3, & 5 that use a cost-only weighting scheme, it 

is noted that reactivated existing inactive placement sites leads to a <1% improvement in objective 

function value but including adding those and the proposed BU sites leads to a 5% improvement in 

objective function value. When comparing Scenarios 2, 4, 6, 8, & 9 that use a balanced weighting 

scheme, reactivating existing inactive placement sites leads to a 1% improvement in objective function 

value but adding those and the proposed BU sites leads to a 3% improvement in objective function 

value. Scenario 9, with additional constraints, leads to the same objective value as Scenario 6, and 

Scenario 8, with limited capacities for the most-used sites, worsens the objective function value by 6% 

(Table 4.9). 

When comparing the placement areas used between scenarios with cost-only and balanced weighting 

without the proposed BU sites included in the site network (i.e., between Scenarios 1 & 2 and between 

Scenarios 3 & 4), the primary difference is a shift in volume from existing active upland placement sites 

to existing active BU sites in the balanced scenarios (Figure 4.12 and Appendix Figures 4.A14-4.A17). This 

result is intuitive because the BU sites contribute to increased BU benefits that are not valued in the 

cost-focused scenarios. When comparing placement sites between cost-only and balanced scenarios 

that do include proposed BU sites in the site network, the primary difference is a shift in volume from 

existing active upland sites to existing active BU sites and to proposed BU sites, which is equally intuitive 

(Figure 4.12 and Appendix Figures 4.A18-4.A19). In Scenario 7, with environmental weighting (i.e., with 

equal weight on all environmental impact and BU benefit criteria but no weight on financial and indirect 

cost criteria), the use of placement sites shifts more dramatically to proposed BU sites and away from 

existing active upland sites, existing active BU sites, and existing active open water sites, compared to 

the cost-only and balanced scenarios (Figure 4.12 and Appendix Figures 4.A18-4.A20). 

 

CONCLUSIONS 

This chapter advances the Dredged Material Management Decisions (D2M2) multi-objective 

optimization (MOO), mixed-integer linear programming software for efficiently allocating dredged 

sediment (e.g., from navigational channels) to available placement areas with different capacities, 

properties, constraints on use, and costs, impacts, and/or benefits. Rather than being a MOO model 

itself, the D2M2 software is a MOO-model builder, with a graphical user interface and data upload 

capabilities that support the modeler in building custom MOO models to represent their unique 

sediment-management systems of interest.  

This new version of the software incorporates two types of model enhancements to better represent 

costs, impacts, benefits, and effects, three types of model enhancements to incorporate additional types 

of constraints, six other types of enhancements to the modeling process itself, and five types of 

enhancements to the user interface. These allow the modeler to more effectively represent a wider 

array of engineering and management detail in their modeled dredging and placement sites and the 

routes that connect them, including details such as bulking factors, fixed and variable costs, sediment 

reuse, site lease timing, and about constraints about site and route volumes in different time periods.  
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The new version of D2M2 is demonstrated in a case study that models dredged material management 

over an 81-mile portion of the Gulf Intracoastal Waterway (GIWW) system near Galveston, TX. This 

protected coastal waterway is strategically important for domestic and international shipping, 

commercial and recreational fishing, recreational boating, and coastal protection and naval defense. 

Nine different scenarios are constructed and run for this system, with different site networks, criteria 

weights, capacity limitations, and site and route properties and constraints. This includes scenarios with 

only existing active sites, existing active plus reactivated existing inactive sites, or existing active and 

inactive sites plus proposed sites with beneficial-use (BU) potential. These are modeled with weighting 

schemes that either prioritize only financial costs, a balance of all objectives, or a balance of only 

environmental impact and beneficial use benefit objectives (without consideration of direct and indirect 

costs). Two additional scenarios are included that constrain the use of the three most-used sites to force 

the model to explore the use of secondary sites, and that add a variety of custom route and site 

properties and constraints to more broadly showcase the capabilities of D2M2 beyond what is needed 

to realistically model GIWW system management. 

A variety of figures and tables for case study input data in the main text and appendix show: 1) the case 

study system and site locations; 2) details for the scenarios that include the weights applied in each 

scenario and other differences between scenarios; 3) detailed input data for site types, current status, 

required dredging volumes, performance per cubic yard placed for each of the objectives, data 

normalization factors, and acquisition and improvement costs; 4) route fixed costs, variable costs per 

cubic yard, and distances; and 5) historical dredging project distances, volumes, total costs, and average 

costs per cubic yard. Additional figures and tables for the results show: 1) total unweighted performance 

scores for each objective, total scores grouped by objective type (i.e., financial cost, environmental 

impacts, or beneficial use benefits and impact), and total objective function values in each scenario; 2) 

total volumes allocated from each dredging site to each placement site in each scenario; 3) total 

volumes allocated to different types of existing active and inactive sites, hypothetical sites, and potential 

BU sites. 

