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Abstract

In regulated rivers, reservoir operation decisions largely determine downstream river temperature and
flow. Computational methods can minimize the risk and uncertainty of decisions with regrettable long-
term outcomes and aid operations planning and performance prediction. Mathematical modeling in
particular can optimize the timing and magnitude of reservoir release decisions for downstream benefits
while accounting for seasonal and inter-annual uncertainty in the weather, water storage impact, and
competing water demands. This dissertation uses optimization and modeling techniques, modifying
traditional optimization modeling to include temporal correlation in outcome variables and incorporating
long-term planning and risk management into prescribed reservoir operations. The proposed method is
implemented in one case, a) with a state variable that tracks outcome benefits over time (fish population
size) and, in another case, b) with a maximin stochastic dynamic program solution algorithm that
maximizes net operational benefit and minimizes worst-case outcomes (for cold water habitat delivery).
This method is particularly useful for environmental flow management, when the water quality and
quantity of the river and reservoir in one time step affect the environmental outcomes in the reservoir and
the river for later periods. Better solutions with these methods internalize risk and hedge releases early
in an operating season to maximize downstream benefit and reduce the probability of catastrophe for the
season and future years. Maximizing the minimum cold-water habitat area over months of a season or
multiple years, or maximizing a river indicator variable explicitly, could likely help, for example, maximize
an out-migrating salmon smolt population downstream. The method is demonstrated with a case study
optimizing environmental releases from Folsom Dam and another optimizing temperature management
from Shasta Dam in northern California. These results inform general rules for environmental flow
management and temperature management of reservoirs, with specific policy recommendations for both
Folsom and Shasta reservoirs. In both cases, the added value from employing hedging rules is predicted
to help reservoir operations minimize the risk of environmental catastrophe and conserve storage both
within an operating season and across years. The mathematics and logic of this optimization method
can be related more directly and conventionally to reservoir hedging for any long-term benefit, including
water supply, hydropower, drought management, and flood control.
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Chapter Summary

Chapter 1 introduces this dissertation.

Chapter 2 develops a reservoir operations rule structure and method to maximize downstream envi-
ronmental benefit while meeting human water supply targets. The result is a general approach for hedging
downstream environmental objectives. A multi-stage stochastic mixed integer nonlinear program with
Markov Chains, identifies optimal “environmental hedging” releases to maximize environmental benefits
subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand,
human water supply needs, infrastructure limitations, population dynamics, drought storage protection,
and the river’s carrying capacity. Fish population size is a state variable that tracks environmental
outcome benefits over time. Environmental hedging “hedges bets” for drought by reducing releases for
fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage
crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run
Chinook salmon in the lower American River for a range of carryover and initial storage cases. This
chapter was published in Water Resources Research as ”Environmental hedging: A theory and method
for reconciling reservoir operations for downstream ecology and water supply.”

Chapter 3 compares methods and develops a framework for managing temperature in reservoirs. A
generalizable selective withdrawal modeling and optimization framework for managing temperature in
reservoirs is proposed. To derive optimized temperature control policy with this framework, several
objective functions and solution algorithms for finding optimized release schedules are compared. A
new method for a maximin stochastic dynamic program solution algorithm maximizes net operational
benefit and minimizes worst-case outcomes (for seasonal cold water habitat delivery) is introduced. The
new algorithm uses a maximin operator to minimize the risk of environmental catastrophe and conserve
storage, both within seasons and across years. This approach, unlike previous models, restricts releases
by temporal persistence and consistency in benefits. Although previous studies have explored the value
of characterizing uncertainty in model inflow, both with respect to capturing temporal persistence and
non-stationarity, no studies have developed methods or tested the value of modeling temporal persis-
tence in downstream outcome variables (storage depletion, river habitat availability). Applications of
this method are useful for managing river temperature and avoiding regrettable mistake of releasing stor-
age and creating unsustainable downstream cold water habitat. Maximizing the minimum cold-water
habitat area over months in a year or a season should help maximize the out-migrating salmon smolt
population in a river but minimize the chance that maximizing fish now damages the ability to do so in
the future. With this approach, operations hedge to sustain benefits, similar to hedging more broadly for
other reservoir purposes, such as economic gain from hydroelectric power production, or water delivery
to agricultural uses, and, avert damage, similar to hedging for flood management or water delivery to
municipal drinking water supply. Here, we uniquely do both. We maximize to sustain river flow and
temperature throughout time and minimize to avert the risk of making lethal or stressful releases for
the downstream ecosystem. For river management, this is imperative; water quality and quantity of the
river and reservoir in one time step affect future quantity and quality in both the reservoir, the river
and ecosystem populations. This provides a method for prioritizing long-term ecosystem performance,
which is often sacrificed by maximizing short-term performance. This method could be useful for other
purposes for which it is preferable to hedge against risk now and in the future when the performance of
one time-step affects the next.

Chapter 4 applies the methods of Chapter 3 to build OTM2, an Optimized Temperature Management
Model, a model that optimizes reservoir operations for temperature control management. The model is
applied to optimize temperature control for the Sacramento River below Shasta Dam. The value of de-
riving the optimized solution with different river temperature targets, solution algorithms, and objective
functions under different delivery curtailment scenarios and weather forecasts were compared over one
and many operational seasons. Solvers were created in R with dynamic programming. Computational
burden was reduced by aggregating the model’s state, action, and outcome spaces and approximating
state variables based on physical and statistical principles. Solving the problem with a maximin dynamic
program improved the ability of the reservoir to meet downstream temperature goals more often and
consistently, for one and multiple years, with greater and more consistent total and cold water storage
availability for each state of each stage as well as for the converged operations policy. General rules for
improving temperature management at Shasta reservoir were formulated as well as event-based insights,
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such as when to abandon temperature management for a year or month. Hedging for temperature man-
agement at Shasta Dam could improve temperature management of Shasta reservoir as well as other
large reservoirs, particularly in drought.

Chapter 5 offers some concluding remarks for the dissertation.

Chapter 6 summarizes the dissertation as a policy memo for United States reservoir operators responsible
for temperature management of Shasta Dam and others.

2



1 Introduction to the Dissertation

In regulated rivers, reservoir operation decisions largely determine downstream river temperature and
flow. Computational methods can minimize the risk and uncertainty of decisions with regrettable long-
term outcomes and aid operations planning and performance prediction. Mathematical modeling in
particular can optimize the timing and magnitude of reservoir release decisions for downstream benefits
while accounting for seasonal and inter-annual uncertainty in the weather, water storage impact, and
competing water demands. This dissertation uses optimization and modeling techniques, modifying
traditional optimization modeling to include temporal correlation in outcome variables and incorporating
long-term planning and risk management into prescribed reservoir operations. The proposed method is
implemented in one case, a) with a state variable that tracks outcome benefits over time (fish population
size) and, in another case, b) with a maximin stochastic dynamic program solution algorithm that
maximizes net operational benefit and minimizes worst-case outcomes (for cold water habitat delivery).
This method is particularly useful for environmental flow management, when the water quality and
quantity of the river and reservoir in one time step affect the environmental outcomes in the reservoir and
the river for later periods. Better solutions with these methods internalize risk and hedge releases early
in an operating season to maximize downstream benefit and reduce the probability of catastrophe for the
season and future years. Maximizing the minimum cold-water habitat area over months of a season or
multiple years, or maximizing a river indicator variable explicitly, could likely help, for example, maximize
an out-migrating salmon smolt population downstream. The method is demonstrated with a case study
optimizing environmental releases from Folsom Dam and another optimizing temperature management
from Shasta Dam in northern California. These results inform general rules for environmental flow
management and temperature management of reservoirs, with specific policy recommendations for both
Folsom and Shasta reservoirs. In both cases, the added value from employing hedging rules is predicted
to help reservoir operations minimize the risk of environmental catastrophe and conserve storage both
within an operating season and across years. The mathematics and logic of this optimization method
can be related more directly and conventionally to reservoir hedging for any long-term benefit, including
water supply, hydropower, drought management, and flood control.
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2 Environmental Hedging
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2.1   Introduction: Reservoir Operations for Downstream Environmental Management 
 

Typical reservoir operations regulate downstream flows based on infrastructure limitations, water availability, water 

demands, and economic concerns [Klemes, 1977; Loucks et al., 1981: Yeh, 1985; Lund and Ferriera, 1996; ReVelle, 

1999; Labadie, 2004; Harou et al., 2009; Lund et al., 2017]. Separate release targets for downstream ecological needs 

[Arthington, 2012] are generally based on: a) habitat extent and suitability [Sale et al., 1982], b) downstream modeled 

fish populations [Cardwell et al., 1996; Cioffi and Gallerano, 2012; Jager, 1997; Jager and Rose, 2003; Null and 

Lund, 2011], and/or c) environmental goals based on specified hydraulic, hydrologic, water quality or political metrics 

[Tharme, 2003]. Resulting flow regimes may approximate the ‘natural’ flow regime [Palmer and Snyder, 1985; Poff, 

1997; Harman and Stewardson, 2005; Suen and Eheart, 2006; Vogel et al., 2007; Richter and Thomas, 2007; Wang 

et al., 2016] or may be developed using a more biophysical-social-hydrologic approach [Poff et al., 2010]. Habitat 

and population modeling can help specify release schedules to maximize habitat capacity to improve species (usually 

fish) survival at each of several life history stages. To meet environmental goals, a typical reservoir operation strategy 

releases available water until an environmental target goal, such as a minimum instream flow, is met. Making releases 

that mimic the natural flow regime assumes that fish and other wildlife are adapted to the local natural flow pattern so 

any alterations are assumed to harm the native ecosystem. All of these modeling approaches rely on expert opinion 

and empirical data when developing target release goals, validating modeling results, or measuring effectiveness of 

modeling recommendations. 