As might reasonably be anticipated, the scenarios with the same site networks but a balanced versus 

cost-only weighting schemes have better environmental and BU scores and worse cost scores. Scenarios 

with balanced and environmental weighting schemes also show tradeoffs between individual impact 

and benefit criteria, with performance on some criteria improving or worsening in different scenarios 

but with aggregated improvements overall. Scenarios that use the same weighting schemes see slight 

improvements in their weighted criteria performance with reactivation of existing inactive placement 

sites and more substantial improvements with inclusion of potential BU sites in their site networks.  

The case study scenarios provide valuable insights for the long-term management of the GIWW system 

in the Galveston area, including that additional capacity needs to be added over the coming decades, 

that any new capacity must to be strategically dispersed so that it can be used for sediment from 

dredging sites throughout the system, that reactivation of existing inactive sites in unlikely to 

meaningfully improve system management if implemented without being combined with other 

measures, but that the developed of proposed sites with BU potential can make a more meaningful 

different in improving system management. The results also show the potential effects of different 

priorities between financial costs, different types of environmental impacts, and different types of 

beneficial use benefits and impacts that could be applied in system management, including how 

individual placement sites would be used in different capacities should each set of priorities be applied. 
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This chapter includes the full objective function specification for models built using D2M2, including all 

optional properties and constraints. The condensed representation in this text includes 54 types of 

variables that are incorporated into 24 components of the optimization objective function. When 

applied to data for the 9 GIWW case study scenarios, these expand to form 1,280 constraints, 1,700 

variables, and 2,986 total lines of objective function code in the simplest scenario and 2,600 constraints, 

3,540 variables, and 6,148 total lines of objective function code in the most complex scenario.  

There are many ways that future work could improve and extend the case study implemented in this 

chapter, including by using engineering-design level cost estimates that are differentiated by site instead 

of average cost functions derived from historical data, by including site-specific acquisition and 

improvement costs, by including additional details about anticipated site availability and unavailability in 

different years, and by further differentiating site and route properties and costs based on differences in 

anticipated dredging and placement equipment expected to be used in different locations. Future work 

also remains to improve the D2M2 software, including to add Lagrange multipliers (aka shadow prices) 

in the results to help identify more- and less-sensitive parameters in the models, for example to 

illuminate the value of more flexibility and capacity for various sites. D2M2 modeling capabilities might 

also be improved by accommodating piecewise-linear unit cost curves that vary based on both total 

distance and total volume, by including site operation and maintenance cost per time period, by 

including a number of time periods of use after which a site must rest and the number of required 

resting periods (e.g., for compaction and consolidation) before next use, by including site lease annual 

costs and periodic renegotiation costs, and by incorporating discount rates for calculating net-present 

objective values across time. 

The latest version of the D2M2 software can be obtained from the author, from the USACE Dredging 

Operations Technical Support (DOTS) program42, or from current USACE DOTS and USACE Risk and 

Decision Science team leads. 
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APPENDIX A 

To improve the readability of the main text, several particularly long tables and series of figures with 

model inputs and results are shown in detail here, following condensed figures or excerpt of tables in 

the main text. 

Additional input data 

Appendix Table 4.A1. Placement areas included in the D2M2 case study model, differentiated by site 

type, current status, sediment capacity, and acquisition and improvement cost.  

Name Type Status Capacity  

(CY) 

Acquisition & 

Improvement 

Cost 

PA 28 Upland Confined Existing Active 1,111,914               . 

PA 32 Upland Confined Existing Active 145,200               . 

PA 33 Upland Confined Existing Active 176,670               . 

PA 34 Upland Confined Existing Active 654,264               . 

PA 35 Upland Confined Existing Active 1,000,002               . 

PA 36 Upland Confined Existing Active 991,740               . 

PA 37 Upland Confined Existing Active 186,788               . 

PA 38 BU Island Existing Active 1,240,000 $25,000 

PA 39 Upland Confined Existing Active 119,462               . 

PA 40 Upland Confined Existing Active 337,940               . 

DA 41 Upland Partially Confined Existing Active 560,574               . 

PA 42 Upland Confined Existing Active 3,309,940               . 

PA 43 BU Wetland Existing Active 1,670,000 $25,000 

DA 46 Open Water Existing Active 1,271,520               . 

DA 47 Open Water Existing Active 444,860               . 

DA 48 Open Water Existing Active 454,300               . 

DA 49 Open Water Existing Active 368,100               . 

DA 51 Open Water Existing Active 644,440               . 

PA 53 BU Shoal Existing Active 170,000 $25,000 

PA 54 BU Shoal Existing Inactive 80,000 $75,000 

PA 55 BU Shoal Existing Inactive 290,000 $75,000 

PA 56 BU Shoal Existing Inactive 140,000 $75,000 

PA 57 BU Island Existing Inactive 440,000 $75,000 

PA 58A BU Shoal Existing Active 210,000 $25,000 

PA 59 BU Shoal Existing Inactive 220,000 $75,000 

PA 62 BU Island Existing Active 1,660,000 $25,000 

PA 63 BU Island Existing Active 2,690,000 $25,000 

PA 64 Upland Confined Existing Active 470,204               . 

PA 65 Upland Confined Existing Active 814,324               . 

PA 66 BU Island Existing Inactive 300,000 $75,000 

PA 67 BU Island Existing Inactive 730,000 $75,000 

PA 70 Upland Confined  Existing Active 1,445,340               . 
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DA 79 BU Island Existing Inactive 30,000 $75,000 

DA 86 Upland Confined Existing Active 1,905,710               . 

DA 87 Upland Confined Existing Active 1,445,872               . 

DA 88 Upland Confined Existing Active 2,246,260               . 

PAEX1 (similar to PA 38) BU Island Hypothetical 5,000,000 $200,000 

PAEX2 (similar to DA 88) Upland Confined Hypothetical 5,000,000 $200,000 

Bird Island Cove Potential BU Wetland Proposed 1,506,853 $100,000 

Bolivar Ferry Landing/Little 

Beach 

Potential BU Beach Proposed 400,000 $100,000 

Bolivar Marsh Potential BU Wetland Proposed 250,000 $100,000 

Dana Cove Marsh Potential BU Wetland Proposed 687,280 $100,000 

Evia Island Potential BU Island Proposed 1,000,000 $100,000 

Galveston Causeway Open 

Water 

Potential BU Bar or Shoal Proposed 390,000 $100,000 

Gangs to Oxen Bayou Potential BU Wetland Proposed 567,893 $100,000 

GIWW Barrier Island Potential BU Bar or Shoal Proposed 774,400 $100,000 

Greens Lake Potential BU Wetland Proposed 10,625,413 $100,000 

IH-10 Causeway Potential BU Wetland Proposed 2,042,480 $100,000 

Jumbile Cove Potential BU Wetland Proposed 1,019,627,280 $100,000 

Long Point Marsh Potential BU Wetland Proposed 5,359,493 $100,000 

North Deer Island Potential BU Island Proposed 225,000 $100,000 

North Open Water Island Potential BU Bar or Shoal Proposed 600,000 $100,000 

Oxen to Mentzel Bayou Potential BU Wetland Proposed 1,258,400 $100,000 

PA 58 Island Potential BU Bar or Shoal Proposed 139,000 $100,000 

Pepper Grove Cove Potential BU Wetland Proposed 948,640 $100,000 

Pierce Marsh restoration Potential BU Wetland Proposed 6,698,560 $100,000 

Rollover Beach Nourishment Potential BU Beach Proposed 225,000 $100,000 

Rollover Pass Closure Potential BU Delta Proposed 130,000 $100,000 

Snake Island Cove Potential BU Wetland Proposed 1,474,587 $100,000 

South Open Water Island Potential BU Bar or Shoal Proposed 460,000 $100,000 

Swan Lake Potential BU Wetland Proposed 250,000 $100,000 

West Bay Mooring Potential BU Wetland Proposed 100,000 $100,000   
Minimum:           30,000 $            0   
Median:         622,220 $  75,000   
Mean:   17,672,834 $  57,258   
Maximum:   1,019,627,280 $200,000 
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Appendix Table 4.A2. Routes included in the D2M2 case study model and their distance between 

dredging and placement sites. 

Rt.#   Dist.  

 (mi) 

Dredging Site Placement Site Rt.#   Dist.  