 

Environmental flow operations often are modeled with simulation or optimization methods. Most modeling studies 

represent environmental goals as a constraint on operations, usually as a minimum instream flow requirement [Homa, 

2005]. These models constrain releases to account for (a) water availability from storage and inflow from the current 

and previous period, (b) flood control needs, and (c) storage needs for minimum drought and carryover (e.g. human 

and economic) requirements. Waddle [1992] augments these approaches with an equation that remembers changes in 

fish population size between modeled release periods. Sale et al., [1982], Cardwell et al., [1996], and Cioffi and 

Gallerano, [2012] advanced optimization approaches by using stochastic reservoir inflow rather than using fixed water 

year types. Release decisions for both simulation and optimization models are typically made monthly over a water 

year. Jager and Rose [2003], instead, model two-week time steps. The natural flow regime literature simulates release 

decisions with calculations of hourly, daily, or weather-event periods, depending on the concern. Some models 

explicitly employ environmental goals as a single objective [Sale, 1982; Jager and Rose, 2003; Null and Lund, 2011], 

while others represent environmental goals within a multi-objective optimization model [Cardwell et al, 1996; Cioffi 

and Gallerno, 2012], maximizing for one or more biologic life stages.  

 

Here we develop a method and theory to optimize the timing and magnitude of seasonal reservoir releases for 

downstream environmental benefits. The environmental benefit function is defined as the ideal environmental flow 

regime which could be developed using any environmental flow method. In our case study we define the benefit 

function to be the seasonal flow requirements of each life history stage of a keystone species of fish (salmon). 

Operation time steps are discretized by life histories and hydrologic seasons. Consequent reservoir release schedules 

maximize downstream environmental benefit while considering seasonal tradeoffs among hydrologic seasons and life 

cycle stages for a range of water storage and probabilistic and conditional hydrologic conditions. This method 

incorporates environmental flow objectives to show when reservoir releases might best be reduced for early life stages 

in order to improve populations of later life stages. The environmental benefit function, a persistence constraint that 

remembers environmental benefit over time, and a drought protection constraint, constrains reservoir operations that 

minimize environmental damage and maximize environmental benefit.  

 

We employ a multi-stage stochastic mixed-integer non-linear program for a range of forecasted hydrologic states to 

produce optimal release schedules. Markov Chains transition forecasts of predicted inflows, as well as the 

contingencies for errors in these forecasts. We assume some downstream targets for human water supply (i.e. 

hydropower, municipal/agricultural/industrial water supply, and flood control) have higher priority than 

environmental demand, so decisions for the environment occur without making these other users worse off. The 

overall result is a general approach to maximize downstream goals: in this case, to balance downstream biological 

success with seasonal uncertainty and other water demands. The results sometimes involve “environmental hedging” 

operations which conserve water in dry times by reducing early releases to improve success in later times, given future 

drought probabilities and minimum storage needs for the environment and other uses. Releases avoid flood in wet 

times with spill. Releases hedge for past conditions by being constrained to not exceed flows for current downstream 

fish population size, given the ‘memory’ of the earlier fish population size. This strategy may force some early damage 

5



(i.e., small fish kills in early life stages, most notably early in the scheduling period), in order to reduce the risk of 

storage crises and crises (i.e., fish extirpation) during extreme events.  

 

2.2    Environmental Hedging Method 
 

The timing and magnitude of strategic environmental release and curtailment decisions are outlined below. An 

objective function, six constraints, and hydrologic and ecological forecasting are the components of the environmental 

flow hedge method. With this method, reservoir operations deviate from standard linear operating policy with strategic 

hedges. A multi-stage stochastic mixed-integer non-linear program operationalizes environmental hedging theory for 

reservoir operations and planning practice.  

 

The model explicitly quantifies downstream environmental impacts of release decisions with the assumption that some 

environmental damage (e.g. fish mortality) is sometimes inevitable, but larger damage levels (i.e. population or species 

extirpation) should be avoided. The optimized contingent release decisions hedge and adapt as the water year’s 

hydrologic and ecologic uncertainty diminishes with time. In this particular case, the first stage release decision is 

made (based on expected fall inflow and initial storage) before observing any outcome of random “actualized” inflow 

for the fall or future time stages. Decisions in later stages are made within system constraints based on the realization 

of inflow acquired during earlier stages, without observing future inflows. Environmental benefits (e.g. fish 

populations) from the release decision for each possible hydrologic condition in each time period is carried forward 

for each time period’s state into the following period. The decision tree branches combinatorially based on the number 

of possible inflow states and stages considered. In our case, the environmental benefit function is based on empirical 

observation and expert opinion of native anadromous fish (e.g. Chinook salmon) requirements. Native anadromous 

fish are sensitive indicators of environmental flow needs for reasons that are economic, ecological, practical, genetic, 

aesthetic, and moral (Moyle, 2002). Native fishes evolved with the native hydrograph. A number of species could 

have been used. However, we applied the model to predict survival of three freshwater life-history stages of fall –run 

Chinook salmon in the lower American River of California, because they require high water quality, are a species in 

decline, and are well-studied (Williams, 2001). Although the river flow regime is characterized by a Mediterranean 

climate, the principles and mathematics of the model can be modified and applied to other species or downstream 

goals (e.g. groundwater recharge) in other regulated rivers and climates.  

 

2.2.1   Timing of releases 
Reservoir releases 𝑅𝑦𝑡,𝑡 are made to support each discrete life-history stage for each possible hydrologic state y of 

time duration t, yt. The number of distinct operational time periods t coincide with the fish’s riverine life stages (such 

as eggs or fry) and the distinct hydrologic seasons (such as fall and spring), for all hydrologic states y (from driest to 

wettest) (Figure 1). Discretizing time by meaningful fish life stages and hydrologic seasons gives flexibility in 

scheduling bulk water releases to account for seasonal and ecological variability. Time is aggregated by months 

because most water supply operations are planned with a monthly timescale. Decisions are made for all time steps and 

contingent conditions to maximize fish populations. 

 

 
Figure 1: Example discretization of time periods t used to develop a release schedule to support two cohorts of anadromous fish 

downstream of a reservoir under uncertain hydrologic conditions. Release decisions vary with hydrologic states y (e.g. very wet, 

median, and abnormally dry). 

 

2.2.2   Magnitude of releases 

 
Objective Function The operator is responsible for maximizing environmental benefit below the dam. For this 

example, in maximizing the survival of anadromous fish, the dam operator is responsible for two cohorts over all 

Model Decision Stage 1 2 3.2

Time Discretization 1 2 3 4 5 6 7 8

Months Oct, Nov, Dec Jan, Feb, Mar, Apr May, Jun Jul, Aug, Sept Oct, Nov, Dec Jan, Feb, Mar, Apr May, Jun Jul, Aug, Sept

Fish year class g

Water year h

Snowmelt Baseflow Snowmelt Baseflow

Fish Development Period Egg Fry Smolt None Egg Fry Smolt None

Fish Release Decision

3.1 Minimum Carryover Storage Requirement

A B

1 2

Hydrologic Season Wet Season
Dry Season

Wet Season
Dry Season

𝑅𝑦 , 𝑅𝑦𝑡,𝑡 𝑅𝑦 , 𝑅𝑦 , 𝑅𝑦 , 𝑅𝑦 , 
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hydrologic conditions: one developing cohort (e.g. salmon that survive growing from eggs laid to smolts migrating to 

the ocean; (cohort A) and a second cohort of adults returning after several years at sea to spawn (cohort B). The 

objective (Equation 1) is to maximize the average weighted sum of both cohorts (NA and NB), across the range of 

seasonal hydrologic conditions (y) which occur with probability (p). The second fish cohort (g=B) is weighted with a 

constant (∝) to capture trade-offs between cohorts. Maximizing final water storage at the end of the final period of the 

model (SF ) is included as added value to the objective function with weighting constant (β) to penalize present releases 

lacking fish benefit and to save water for fish and other water uses in the future. In another system dominated by non-

migratory fish the objective function could be re-written as the sum of the probability of fish survival for every fish 

life history stage over the full range of hydrologic states.  

 

 

𝑚𝑎𝑥(𝑧) = [∑ 𝑝𝑦𝑇− ,𝑇− 𝑁𝑦𝑓− ,𝑇− 
𝐴 +

𝑦
𝛼∑ 𝑝𝑦𝑇,𝑇𝑁𝑦𝑇,𝑇

𝐵

𝑦
] + 𝛽∑ 𝑝𝑦𝑇,𝑇𝑆𝑦𝑇,𝑇

𝐹

𝑦
  (1) 

 

 

where 𝑧 is the net expected downstream fish population; 𝑦𝑡 is the hydrologic/inflow state (i.e. wet, dry, very dry) of 

inflow for each time period t; 𝑔 is the fish cohort (i.e. fish cohort A or B); 𝑇 is the final time step t for future fish 

population (i.e. time period 5 for cohort B); 𝑡 is the indexed time step expressed in aggregated months. (Time step 

durations can differ for each fish development and hydrologic stage.) 𝑝𝑦𝑡,𝑡 is the probability of predicted hydrologic 

state y for time period t; 𝑁𝑦𝑡,𝑡
𝑔

 is the fish surviving population in each predicted hydrologic state y of time duration t 

for fish cohort g; ∝ is the relative weighting of cohorts; 𝛽 is the relative weighting of final storage; and 𝑆𝑦𝑇,𝑇
𝐹  is the 

final storage volume for final time period t = T. 

 

Hydrologic Forecasting Each season’s release decision is the sum of a base release decision and an incidental spill 

decision (Equation 3d). The base release decision is determined before the period has begun, for planning, based on 

the period’s predicted inflow state 𝑝𝑦𝑡,𝑡
𝑞′
𝑞𝑦𝑡,𝑡
′  (Supplement S1, S2). Base release decisions hedge releases based on 

expected inflow to guarantee water storage during drought. Each period’s spill release is made after the period has 

begun, based on a range of expected period inflow states 𝑝𝑦𝑡,𝑡
𝑞
𝑞𝑦𝑡,𝑡 (S1, S2) that represent a range of actualized inflow 

states that could happen given the inflow of the previous stage. Spill decisions are made every period to avoid 

overtopping the reservoir; like hedging for drought, sometimes spill is hedged between time periods to avoid 

environmental damage. A range of modeled seasonal hydrologic conditions y adjusts releases to forecast and actual 

inflow so the release schedule has inter-annual variability. Conditional probabilities forecast seasonal predicted inflow 

(S1). A Markov Chain based on exceedance probabilities of the historical inflow record forecast seasonal actualized 

inflow. Depending on the statistical relationship between seasonal inflows (S2), predicted inflow for each hydrologic 

state y in each time period t can be conditional (e.g. between wet seasons), dependent (e.g. snowmelt following a wet 

season), or independent (e.g. at the beginning of the water year) of the previous season inflow. Building a model that 

forecasts both predicted (before the release) and future actualized (after the release) inflow allows for error and regret 

analysis for adaptive operations, explicitly modeling the likely probability that a seasonal forecast is wrong. 

Uncertainty narrows as the water year develops and more inflow information is known. 

 

Decision Tree The objective function is written in terms of 𝑁𝑦𝑡,𝑡
𝑔

 and 𝑆𝑦𝑡,𝑡
𝐹  as this seems the most direct model 

conceptualization. The decision variables, reservoir releases 𝑅𝑦𝑡,𝑡, (including the base release decision 𝑅𝑦𝑡,𝑡
𝑚𝑖𝑛 to avoid 

a fish kill and a spill decision 𝑃𝑦𝑡,𝑡) do not appear in the objective function but enter via constraints. The outcome of 

the release decisions is measured in terms of fish survival 𝑁𝑦𝑡,𝑡
𝑔

 at each stage t.  
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Figure 2: Decision Tree for a three-stage optimization model for maximizing fish survival. Each release decision 𝑅𝑦𝑡,𝑡 includes a 

drought management decision 𝑅𝑦𝑡,𝑡
𝑚𝑖𝑛 and a flood management decision 𝑃𝑦𝑡,𝑡.  

Constraints Six constraints support reservoir releases for each time step t. Releases are physically constrained to 

fall within a) water availability, b) dam infrastructure capacities, and c) minimum streamflow requirements. 

Releases also are guided by d) environmental benefit functions, e) a persistence constraint, and f) a drought 

protection constraint.  

 Water Availability 

Releases cannot exceed available water at any time (Equation 2). Water availability includes the period’s initial storage 

plus expected inflow minus higher priority diversions.  

 

𝑅𝑦𝑡,𝑡 ≤ 𝑎𝑦𝑡,𝑡   ∀   𝑦 ∈ 𝑡    (2) 

 

𝑎𝑦𝑡,𝑡 = 𝑆𝑦𝑡,𝑡
𝐼  + 𝑞𝑦𝑡,𝑡

′ −  𝑑𝑡      ∀   𝑦 ∈ 𝑡    (2a) 

 

where 𝑅𝑦𝑡,𝑡 is the reservoir release for each hydrologic state y of time period t; 𝑎𝑦𝑡,𝑡 is the water availability each 

hydrologic state y of time period t; 𝑆𝑦𝑡,𝑡
𝐼  is the incoming stored water for each hydrologic state y of time period t; 𝑞𝑦𝑡,𝑡

′  

is the predicted reservoir inflow for each hydrologic state y of time period t; and 𝑑𝑡 is diversions with higher priority 

than fishes, such as domestic water use, for each time period t. 

 Reservoir Infrastructure Limitations 

Water storage must always equal or exceed deadpool storage 𝑑𝑝 but cannot exceed reservoir storage capacity rc 

(Equations 3a and 3b). Releases also cannot exceed the maximum reservoir outlet capacity 𝑚𝑜𝑐. Releases are the total 

of the base required release Rmin and the reservoir spill release P.  

 

   𝑆𝑦𝑡,𝑡
𝐹 ≥ 𝑑𝑝      ∀   yt ∈ t       (3a) 

 

   𝑆𝑦𝑡,𝑡
𝐹 ≤ 𝑟𝑐       ∀   yt ∈ t        (3b) 

 

𝑅𝑦𝑡,𝑡 ≤ 𝑚𝑜𝑐      ∀   yt,  t= f     (3c) 

 

𝑅𝑦𝑡,𝑡 = 𝑅𝑦𝑡,𝑡
𝑚𝑖𝑛 + 𝑃𝑦𝑡,𝑡    ∀   yt,  t= f     (3d) 

 

where 𝑑𝑝 is the deadpool storage requirement for the reservoir; 𝑟𝑐 is the reservoir capacity; 𝑚𝑜𝑐 is the maximum 

reservoir outlet capacity; 𝑅𝑦𝑡,𝑡
𝑚𝑖𝑛 is the base release planned for each hydrologic state y of each time period t given the 
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period and hydrologic state’s expected water availability a; and 𝑃𝑦𝑡,𝑡 is the spill release for each hydrologic state y of 

time period t.  

 Minimum Streamflow Requirement 

Releases must meet a minimum streamflow threshold (e.g., the flow required to save at least 10% of the target fish 

population during the juvenile stage). Beyond this threshold the ecosystem has been pushed to the limits of 

resiliency and will shift to an undesirable new ecological state.  

 

𝑅𝑦𝑡,𝑡
𝑚𝑖𝑛 ≥ 𝑒𝑚𝑖𝑛𝑡      ∀   y in t      (4) 

 

where 𝑒𝑚𝑖𝑛𝑡 is the minimum downstream streamflow requirement for the months of time period t). 

 Stored Water 

Water stored for the future offers the ability to hedge for dry times. Actualized inflow plus water storage from the 

previous period (less last period’s diversions and releases) determine the incoming storage for the next time period 

(Equation 5).  

𝑆𝑦𝑡,𝑡
𝐹 = ((𝑆𝑦𝑡,𝑡

𝐼 = 𝑆𝑦𝑡− ,𝑡− 
𝐹 ) − 𝑅𝑦𝑡− ,𝑡− + 𝑞𝑦𝑡− ,𝑡 − 𝑑𝑡−  )  ∀   y  ∈ t    (5) 

where 𝑞𝑦𝑡,𝑡 is the actualized inflow to the reservoir for each hydrologic state y of time period t. 

 Environmental Benefit Function 

This equation links streamflow to environmental benefit for each hydrologic state of each time period. The linkage 

can be based on any environmental flow methodology (e.g. expert interviews and/or mechanistic models that index 

environmental need based on hydraulic, hydrologic, water quality, and ecological indicators).  In using fish species as 

indicators of environmental health, for example, fish population size (N) is limited by spawning and rearing area, such 

as the flow required to keep temperatures below the maximum at which the fish species can survive.  