 (mi) 

Dredging Site Placement Site 

  1 14.79 CESWG_GI_02_HIB_2 Bolivar Marsh   59 16.07 CESWG_GI_04_GCC_4 DA 46 

  2 11.20 CESWG_GI_02_HIB_2 DA 41   60 15.38 CESWG_GI_04_GCC_4 DA 47 

  3 15.30 CESWG_GI_02_HIB_2 Evia Island   61 14.29 CESWG_GI_04_GCC_4 DA 48 

  4   3.52 CESWG_GI_02_HIB_2 Long Point 

Marsh 

  62 13.42 CESWG_GI_04_GCC_4 DA 49 

  5 17.39 CESWG_GI_02_HIB_2 PA 28   63 15.21 CESWG_GI_04_GCC_4 DA 51 

  6 14.04 CESWG_GI_02_HIB_2 PA 32   64   5.08 CESWG_GI_04_GCC_4 Dana Cove 

Marsh 

  7 13.07 CESWG_GI_02_HIB_2 PA 33   65   9.66 CESWG_GI_04_GCC_4 Galveston 

Causeway 

Open Water 

  8 11.71 CESWG_GI_02_HIB_2 PA 34   66 11.56 CESWG_GI_04_GCC_4 Gangs to Oxen 

Bayou 

  9   9.05 CESWG_GI_02_HIB_2 PA 35   67   7.02 CESWG_GI_04_GCC_4 GIWW Barrier 

Island 

10   4.58 CESWG_GI_02_HIB_2 PA 36   68   4.40 CESWG_GI_04_GCC_4 Greens Lake 

11   0.82 CESWG_GI_02_HIB_2 PA 37   69   9.87 CESWG_GI_04_GCC_4 IH-10 

Causeway 

12   2.38 CESWG_GI_02_HIB_2 PA 38   70   6.53 CESWG_GI_04_GCC_4 Jumbile Cove 

13   4.95 CESWG_GI_02_HIB_2 PA 39   71   7.97 CESWG_GI_04_GCC_4 North Deer 

Island 

14   7.29 CESWG_GI_02_HIB_2 PA 40   72 13.47 CESWG_GI_04_GCC_4 North Open 

Water Island 

15 13.61 CESWG_GI_02_HIB_2 PA 42   73 11.86 CESWG_GI_04_GCC_4 Oxen to 

Mentzel Bayou 

16 14.42 CESWG_GI_02_HIB_2 PA 43   74 11.07 CESWG_GI_04_GCC_4 PA 53 

17   2.38 CESWG_GI_02_HIB_2 PAEX1 (PA 38)   75 10.52 CESWG_GI_04_GCC_4 PA 54 

18   8.14 CESWG_GI_02_HIB_2 Pepper Grove 

Cove 

  76   9.85 CESWG_GI_04_GCC_4 PA 55 

19   7.07 CESWG_GI_02_HIB_2 Rollover Beach 

Nourishment 

  77   9.15 CESWG_GI_04_GCC_4 PA 56 

20   7.04 CESWG_GI_02_HIB_2 Rollover Pass 

Closure 

  78   7.73 CESWG_GI_04_GCC_4 PA 57 

21   8.84 CESWG_GI_03_BGC_3 Bolivar Ferry 

Landing/Little 

Beach 

  79   6.12 CESWG_GI_04_GCC_4 PA 58 Island 

22   7.68 CESWG_GI_03_BGC_3 Bolivar Marsh   80   6.54 CESWG_GI_04_GCC_4 PA 58A 

23   9.96 CESWG_GI_03_BGC_3 DA 41   81   5.87 CESWG_GI_04_GCC_4 PA 59 

24   0.75 CESWG_GI_03_BGC_3 DA 46   82   1.78 CESWG_GI_04_GCC_4 PA 62 
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25   1.41 CESWG_GI_03_BGC_3 DA 47   83   3.18 CESWG_GI_04_GCC_4 PA 63 