 

𝑁𝑦𝑡,𝑡 ≤ 𝑓(𝑅𝑦𝑡,𝑡)      ∀   y ∈ t    (6) 

 

 Population Dynamics and Persistence Constraint 

Current period ecological and biological abundance is based on natural mortality and curtailments from the 

environmental support capacity of the previous period. For example, the fish population (N) for any life stage during 

any time period t has been reduced by the fish’s natural mortality rate (k) and fish death in the previous period from 

releasing spill or curtailing the environmental benefit function (Equation 3) i.e. if the natural mortality rate (k) of eggs 

to fry is 30%, and egg incubation period releases are curtailed to 50% of ideal, then the largest population possible in 

the current period is only 35% of the target. This population dynamics constraint carries the memory of environmental 

conditions from one time period to the next. Strategic releases are hedged, when necessary, to meet but not exceed the 

requirements of the current population size rather than that for ideal population size.    

 

𝑁𝑦𝑡,𝑡  ≤ (1 − 𝑘)𝑁𝑦𝑡,𝑡−   ∀   y ∈ t  (7) 

 

where 𝑘 is the expected mortality occurring between time step t-1 and t. 

 

 Drought Storage Protection 

 

Stored water at the end of the modeled period 𝑆𝑦𝑇,𝑇
𝐹  provides some drought protection for future years. This end of 

modeled period storage must exceed the sum of deadpool storage 𝑑𝑝, minimum carryover storage requirements 

𝑆𝑚𝑖𝑛𝐹 , and the storage to meet the high priority diversions and minimum streamflow requirements for each season’s 

driest hydrologic state 𝑦𝐷.   

 

𝑆𝑦𝑇,𝑇
𝐹 ≥ 𝑆𝑚𝑖𝑛𝑦𝑇,𝑇

𝐹 + 𝑑𝑝 + 𝑑𝑇  + 𝑒𝑚𝑖𝑛𝑇 −  ∀    𝑡 ∈ (y = D)  (8) 
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where 𝑆𝑦𝑇,𝑇
𝐹  is stored water for each hydrologic state y in the final modeled period T; 𝑆𝑓𝑚𝑖𝑛𝑦𝑇,𝑇

𝐹  is the minimum 

carryover storage requirement for the reservoir after the final modeled period; 𝐷𝑡 is the driest expected (D) 

hydrologic state y of time period t; and is expected future actualized inflow for each time period t of the driest 

hydrologic state D. 

 

2.3   Environmental Hedging Theory 
 

Environmental hedging helps to manage uncertain water supply availability for downstream release and to balance 

near-term environmental benefit with long-term environmental resilience. The hedging selects whether or not to kill 

a small number of fish now in order to reduce the likelihood of killing more later if supply is limited or will cause a 

damaging flood. Environmental hedging applies the same logic as water supply hedging [Draper and Lund, 2004; 

You and Cai, 2008; Hui and Lund, 2015] for which “it is sometimes economical to accept a small current deficit in 

output so as to decrease the probability of a more severe water or energy shortage [or flood] later in the drawdown-

refill cycle [Bower et al., 1962].” As water availability increases (from A −> F in Figure 3a) six types of hedges bind 

each period’s release decision based on current, future and past biologic and water availability (displayed 

alphabetically in Figure 3a). The hedging effects (e.g. diminished fish populations and flow needs) of decisions in one 

time period persist into future time periods. Releases can be further hedged over time (Figure 3b) under drier 

conditions, or greater releases and spill can occur in anticipation of, or after, wetter conditions.  
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Figure 3 (a): Environmental hedging for one time period. The optimal release policy (environmental hedging) follows the thick red line for time period t. Dashed 

lines are release constraints. (b): Environmental hedging across time periods. Each line is the optimal decision per stage for each possible hydrologic condition. 
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Environmental Hedging method hedges along the standard linear operating policy for seven reasons. Within one time 

period, six reasons make up the hedge (and are displayed alphabetically in Figure 3a). Depending on the system, the 

order of the hedge could change. A) Water Availability, Equation 2: Water is not released beyond current water 

availability. B) Minimum Streamflow Requirement, Equation 4: A lower bound restricts a lower release by the 

minimum streamflow requirement. C) Drought Storage Protection, Equation 8: Releases are hedged to meet both 

water availability and drought storage constraints for the driest expected current and future seasons. D) Environmental 

Benefit Function, Equation 6: Releases are hedged along the slope of the environmental benefit E) Population 

Dynamics Persistence Constraint, Equation 7: Releases are constrained to not exceed the water needs of the current 

population (considering population losses from the previous period). F) Spill, Equations 3b:3d: Releases are made to 

avoid overtopping the reservoir, even if the spill inflicts major environmental damage downstream. Hydrologic 

forecasting is the reason for hedging over time (Figure 3b). The model will hedge with predicted inflow in anticipation 

of extreme events at each time period.   

2.4   Environmental Operation of California’s Folsom Dam 

Environmental hedging was applied to Folsom Dam in central California to maximize the downstream Chinook 

salmon population that can be supported by releases to the lower American River. Environmental conditions for the 

30 miles downstream from Folsom Dam to the Sacramento River confluence are determined largely by Folsom 

releases. Fall-run Chinook salmon are a key species for the lower American River. The hydrologic needs of the fall-

run Chinook track the natural hydrograph.  

 

Time is discretized by hydrologic season and the three distinct periods for which cohort A is in the stream: egg, fry, 

and smolt (t = 1, 2, 3, respectively), followed by the spawning and egg period of cohort B (t=5) (see Figure 1). October 

through December is the period when fall-run Chinook salmon return from the ocean to spawn and lay eggs, January 

through April is the period when eggs mature to fry, and May through June is when young salmon, or “smolts” migrate 

to the ocean where they stay for 2-5 years before returning to spawn. Each fish life stage has different instream water 

needs. For fall-run Chinook the hydrology and fish life cycle stages are synchronized. Cohort B is included to represent 

the value of flows and storage towards the end of the water year.  

 

Hydrologic forecasting for Folsom reservoir considers the region’s two distinct hydrologic periods: wet season 

precipitation (October – April) and dry (May – September). Wet season inflow is highly variable, so operations must 

consider both droughts and floods. Seasonal inflows were estimated for each time period from the river’s 113 years 

of historical record of unimpaired from the California Data Exchange Center’s Full Natural Flow at Fair Oaks station. 

Wet season inflow is modeled by two fish development periods: the egg stage (October through December) and fry 

stage (January through April) (Figure 1). Egg and fry period inflows correlate weakly with a correlation coefficient of 

0.35 (p-value of 0.12 x10-6). The egg stage includes adult migration to spawn the eggs. The May and June spring 

snowmelt season coincides with smolt out-migration and with inflows correlated with wet season snowpack (r = 0.6 

with a p-value of 0.75 x10-11); wet egg (winter) and fry (fall) seasons tend to beget wet smolt (spring) seasons. Dry 

season baseflow between July through September correlate strongly with the next period’s wet season inflow (r = 0.83 

and a p-value of 0.22 x10-15) and is modeled here as deterministic, so streamflow is modeled with conditional 

probabilities. Predicted and actualized future inflow events and the transition probability matrix between inflows for 

the lower American River are in Table S1 and S2. Here, the egg (fall) season inflow lacks prior inflow information at 

the beginning of the water year so it is predicted initially to be 919 cfs, median historical seasonal inflow. Fry (winter) 

and smolt (spring snowmelt) predictions and future inflow are conditional on inflow of previous wet and dry season 

inflow. Snowmelt and dry season inflow at the end of the water year are determined by inflow (precipitation) received 

earlier in the year.  

 

Hydrologic states 𝑦𝑡 are discretized by the quantiles of the cumulative distribution function of each state’s historical 

record (S2). The range of selected exceedance probabilities for the lower American River, w = {0.01, 0.025, 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5 and 0.75, 1}, includes floods, but emphasizes dry times for drought operations planning [California 

SWRCB, 2015]. More fish suffer and die during drought, although some life-history stages (e.g., egg incubation) 

suffer from floods.  

 

The water availability and infrastructure constraints are bound by Folsom Reservoir’s 1 million acre-foot storage 

capacity, 90 TAF deadpool storage requirement and 1150,00 cfs outlet capacity (BOR, 2016). The 325 TAF/year 
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released [NOAA, 2011] for downstream human diversion is always met. The minimum streamflow requirement 

allocates water to support 5% of fish from each of the two cohorts, thereby avoiding extirpation. 

 

The environmental benefit function is modeled with fish survival 𝑁𝑦𝑡,𝑡
𝑔

 as a function of reservoir releases 𝑝𝑦𝑡,𝑡𝑅𝑦𝑡,𝑡 for 

each stage (combined fish life-stage and hydrologic season). The magnitude of the fall-run Chinook-streamflow 

functions may have error, but the shape of the function describing the need of each fish flow, is correct. The fall-run 

Chinook egg survival-flow relationship is an inverse quadratic survival function (Figure 4). Survival greatly increases 

with flow initially, and then less so, until finally high flows scour gravel bars and redds where eggs are laid [USFWS, 

2003; Jager and Rose, 2003; Jager et al., 1997; Null and Lund, 2011]. More flow creates more fry habitat [Jager and 

Rose, 2003; Jager et al., 1997] until the river’s carrying capacity is reached. Therefore the fry survival-flow function 

is the linear slope-intercept between the fry minimum and maximum fish flow requirements. Smolts need pulse flows, 

so the smolt-flow relationship for the lower American River is pulsed [Jager and Rose, 2003; Sykes et al., 2009; Jager, 

2014] to simulate spring snowmelt peaks that cue smolts to migrate downstream to the ocean. One pulse of 1,500 cfs 

is assumed to initiate outmigration for at least 75% of smolts. Releases that mimic baseflow between pulses are 

assumed to maintain cold temperatures. Fish population optimization results in at least two, but no more than five 

“snowmelt pulses” because 5 pulses that each move 70% of the smolts out, will save roughly 100% of the smolt 

population. Pulses are modeled as mixed-integer variables in the model. The exact timing of pulse releases within the 

smolt period is not allocated so the operator can flexibly synchronize American River pulse releases with Sacramento 

River pulses. Pulse water is not allocated in the winter because it is assumed that fish will out-migrate with the natural 

pulse they receive from overland flood flow. Flow of 300 cfs in May and 600 cfs in June are released between pulses 

to ensure minimum fall-run Chinook temperature requirements of 65ºF [Jones and Stokes, 1997; US Dept of Interior, 

2008]. 

 

Figure 4: Maximum survival of fall-run Chinook for different releases to the lower American River. Survival rates 

from authors, Bradford, 1995; SWRI, 2001; Williams, 2006. Fish population size-streamflow curves developed from 

authors, Jager et al., 1997; Jones and Stokes, 1997; Jager and Rose, 2003; USFWS, 2003; US Dept of Interior, 2008; 

Sykes et al., 2009; Null and Lund, 2011; and Jager, 2014.  

 

Minimum fish flow requirements for eggs and fry are 190 cfs (California SWRCB, 1958), the flow assumed to save 

10% of eggs and 5% of fry. Smolts have a minimum release requirement of 123 cfs, or 33 TAF, the storage volume 

required to support two May pulses of 1,500 cfs with 5 days of 300 cfs and baseflow in between, which is assumed to 
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save at least 70% of smolt. Below these minimum fish flow requirements the population is considered extirpated 

because current fragmentation of the Sacramento River system prohibits fish from coping with the drought naturally 

by moving to another river or finding refuge in cold pools. Maximum flow requirements are assumed to support the 

ideal target fish population, set in the 1992 Central Valley Project Improvement Act’s Anadromous Fish Restoration 

Plan for the wettest water year type (2,500 cfs between September to February and 4,500 cfs between March to June) 

which are currently used for Folsom operations [Williams, 2001].  

 

The persistence of the Chinook salmon population under ideal conditions results in an average returning adult 

population of 160,000 [USFWS, 2001]. We assume female fall-run Chinook salmon (approximately 50% of the 

population) lay an average of 4,300 eggs [Bradford, 1995], about 15% of which successfully bank into redds, resulting 

in about 51,600,000 eggs, on average. We then assume about 10% of these eggs survive to become fry and about 70% 

of juveniles survive to become smolt [Bradford, 1995]. Including hatchery releases, about 5% of smolts survive the 

ocean and return to spawn [Williams, 2006]; even with ideal river conditions only about 7% of young salmon survive 

from egg to smolt.  

 

Folsom reservoir was operated with environmental hedging for 28 combinations of initializing (i.e. at start of the 

model) and minimum carryover storage conditions. For these cases, minimum carryover storage requirements were 

discretized to 0, 50, 100, 150, 200, 250 and 300 TAF and initial storage conditions at the beginning of water year one 

are 250, 500 (Folsom average), 750 and 1000 TAF.  

 

The Pareto frontier of optimal release schedules were found for each storage case by running the environmental 

hedging model with a range of weights between 0 and 1 for the α penalty for allocating water to cohort B and β, the 

penalty for allocating water to final storage. This set of efficient solutions was then plotted to analyze the tradeoffs in 

expected fish survival resulting from optimal allocation between the two cohorts (Figure 6a) as well as between 

releasing water for fish survival or storing it for the future over the range of α and β (Figure 6b). Expected fish survival 

for each case is the surviving percentage of the total population. These percentages exclude natural mortality to isolate 

the effect of water scarcity (and the consequent effects of water scarcity like habitat loss and warm temperatures).  

 

Finding the globally optimal release schedule for each storage case required producing a subset of each case’s set of 

efficient solutions four times. The first subset retains only solutions that produce the maximum average survival of 

cohorts. Maximum average survival is considered the globally optimal solution because both cohorts are equally 

important. Maximum average survival was normalized as the proportion of the sum of the target population supported 

by the release decision of each hydrologic condition weighted by the probability of that hydrologic condition. The 

second subset retained solutions that produced the largest final stored water volume, a less, but still important, goal. 

The third subset retained solutions with the smallest alpha and of those, the smallest beta to minimize computation 

time. For all storage cases, the optimal beta is 0.25. The optimal alpha is always 0.1 except when available stored 

water (initial less minimum carryover storage requirements) exceeds 600 TAF, in which case alpha is 0.05.  

 

2.5     Results 

2.5.1   Tradeoffs between Cohorts and Final Storage 

A Pareto curve highlights tradeoffs between allocating water for cohort A or B (Figure 6a,b), found by selecting 

different values of alpha and beta, the objective function priority weights for cohort B and final storage (Equation 1). 

Each line in Figures 6a is an interpolation of all model runs with a range of weights for each of the initial stored water 

volume and carryover storage requirements. Total population maximizing solutions (displayed as circles in Figure 6a) 

produce the maximum average allocation to cohort A and cohort B across all water year types.  

 

Because of spill, the small human demand below Folsom, and the small probability of drought, expected survival of 

cohort A is often quite high. Because of the hedge in the first period for drought protection and the population 

dynamics constraint, cohort A has an upper bound cap, regardless of the choice of alpha or beta. After supporting the 

cohort A population, surplus water is available to support cohort B and final storage requirements. Depending on the 

choice of alpha and beta penalties, a wide range of cohort B survival is possible.  
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2.5.2   Tradeoffs between Storing Water or Releasing it for Fish Survival 

The relationship between salmon survival and stored water is both complimentary and competitive, particularly with 

environmental hedging. Depleting water reserves is needed to save fish but because fish later depend on stored water 

(particularly in drought), depletion is not in the best interest of later life stages. Likewise, with greater initial storage 

and/or inflow is greater, both stored water and releases (and consequently fish survival for both cohorts) is also greater 

because more initial storage can increase releases for cohort A eggs in the first stage with greater impact on improving 

the objective function than other life stages. However, some competition between releases and storage also exists – 

minimum carryover storage requirements increase at expense of the fish population.  

 

 

Figure 5: Maximum fish cohort survival for the range of minimum carryover and initial storage (start of model) requirements. 

 

Within the set of efficient solutions, solutions vary negligibly with final storage penalty beta unless beta imposes a 

strong final storage penalty (of approximately 0). Final trade-offs among releasing water for cohort A or cohort B, or 

saving water in storage for the final time period, are more influenced by the choice of alpha. Strong alpha penalties 

(i.e. less than 0.01) tend to curtail a greater proportion of ideal releases to cohort B. In those cases, not enough water 

is available to improve cohort A, resulting in more fish death than is hydrologically necessary. Alpha choices above 

0.01 produce the curve in the Pareto front between cohort A and B (Figure 6a). These choices exaggeratedly curtail 

ideal allocation to cohort A and instead save water for cohort B until all of cohort B is supported.  
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Figure 6 (a): Average fish survival of cohorts A and B for a range of initial and minimum carryover storage requirements.  

 

 

 
 

 

Figure 6 (b): Expected water in final storage and cohort A and B survival fish survival for a range of alpha, beta, minimum carryover 

storage requirements and initial water in storage conditions. 
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To meet all constraints, initial storage conditions at the beginning of the model at Folsom must exceed 194 TAF and 

the minimum carryover storage requirement be at least 194 TAF less than initial water storage conditions. Within 

these boundary conditions, enough stored water is available to support the minimum fish population (5%) of cohort 

A and B (Equation 5), as well as meet minimum carryover storage requirements – therefore avoiding the crises of fish 

extirpation and draining the reservoir. 

2.5.3   Operating Rule Curves 

Planning rule curves (Figure 7), a rule tableau (S3), and operations rule curves (Figure 8) communicate guidance for 

optimal release decision choices for each hydrologic condition for each time period. Planning rule curves are generated 

by running the model to exclude spill decisions. Operational curves include spill and communicate total releases to 

operators for each hydrologic condition and time period.  