26   2.49 CESWG_GI_03_BGC_3 DA 48   84   5.95 CESWG_GI_04_GCC_4 PA 64 

27   3.36 CESWG_GI_03_BGC_3 DA 49   85   7.41 CESWG_GI_04_GCC_4 PA 65 

28   6.77 CESWG_GI_03_BGC_3 DA 51   86 10.04 CESWG_GI_04_GCC_4 PA 66 

29 19.05 CESWG_GI_03_BGC_3 Dana Cove 

Marsh 

  87 10.93 CESWG_GI_04_GCC_4 PA 67 

30 10.31 CESWG_GI_03_BGC_3 Evia Island   88 14.55 CESWG_GI_04_GCC_4 PA 70 

31   6.26 CESWG_GI_03_BGC_3 Galveston 

Causeway 

Open Water 

  89   7.75 CESWG_GI_04_GCC_4 Pierce Marsh 

Restoration 

32   9.71 CESWG_GI_03_BGC_3 Gangs to Oxen 

Bayou 

  90   8.58 CESWG_GI_04_GCC_4 Snake Island 

Cove 

33 15.07 CESWG_GI_03_BGC_3 Greens Lake   91 13.80 CESWG_GI_04_GCC_4 South Open 

Water Island 

34 10.92 CESWG_GI_03_BGC_3 IH-10 

Causeway 

  92   8.97 CESWG_GI_04_GCC_4 West Bay 

Mooring 

35   8.04 CESWG_GI_03_BGC_3 North Deer 

Island 

  93   8.25 CESWG_GI_05_CBF_5 DA 79 

36   2.91 CESWG_GI_03_BGC_3 North Open 

Water Island 

  94 15.26 CESWG_GI_05_CBF_5 DA 86 

37 10.95 CESWG_GI_03_BGC_3 Oxen to 

Mentzel Bayou 

  95 16.16 CESWG_GI_05_CBF_5 DA 87 

38 18.77 CESWG_GI_03_BGC_3 PA 38   96 16.62 CESWG_GI_05_CBF_5 DA 88 

39 16.17 CESWG_GI_03_BGC_3 PA 39   97 16.21 CESWG_GI_05_CBF_5 GIWW Barrier 

Island 

40 13.67 CESWG_GI_03_BGC_3 PA 40   98 19.90 CESWG_GI_05_CBF_5 PA 63 

41   7.69 CESWG_GI_03_BGC_3 PA 42   99 17.41 CESWG_GI_05_CBF_5 PA 64 

42   7.03 CESWG_GI_03_BGC_3 PA 43 100 15.97 CESWG_GI_05_CBF_5 PA 65 

43   5.60 CESWG_GI_03_BGC_3 PA 53 101 13.37 CESWG_GI_05_CBF_5 PA 66 

44   6.15 CESWG_GI_03_BGC_3 PA 54 102 12.60 CESWG_GI_05_CBF_5 PA 67 

45   6.75 CESWG_GI_03_BGC_3 PA 55 103   8.86 CESWG_GI_05_CBF_5 PA 70 

46   7.46 CESWG_GI_03_BGC_3 PA 56 104 16.62 CESWG_GI_05_CBF_5 PAEX2 (DA 88) 

47   8.89 CESWG_GI_03_BGC_3 PA 57 105 14.24 CESWG_GI_05_CBF_5 West Bay 

Mooring 

48   9.74 CESWG_GI_03_BGC_3 PA 58 Island 106   6.42 CESWG_GI_06_FBR_6 DA 79 

49 12.42 CESWG_GI_03_BGC_3 PA 58A 107   1.43 CESWG_GI_06_FBR_6 DA 86 

50 10.75 CESWG_GI_03_BGC_3 PA 59 108   2.33 CESWG_GI_06_FBR_6 DA 87 

51 14.75 CESWG_GI_03_BGC_3 PA 62 109   2.79 CESWG_GI_06_FBR_6 DA 88 

52 18.32 CESWG_GI_03_BGC_3 PA 63 110   2.79 CESWG_GI_06_FBR_6 PAEX2 (DA 88) 

53 18.77 CESWG_GI_03_BGC_3 PAEX1 (PA 38) 111   9.63 CESWG_GI_08_BRC_8 DA 79 

54 14.20 CESWG_GI_03_BGC_3 Pepper Grove 

Cove 

112   2.40 CESWG_GI_08_BRC_8 DA 86 

55 13.26 CESWG_GI_03_BGC_3 Pierce Marsh 

Restoration 

113   2.05 CESWG_GI_08_BRC_8 DA 87 
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56   2.53 CESWG_GI_03_BGC_3 South Open 

Water Island 

114   1.32 CESWG_GI_08_BRC_8 DA 88 

57 10.62 CESWG_GI_03_BGC_3 Swan Lake 115   1.32 CESWG_GI_08_BRC_8 PAEX2 (DA 88) 

58   6.53 CESWG_GI_04_GCC_4 Bird Island 

Cove 

    

   Minimum:    0.75   

   Median:    9.15   

   Mean:    9.50   

   Maximum: 19.90   

 

 

Appendix Figure 4.A1. Map of the number of threatened and endangered species historically present in 

different areas in the GIWW study region. Colors (dark green, light green, yellow, orange, red) denote 

lower to higher sensitivity based on increasing numbers of species historically present in that area. Black 

rectangles outline the perimeter of existing placement sites and yellow circles outline the approximate 

area of potential future placement sites. 
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Appendix Figure 4.A2. Map of special land designations in different areas in the GIWW study region. 