 

In figure 7, each line (or for t=1, each point) of each time period’s planning rule curve follows the recommended base 

release per expected water availability for each stage and water storage condition. Second and third period releases 

are constrained by forecasted water availability, fish losses from the previous period, and stored water requirements 

for future releases. First and fifth period releases are similarly constrained, although because these periods occur at 

the start of new water years, forecast water availability is independent of the previous period. Third and fourth period 

inflows are known snowmelt quantities distinguished only in that the third period is when the fall-run Chinook out-

migrate and the fourth period has little to no fall-run Chinook activity. Therefore, only third period releases are 

modeled although third period releases are required to meet third and fourth period human requirements. The 

infrequent non-monotonic relationship between seasons (i.e. a wetter egg season is infrequently followed by a drier 

fry season), are smoothed in the rule curve with non-parametric local regression (LOESS curve fitting) using the 

LOESS R package.  

 

Each row of the rule table (S3) provides guidance for release decisions for each of the four time periods for which 

environmental release decisions are needed, for each of the 28 storage cases. Release rules are made for the range of 

expected inflow and incoming stored water for each time period. As the water year develops more inflow information 

is known so the branches of the release decisions increase (Figure 2). When plotted (Figure 7), each expected inflow 

(column 𝑞𝑦,𝑡
′  of S3) for each storage case is plotted as a line guiding the operating rule curve. Figure 8c plots the range 

of recommended releases for the full range of expected inflow for each modeled time period for specific initial storage 

conditions and minimum carryover storage requirements. Curtailments and augmentations to the environmental 

benefit function occur strategically. For example, releases, above 364 TAF are avoided during the egg stage because 

of damage to redds (i.e., the inverse quadratic fish-streamflow relationship). There are either positive or no 

consequences of additional water during juvenile and smolt stages, so flood releases are made during juvenile and 

smolt stages, when possible, instead of the egg stages. 
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   Figure 7: Each line (or point as in the case of t=1) is a base release planning schedule with the optimized release policy given each period’s water availability 

(Equation 2) for each of 28 initial and carryover storage cases.
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Each line of Figures 8a,b,and c represent a possible water year. Figure 8c plots the same information as Figure 8a, but 

releases are normalized as a proportion of the target release achieved over time. Figure 8b is with Figure 8c is without 

including flood releases. Figures 8b and 8c show the effect of the hedging: the first period is hedged when needed. 

The second period is hedged again as needed. The third period is also hedged, but because of the discrete releases 

options from the smolt pulse releases sometimes the magnitude of the release appears larger than is needed. The fifth 

period starts a new water year and is not hedged. 

 

  

 

 

 

 

 

 

 

 

Figure 8: Each line represents expected releases over time for a range of inflow states (a) as a proportion of the release target 

with (b) and without spill (c), over time, with initializing model storage conditions of 500 TAF and minimum carryover storage 

requirements of 200 TAF. Planning release schedules exclude spill. 

2.6     Discussion 

Expected survival over time of fall-run Chinook salmon was compared (Figure 9a) with several alternative operating 

approaches: 1) this environmental hedging model, 2) standard linear operating reservoir policy (SLOP) with and 

without minimum carryover storage and minimum streamflow requirements, 3) a simulation that mimics the natural 

flow regime, 4) an incomplete environmental hedging that omits the persistence and population dynamics constraint, 

and 5) historical annual fall-run Chinook production (average of 134,753 adult salmon/year) measured below Folsom 

Dam [Azat, 2016]. System performance [Hashimoto et al., 1982; Bayazit and Ünal, 1990] for each approach was 

assessed (Figure 9b) in terms of a) the fish population expected value; b) the frequency of meeting minimum 

streamflow requirements and avoiding a fish kill; the probability of system failure (e.g. c) draining or d) overtopping 

the reservoir); e) the frequency of failing to meet the minimum carryover storage requirement; and f) the frequency of 

time water storage exceeds Folsom flood storage capacity (610 TAF).  

 

(a) 

(b) 

(c) (c) 
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The cumulative distribution function plots of fish survival (Figure 9a) were created for each reservoir operation policy 

for the range of hydrologic states. Since historical data was measured only for out-migrant smolts, only survival of 

out-migrating smolts (cohort A) were compared. 

 
Figure 9 (a): Fish survival probability for each of six modeled operating strategies and historical operating strategy with initial 

model storage of 500 TAF and minimum carryover storage requirement of 200 TAF.  

 

 
Figure 9 (b): Reservoir operations performance for cohort A with six re-operation policies and historical operating policy with 

initial water in storage of 500 TAF and minimum carryover storage requirements of 200 TAF. 

 

 

In general, fish survival is higher in wet years and lower in dry years. In wet and normal years (i.e., low and middle 

exceedance probabilities) all the reservoir operation approaches performed well. In near-dry and dry years all the 

operating approaches had more performance variation. Historical Folsom reservoir operations have the most variable 

success, performing well in wet years, but poorly in normal and most dry years. Perhaps most importantly, only 

historical Folsom operations and modeling strategies that employ optimization did not fail in very dry years. 

Optimization models leverage the Markov Chains and specific constraints so proposed releases best fit overall fish 

needs. Notable improvements in fish survival result with environmental hedging when stored water is not 

unnecessarily released without considering water demand from the current period’s fish population size.  

 

20



Non-optimized rule-based simulations (operating with SLOP or mimicking natural flow) did not consider the future. 

Water is allocated less efficiently and consequently saves less fish and storage than optimization models, particularly 

in dry times. Were fish-flow relationships strictly increasing, including the egg period, then simulation models of 

SLOP and the natural flow regime approach would have outperformed the optimization models in wet conditions. 

Environmental hedging saves all fish in wet years even though it hedges because of spill. Simulation models do not 

leverage past and future information and therefore just implement specified release rules over time. The advantages 

of SLOP in wet times are outweighed by fish kills and draining the reservoir in dry times, without hedging.   

 

Environmental hedging had the highest average modeled survival of cohort A (86%) compared with other methods 

(Figure 9b). Environmental hedging also always avoided reservoir drainage and overtopping, met minimum carryover 

storage requirements, and performed well with respect to fish survival while meeting water supply requirements and 

leaving enough water in final storage for future human and fish uses.  

 

Environmental hedging also has limitations. The current model could be improved to include evaporative losses, bed 

load movement and other factors affecting fish development stage survival, climate change, fish-ocean dynamics, and 

ecological uncertainty [Jager and Smith, 2008]. For the lower American River, environmental hedging also could 

include flow requirements of the Sacramento-San Joaquin Delta, flow requirements of the diverse fish assemblage in 

the Lower American River, including the summer streamflow requirements of steelhead. The model could also include 

groundwater interaction and banking opportunities, and multi-reservoir operation to hedge among several reservoirs 

to improve water supply efficiency. Extending the model to include a multi-year extreme event could provide insight 

into the intensity of hedging needed to maximize environmental benefits during extreme drought and flood. In short, 

a more comprehensive definition of Lower American River environmental benefits could also result in hedging with 

different timing and intensity. 

 

Implementing environmental hedging in practice can have barriers. If environmental flow laws are more stringent than 

the minimum streamflow needs of the fish population, or are inflexible and prevent hedging, releases will be forced 

to meet regulatory requirements, even if they tend to cause fish kills in late dry years. Without hedging, forced early 

releases can deplete available storage and harm overall fish survival in dry years. Sufficient water is available in 

Folsom to meet high priority human demand and environmental demand without violating the minimum streamflow 

constraint. However, in a more constrained system, or at a daily time step, water availability may be insufficient for 

environmental hedging and a multi-objective framework that curtails both economic and environmental goals is 

needed (e.g. Yang and Cai, 2011).    

2.7    Conclusions 

Sometimes the ideal is the enemy of the good. Developing an environmental benefit function and using this 

environmental hedging optimization approach provides a support tool with which to set and curtail environmental 

releases optimally in drier periods. Killing some fish early to preserve water in storage for later use effectively ‘hedges 

bets’ for the worst case low hydrologic conditions and can help to avoid later and larger fish kills. Curtailing releases 

in early stages can enhance survival of future life stages by increasing water in storage and lessening fish-water 

demand for the future by diminishing current fish population size. Both functions can be particularly important in 

drought.  

 

Compared to other operating policies, environmental hedging can help improve environmental performance without 

draining the reservoir while still meeting minimum carryover storage requirements and producing additional storage. 

The fish survival-streamflow environmental benefit function enables operational decisions to consider releases to 

support biological objectives, and to weigh trade-offs among storing or releasing water for different cohorts for 

different water year types and different storage limits. The hydrologic forecasting in the model can allow for realistic 

decisions based on long-term planning of an unknown future and short-term planning with adaptation as inflow 

information becomes known.  

 

Environmental hedging provides an adaptable framework for optimizing downstream releases for environmental 

benefits. The environmental benefit function could be based on different environmental flow methodologies using 

different biological or downstream targets such as habitat, insect and bird survival, groundwater recharge, or even a 

multi-objective model to benefit multiple species and/or ecological goals. However, the environmental hedging 

principles and mathematics would remain the same.  
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Because any initial hedging reduces releases for all later seasons, augmenting releases during the first period (which 

for fall-run Chinook in the lower American River is during the egg season (better redd than dead!)) has the greatest 

potential for saving more fish and water in storage than later seasons. Furthermore, since water storage is in effect 

hedged for the driest year, which has a low probability, excess water in storage often is available at the end of wet and 

even normal hydrologic seasons. Banking wet season surplus water in groundwater could offer additional reserves for 

human demand and free water supply to augment first period environmental releases.   

 

This paper quantifies the potential benefits and trade-offs of hedging reservoir operations for fish and other 

downstream environmental objectives. Environmental hedging has the potential to outperform other operating 

strategies for a range of cases using diverse fish population and water supply performance metrics. It is highly likely 

it would outperform traditional reservoir operating policy, such as historical operation of Folsom Reservoir. For 

example, saving stored water for later, and releasing less when it is known that some of the fish population has 

already suffered mortality can ultimately result in water allocations that save more fish and increase storage over an 

operating year cycle.  
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3 Temperature Management in Reservoirs
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3.1 Introduction to Temperature Management in Reservoirs

Dams impound the water of rivers thereby creating reservoirs for water storage, in which the water typically
stratifies, with the colder, higher density water on the bottom. This results in dramatic changes to the flow
and thermal regime of the impounded river. If warm water is released from the upper part of the reservoir,
it will result in a river that is likely warmer than under the historic flow regime. If the water is released
from the lower part of the reservoir, it is likely to be much colder than under pre-dam flows. Under either
release location, the composition of the assemblage of species below the dam will be affected. Temperature
has strong effects on survival, reproduction, development, and growth of each species. resulting in shifts in
species assemblages that can change the function and structure of the river’s ecosystem [Dallas, 2008]. The
changes are often undesirable from the perspective of ecosystem health and production of desirable species.
That is why managing reservoir releases for environmental purposes often is as much about water quality,
particularly temperature, as water quantity.

Thermal impacts from dams can be managed by: a) exploiting vertical temperature stratification in the
reservoir by selective water withdrawals (Figure 3.1) through vertically staggered outlet structures, or b)
artificially destratifying the reservoir prior to discharging water from the dam [Olden and Naiman, 2010].
The most common means of controlling dam release temperatures is selective withdrawal with a multi-
level intake structure (also known as a Temperature Control Device). Thermal impacts from dams can be
managed by: a) exploiting vertical temperature stratification in the reservoir by selective water withdrawals
(Figure 3.1) through vertically staggered outlet structures, or b) artificially destratifying the reservoir prior
to discharging water from the dam [Olden and Naiman, 2010]. The most common means of controlling dam
release temperatures is selective withdrawal with a multi-level intake structure (also known as a Temperature
Control Device).

Figure 3.1: Selective withdrawal structure. Reprinted from [Fontane et al., 1981].

A Temperature Control Device can extract water from selected depths of a thermally stratified reservoir
to produce more desirable water release temperatures [Price and Meyer, 1992]. Release temperatures are
increased by selecting warm epilimnetic water from the surface, or decreased by drawing cold hypolimnetic
water from below the thermocline [Olden and Naiman, 2010]. Despite the capital costs of installing multi-
level intakes, these structures provide a flexible means to modify downstream water temperatures, even at
low to medium release volumes [Sherman, 2000]. Controlling the opening and closing of shutter gates on
a Temperature Control Device controls coldwater availability in a reservoir, and, based on the timing and
magnitude of releases from each intake, the temperature and flow of the river downstream of the dam. Our
research investigates operation policies that take advantage of this flexibility.

3.2 Literature Review

A wealth of literature describes reservoir operations modeling objectives and policy performance metrics
[Loucks et al., 1981; Labadie, 2004]. Operations modeling for temperature control optimizes releases from
selective withdrawal intake structures [Fontane et al., 1981; Houghtalen and Loftis, 1989; Olivares, 2008;
Giuliani et al., 2014; Rheinheimer et al., 2014; Weber et al., 2017; Chaves and Kojiri, 2007; Soleimani et al.,
2016; Castelletti et al., 2013]. In these models, the selection of intakes for release during the stratified

26



season of a density stratified (e.g., holomictic) lake determines downstream temperature. If temperature and
volume are decoupled, then linear programming can find optimized temperature control releases [Rheinheimer
et al., 2014]. Coupled water quality-quantity models require non-linear modeling. Dynamic programming
often is used to solve the coupled models [Fontane et al., 1981; Carron and Rajaram, 2001; Castelletti
et al., 2013; Giuliani et al., 2014; Olivares, 2008]. Most of these analyses focus on the computational
approach for approximation and/or aggregation in dynamic programming (DP) to reduce computational
burden [Fontane et al., 1981; Olivares, 2008; Castelletti et al., 2013; Giuliani et al., 2014]. Fontane (1982)
developed an objective-spaced DP connected with a 1-D reservoir thermal simulation model. Olivares (2008)
solved a two-pool reservoir model with constant cold temperature and a nested optimization routine within
a multi-objective stochastic DP to optimize temperature releases during a stratified summer season. To
simplify the computation, Olivares (2008) discretized the outcome, state, and action variables with Chebyshev
approximation. Giuliani et al., (2014) and Casteletti et al., (2013) applied and designed an optimal control
policy for water quality and quantity optimization from selective withdrawal systems with a batch-mode
reinforcement learning algorithm, with the recursive solution of the Bellman equation approximated with a
series of non-linear equations (Fitted Q-Iteration method) to derive an optimal rule set for Tono reservoir
(12.4 ∗ 106m3) in Japan. These models developed insight, particularly computational insight, and optimized
temperature policy for one or more dams. None of these methods present the basic components of the
temperature control problem, and none of them optimize releases to support temporal persistence in river
ecology.

3.3 Approach

We propose a generalizable selective withdrawal modeling and optimization framework for managing tem-
perature releases from reservoirs and a new method for optimized long-term reservoir operations for tem-
perature or other water management concerns. Several new and traditional objective functions and solution
algorithms for finding optimized release schedules for temperature management are compared. Traditional
methods explored include determinisitc and stochastic dynamic programming and new methods are explored
with maximin dynamic programming. A maximin solution algorithm maximizes seasonal downstream tem-
perature benefit and minimizes the risk of environmental catastrophe via storage conservation, both within
seasons and across years with a maximin operator. Unlike previous models, the maximin operator restricts
releases to support temporal persistence and consistency in benefits. Although previous studies have ex-
plored the value of characterizing uncertainty in model inflow, with respect to both capturing temporal
persistence [Tejada-Guibert et al., 1995] and non-stationarity [Hui et al., 2018; Milly et al., 2008], no studies
have developed methods or tested the value of modeling the value of temporal persistence in downstream
performance (storage depletion, river habitat availability). This method can be useful for managing river
temperature to avoid the regrettable releases from storage and creating unsustainable downstream cold water
habitat. Maximizing the minimum cold-water habitat area over months in a year or a season should help
maximize the number of out-migrating salmon smolt in a river, but minimize the chance that maximizing
fish population size now damages fish populations in the future. With this approach, operations hedge to
sustain benefits, similar to hedging more broadly for other reservoir purposes like economic gain from hy-
droelectric power production or water delivery to agricultural uses, and, avert damage, similar to hedging
for flood management or water delivery to municipal drinking water supply. Here, we uniquely do both. We
maximize to sustain river flow and temperature throughout time and minimize to avert the risk of making
lethal or stressful releases for the downstream ecosystem. For river management, this is imperative; water
quality and quantity of the river and reservoir in one time step affects future quantity and quality in the
reservoir, the river, and the ecosystem populations. A numerical example finds benefit in hedging operations
with a maximin approach. This provides a method for prioritizing long-term ecosystem performance, which
is often sacrificed by maximizing short-term performance. This method could be useful for any purpose for
which it may be preferrable to hedge against risk now and in the future, both for flood and drought.
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3.4 Model Formulation

The generic problem is to maintain enough cold water pool and total storage at each time step and throughout
the summer to provide cold habitat downstream of the dam to support ecosystem function for the season
and future years. Like others modeling selective withdrawal optimization, dynamic programming is used as
the solver for this non-linear, multi-stage, dynamic allocation problem with cumulative benefits.

Here, we outline the basic model components and present model formulations here with a deterministic
outcome benefit and a recursive benefit function. Time-steps are monthly or sub-seasonal stages (S) that
maintain cold water below the dam, which often requires maintaining the reservoir’s cold water pool through-
out the summer. Temperature and flow are controlled by a set of decisions (A) that choose a release volume
(Rn) from each selective withdrawal intake (n). The state of the temperature (Tm) and volume (V m) at
each reservoir layer (m) for each stage (S) given the stage’s decisions, exogenous changes, and constraints is
modeled. Exogenous conditions (W) change the state of the system. Exogenous conditions could be climatic
from air temperature (T a) and inflow (Q), reservoir infrastructure limitations like the reservoir’s dead pool
(d) and carrying capacity (k), a proxy for heat exchange between the thermal layers (em), and/or down-
stream ecosystem temperature thresholds (TZ). Local complexity can be added as needed. Conservation
of mass and energy govern storage and temperature flux between layers, stages, and states such that state
transitions obey the laws of physics:

Mass is conserved : VS+1 = f(AS ,WS)

Energy is conserved : TS+1 = g(AS ,WS)
(1)

3.4.1 Model Components

Basic model components of the temperature control problem help operators decide how much water of dif-
ferent temperatures to release (decision variables) each month (stage) given the quantity of storage available
in the reservoir (state variables) for each stage’s disturbances and constraints from exogenous information
(weather forecasts and reservoir infrastructure limitations) to produce an optimal temperature management
solution (Table 3.1). Needed details are provided for the Shasta Reservoir - Sacramento River system. An
operational-scale model for the Shasta Reservoir-Sacramento River system can be found in Chapter 4.