Colors (green, yellow, orange, red) denote lower to higher sensitivity based on different types of special 

land designations. Black rectangles outline the perimeter of existing placement sites and yellow circles 

outline the approximate area of potential future placement sites. 
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Appendix Figure 4.A3. Map of oyster beds (in red) and buffers surrounding them (in gray) in different 

areas in the GIWW study region. Black rectangles outline the perimeter of existing placement sites and 

yellow circles outline the approximate area of potential future placement sites. 
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Appendix Figure 4.A4. Map of submerged aquatic vegetation habitat (in red) in different areas in the 

GIWW study region. Black rectangles outline the perimeter of existing placement sites and yellow circles 

outline the approximate area of potential future placement sites. 
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Appendix Table 4.A3. Relative environmental impact and beneficial use scores per cubic yard placed. 

Non-monetary criteria in the D2M2 model include four different types of environmental impacts (to 

special lands, threatened and endangered species, oyster beds, and submerged aquatic vegetation) and 

three effects from the beneficial use of sediment (direct benefits from increased or restored habitat area, 

indirect environmental benefits from having increased or restored habitat, and non-monetary time, 

effort, and hassle costs typically required to carry out new beneficial use projects). All scores are 

qualitatively estimated per unit volume of sediment on either a 0-1 scale for the environmental impacts 

or a 1-100 scale for the beneficial use effects (zero values are shown as “.”, for clarity). Because the 

optimization seeks to minimize the total weighted score, benefits are represented as negative values. 

(Scores from the USACE ERDC and Galveston district). 

Name T&E 

Species 

Special 

Lands 

Oyster 

Reef 

SAV Direct BU 

Benefit 

Indirect BU 

Benefit 

Indirect 

Cost 

PA 28 .140 .173 . .085         .       .     . 

PA 32 .140 .938 . .051         .       .     . 

PA 33 .140 .935 . .176         .       .     . 

PA 34 .140 .969 . .116         .       .     . 

PA 35 .140 .116 . .080         .       .     . 

PA 36 .140 .909 . .062         .       .     . 

PA 37 .148 .715 . .260         .       .     . 

PA 38 .308 .343 . .580 -100 -60 22 

PA 39 .142 .582 . .071         .       .     . 

PA 40 .146 .411 . .140         .       .     . 

DA 41 .267 .571 . .290         .       .     . 

PA 42 .140 .060 . .026         .       .     . 

PA 43 .219 .427 . .440   -59.722 -20 13 

DA 46 .210 . .334 .640         .       .     . 

DA 47 .210 . .328 .035         .       .     . 

DA 48 .210 . .342 .313         .       .     . 

DA 49 .210 . .370 .660         .       .     . 

DA 51 .210 . .704 .450         .       .     . 

PA 53 .210 . . .660   -50       .     . 

PA 54 .210 .478 .039 .645   -41.667       . 11 

PA 55 .207 .235 .723 .660   -20.833 -20 30 

PA 56 .203 .440 .823 .660   -25 -20 30 

PA 57 .208 .432 . .646   -83.333 -50 50 

PA 58A .140 .812 . .065   -29.167 -25 40 

PA 59 .209 . .003 .660   -43.750 -60 22 

PA 62 .188 .345 .005 .589   -94.444 -60 22 

PA 63 .197 .319 .062 .633   -94.444 -60 11 

PA 64 .141 .889 . .112         .       .     . 

PA 65 .140 .824 . .167         .       .     . 

PA 66 .241 .581 . .366   -88.889 -50 22 

PA 67 .210 . .144 .658   -83.333 -25 25 
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PA 70 .140 .791 . .039         .       .     . 

DA 79 .210 .950 . .532   -60.417 -50 33 

DA 86 .140 .978 . .048         .       .     . 

DA 87 .140 .134 . .018         .       .     . 

DA 88 .140 .506 . .052         .       .     . 

PAEX1 (PA 38) .308 .343 . .580 -100 -60 22 

PAEX2 (DA 88) .140 .506 . .052         .       .     . 

Bird Island Cove .162 .482 . .612   -50 -40 60 

Bolivar Ferry Landing/Little Beach .445 .259 . .417   -72 -20 11 

Bolivar Marsh .165 .771 . .225   -43 -20 40 

Dana Cove Marsh .173 .391 . .596   -56 -80 60 

Evia Island .210 .055 . .   -17 -60 60 

Galveston Causeway Open Water .210 .079 .455 .474   -51 -80 40 

Gangs to Oxen Bayou .151 .754 .002 .241   -46 -40 70 

GIWW Barrier Island .195 .198 . .422   -35 -40 40 

Greens Lake .210 .626 . .068   -56 -60 33 

IH-10 Causeway .140 .788 . .442   -48 -60 50 

Jumbile Cove .176 .358 . .526   -46 -40 50 

Long Point Marsh .140 .601 . .427   -65 -40 60 

North Deer Island .208 .439 .120 .514   -42 -60 44 

North Open Water Island .210 . .284 .286   -39 -20 40 

Oxen to Mentzel Bayou .149 .819 . .320   -38 -40 70 

PA 58 Island .210 .188 .030 .636   -66 -20 30 

Pepper Grove Cove .205 .575 .091 .334   -58 -60 67 

Pierce Marsh restoration .140 .393 . .   -48 -75 44 

Rollover Beach Nourishment .217 .340 . .093   -78 -20     . 

Rollover Pass Closure .284 .491 . .123   -63 -60 29 

Snake Island Cove .189 .225 . .584   -48 -60 60 

South Open Water Island .210 . .036 .381   -32 -20 30 

Swan Lake .193 .222 .007 .634   -17 -20 60 

West Bay Mooring .225 .393 .004 .523   -40 -60 22 

Minimum: .140 0.00 0.00 0.00 -100.0 -80.0   0.0 

Median: .190 .422 .079 .342   -34.3 -26.7 23.0 

Mean: .196 .402 0.00 .350   -38.5 -20.0 22.0 

Maximum .445 .978 .823 .660      0.0    0.0 70.0 
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Additional results 

 

Appendix Figure 4.A5. Detailed results for Scenario 1 showing the total volumes (millions of cubic yards) 

transferred between dredging and placement sites. Total volume is on the vertical axis, placement sites 

are on the horizontal axis, and dredging sites are in different colors. (Placement sites that received 

sediment from multiple dredging sites have total-volume bars of multiple color; placement sites that 

received the same total amounts of sediment have the same bar heights regardless of source(s); 

placement sites not used in this scenario are not shown.) 
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Appendix Figure 4.A6. Detailed results for Scenario 2 showing the total volumes (millions of cubic yards) 

transferred between dredging and placement sites. Total volume is on the vertical axis, placement sites 

are on the horizontal axis, and dredging sites are in different colors. (Placement sites that received 

sediment from multiple dredging sites have total-volume bars of multiple color; placement sites that 

received the same total amounts of sediment have the same bar heights regardless of source(s); 

placement sites not used in this scenario are not shown.) 
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Appendix Figure 4.A7. Detailed results for Scenario 3 showing the total volumes (millions of cubic yards) 

transferred between dredging and placement sites. Total volume is on the vertical axis, placement sites 

are on the horizontal axis, and dredging sites are in different colors. (Placement sites that received 

sediment from multiple dredging sites have total-volume bars of multiple color; placement sites that 

received the same total amounts of sediment have the same bar heights regardless of source(s); 

placement sites not used in this scenario are not shown.) 
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Appendix Figure 4.A8. Detailed results for Scenario 4 showing the total volumes (millions of cubic yards) 

transferred between dredging and placement sites. Total volume is on the vertical axis, placement sites 

are on the horizontal axis, and dredging sites are in different colors. (Placement sites that received 

sediment from multiple dredging sites have total-volume bars of multiple color; placement sites that 

received the same total amounts of sediment have the same bar heights regardless of source(s); 

placement sites not used in this scenario are not shown.) 
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Appendix Figure 4.A9. Detailed results for Scenario 5 showing the total volumes (millions of cubic yards) 

transferred between dredging and placement sites. Total volume is on the vertical axis, placement sites 

are on the horizontal axis, and dredging sites are in different colors. (Placement sites that received 

sediment from multiple dredging sites have total-volume bars of multiple color; placement sites that 

received the same total amounts of sediment have the same bar heights regardless of source(s); 

placement sites not used in this scenario are not shown.) 
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Appendix Figure 4.A10. Detailed results for Scenario 6 showing the total volumes (millions of cubic 

yards) transferred between dredging and placement sites. Total volume is on the vertical axis, placement 

sites are on the horizontal axis, and dredging sites are in different colors. (Placement sites that received 

sediment from multiple dredging sites have total-volume bars of multiple color; placement sites that 

received the same total amounts of sediment have the same bar heights regardless of source(s); 

placement sites not used in this scenario are not shown.) 
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Appendix Figure 4.A11. Detailed results for Scenario 7 showing the total volumes (millions of cubic 

yards) transferred between dredging and placement sites. Total volume is on the vertical axis, placement 

sites are on the horizontal axis, and dredging sites are in different colors. (Placement sites that received 

sediment from multiple dredging sites have total-volume bars of multiple color; placement sites that 

received the same total amounts of sediment have the same bar heights regardless of source(s); 

placement sites not used in this scenario are not shown.) 
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Appendix Figure 4.A12. Detailed results for Scenario 8 showing the total volumes (millions of cubic 

yards) transferred between dredging and placement sites. Total volume is on the vertical axis, placement 

sites are on the horizontal axis, and dredging sites are in different colors. (Placement sites that received 

sediment from multiple dredging sites have total-volume bars of multiple color; placement sites that 

received the same total amounts of sediment have the same bar heights regardless of source(s); 

placement sites not used in this scenario are not shown.) 
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Appendix Figure 4.A13. Detailed results for Scenario 9 showing the total volumes (millions of cubic 

yards) transferred between dredging and placement sites. Total volume is on the vertical axis, placement 

sites are on the horizontal axis, and dredging sites are in different colors. (Placement sites that received 

sediment from multiple dredging sites have total-volume bars of multiple color; placement sites that 

received the same total amounts of sediment have the same bar heights regardless of source(s); 

placement sites not used in this scenario are not shown.) 

  



162 
 

 

Appendix Figure 4.A14. Detailed results for Scenario 1 showing the total volumes (millions of cubic 
yards) transferred between dredging sites and types of placement sites. Total volume is on the vertical 
axis, types of placement sites are on the horizontal axis, and dredging sites are in different colors.  

 

Appendix Figure 4.A15. Detailed results for Scenario 2 showing the total volumes (millions of cubic 
yards) transferred between dredging sites and types of placement sites. Total volume is on the vertical 
axis, types of placement sites are on the horizontal axis, and dredging sites are in different colors. 
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Appendix Figure 4.A16. Detailed results for Scenario 3 showing the total volumes (millions of cubic 
yards) transferred between dredging sites and types of placement sites. Total volume is on the vertical 
axis, types of placement sites are on the horizontal axis, and dredging sites are in different colors. 

 

Appendix Figure 4.A17. Detailed results for Scenario 4 showing the total volumes (millions of cubic 
yards) transferred between dredging sites and types of placement sites. Total volume is on the vertical 
axis, types of placement sites are on the horizontal axis, and dredging sites are in different colors. 
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Appendix Figure 4.A18. Detailed results for Scenario 5 showing the total volumes (millions of cubic 
yards) transferred between dredging sites and types of placement sites. Total volume is on the vertical 
axis, types of placement sites are on the horizontal axis, and dredging sites are in different colors. 

 

Appendix Figure 4.A19. Detailed results for Scenario 6 showing the total volumes (millions of cubic 
yards) transferred between dredging sites and types of placement sites. Total volume is on the vertical 
axis, types of placement sites are on the horizontal axis, and dredging sites are in different colors. 
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Appendix Figure 4.A20. Detailed results for Scenario 7 showing the total volumes (millions of cubic 
yards) transferred between dredging sites and types of placement sites. Total volume is on the vertical 
axis, types of placement sites are on the horizontal axis, and dredging sites are in different colors. 

 

Appendix Figure 4.A21. Detailed results for Scenario 8 showing the total volumes (millions of cubic 
yards) transferred between dredging sites and types of placement sites. Total volume is on the vertical 
axis, types of placement sites are on the horizontal axis, and dredging sites are in different colors. 
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Appendix Figure 4.A22. Detailed results for Scenario 9 showing the total volumes (millions of cubic 
yards) transferred between dredging sites and types of placement sites. Total volume is on the vertical 
axis, types of placement sites are on the horizontal axis, and dredging sites are in different colors. 
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