Model Variable Definition Variable Name
Stage time (month) t
State warm storage & cold storage volumes V c, V w

Decision
warm and cold reservoir release volumes Rc, Rw

release volume R

Exogenous information

weather event probability p
inflow volume Q

climate conditions (e.g., ambient temperature) T a

reservoir infrastructure d, k
warm and cold pool temperatures Tw, T c

release temperature RT

initial cold and warm pool storage V w
t=initial, V

c
t=initial

Table 3.1: System Components for optimizing temperature control on large dams.

Stage (S) = t. Each modeled time-step is one month, the length of a typical reservoir operation planning
period.

State (K) = { V c, V w }. The state (volume) of incoming cold water pool storage V c
t and warm water pool

storage V w
t at the beginning of each stage t.
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Decisions (A) = { Rc, Rw, RT }. Cold and warm reservoir storage release volumes Rc,w
t are chosen to

optimize the overall objective for each state K of each stage t. Total release volume is the sum of the warm
and cold pool volume release R = Rc + Rw. Spill is included when needed.

Exogenous Variables (W)

� {pt, Qt, T
a
t }. Monthly weather is predicted from the joint probability p of historical reservoir inflow

(Q) and air temperature (T a) time series measurements such that pt =
∫
pQt ∗ pT

a

t .

� {d, k}. Reservoir volume must exceed the deadpool storage volume (d) but be less than the storage
capacity (k).

� {V w
t=initial, V

c
t=initial}. Optimal policies were formulated for the range of feasible initial cold and warm

pool storage volumes (0 ≤ {V c, V w} ≤ K) for a range of initial planning months (e.g., January,
February, April and May) given the limitations of reservoir capacity and deadpool storage.

� {Tw, T c = f(V c, V w)}. Reservoir pool temperature correlates with reservoir volume for Shasta Reser-
voir so temperatures are modeled as an alias of volume from a lookup table, rather than as an additional
state variable (see Chapter 4 for details). Without this correlation, warm and cold pool reservoir tem-
peratures would need to be modeled as additional state variables.

Figure 3.2: Average warm pool (left) and cold pool (right) temperatures for each combination of Shasta
Dam warm and coldpool storage (af/month) when the historical record of observations is discretized by 105

af.

� {RT }. Release temperature TR is the flow-weighted temperature of the releases [Rheinheimer et al.,
2014] from the reservoir’s cold and warm pools RT = Rc∗T c+Rw∗Tw

R .

� {P}. Spill is released when necessary to avoid floods.

� {V c
t=initial, V

w
t=initial}. are initial cold and warm pool volumes for the model’s first stage.

State Transitions Conservation of mass and energy regulate state transitions from the incoming states
of warm V w and cold V c pool volume storage to the end of period states of warm and cold pool storage
of each stage. For the Sacramento River-Shasta Reservoir system, state transition equations (storage ac-
cumulation) vary both by lake season (e.g., overturn, stratified, mixed) and climatic season (e.g., summer,
winter). The reservoir model blends two-pool and vertical layer modeling approaches to discriminate cold
and warm pool volumes. The cold, mixed season’s accumulated storage is based on a regression equation
decomposed from historical time series of pre-Temperature Control Device (1946 - 1993) measurements with
a Principal Components Analysis. Variables considered were the previous monthly reservoir and bypass
releases, reservoir storage, inflow and outflow, reservoir and air temperature, the Pacific Decadal and El
Niño-Southern Oscillation [Nickel et al., 2004].
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Basic Constraints
{Reservoir Volume Capacity Constraint}.d ≤ V c, V w ≤ k Total lake volume at the beginning and end of
each period must be within the reservoir capacity.
{ Conservation of Mass constraint for each reservoir temperature pool }. Conservation of mass and energy
govern storage and temperature flux in the reservoir and the river within periods V c ≥ Rc + ∆V c and V w ≥
Rw + ∆V w and between end of period V c

t = beginning of period V c
t+1.

3.5 Solution Algorithms

Three types of solution algorithms to optimize temperature control operation of large dams are compared
starting with the most simple, a standard operating policy, and then a more complex, with two variants
of dynamic mathematical programs (Table 3.2). The three solution algorithms consider immediate, or
immediate and future, or immediate, future and multiple benefits, by defining objective functions differently
- based on a combination of ranked net benefit, or net benefit, or direct habitat benefit. Increasing levels of
precision hedge on more factors and increase computational requirements. Trade-offs between the different
algorithms include choices between complexity and computational requirements. Each algorithm produces
the set of optimized decisions for each possible state of each stage that maximizes the objective. These
algorithms are solved at a discrete set of points, but we describe them without reference to the discretization
eventually employed. Benefits (B) are defined as the length of cold river habitat (x, e.g., for the Sacramento
River system, the river mile count below Keswick Dam below the temperature threshold)(Equation 2).

xt = Bt (2)

where xt is the river-miles of suitable habitat below the target.

Dynamic programs developed here employ backwards-solving dynamic programming. From the set of op-
timized decisions, the optimal policy O for each initial storage condition for each solution algorithm is
approximated with a forward-looking algorithm. The forward-looking algorithm travels through optimal
release decisions per state of each stage and grabs the optimal cold and warmpool release choice combina-
tion for the stage’s expected incoming storage. With this expected ’best’, or optimized solution, for each
incoming April storage state, we compare optimized policies among solution algorithms. We also compare
each solution algorithm’s converged stationary schedule, or in other words, the converged set of decisions
and expected states that maximize benefits across stages.
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3.5.1 Greedy Operating Policy

The first operating method presented here is the most elementary solution algorithm. A greedy algorithm
takes the minimum release volume that maximizes immediate benefits, without a direct concern for the future.
This method is not a dynamic program, but rather a proxy for representing a standard operating policy that
includes temperature management; this method is a baseline for comparing the other two methods. The
benefit of each release is a function of the reservoir’s incoming cold and warm pool storage volumes, releases,
weather, and the downstream temperature and distance objective (policy goal) (Equation 3). When the
standard operating policy model is formulated as a deterministic model, the state at the next stage is
completely determined by the release decision at the current stage. The resulting objective function is
solved deterministically for each of several water year types yt to maximize release decisions (Rw, Rc) given
volume availability from cold and warm pool storage (V c, V w), and inflow Q and air temperature T a, with
downstream distance xZ and temperature goals TZ .

Bt(V
c
t ,V

w
t ,Rw

t ,Rc
t) = max

minRc
t ,R

w
t

∑

t

Bt(V
c
t ,V

w
t ,Rw

t ,Rc
t , x

Z , TZ , Qt, T
a
t ,montht) ∨ yt (3)

Extending this approach, the expected benefit E{} from the stochastic standard operating policy implic-
itly models the range of cold and warm drought and flood water year types. With the stochastic model,
the state and release decision of each stage is not completely determined by the state of the current stage;
the states in the next stage result from a probability distribution of uncertain weather in the current stage
(Equation 4).

E{Bt(V
c
t ,V

w
t ,Rw

t ,Rc
t)} = max

minRc
t ,R

w
t

E
∑

t

pQTa
t [Bt(V

c
t ,V

w
t ,Rw

t ,Rc
t , x

Z , Qt, T
a
t , T

Z ,montht)] (4)

Maximizing only immediate benefits either with limited (probabilistic/stochastic) or perfect (determinis-
tic) weather forecasting, is myopic, but nonethless can provide rough insight into optimized policy schedules
with lower computational requirements.

3.5.2 Dynamic Programming

The basic dynamic program, solved with a backwards-solving Bellman’s equation, chooses monthly release
decisions at each stage expected to maximize net benefits - the direct immediate benefit of that release and
the benefit implications from release and storage decisions of the future. The net benefit (z) is the sum of the
current stage’s immediate downstream benefit Bt and the accumulated habitat benefits from optimizing all
later time periods, max

A
B∗

t+1(At, xt,Wt). The immediate benefit maximizes the benefit of a decision made

now, the accumulative benefit maximizes decisions that maximize the chain of direct benefits from each state
of each stage given this period’s decision. With the dynamic program, knowledge accumulates with time.
Model formulation could be stochastic or deterministic; here we display the deterministic (Equation 5).

z =
∑

t

max
A

(Bt + B∗
t+1(At, xt,Wt)). (5)

For the stochastic dynamic program, we employ an implicit stochastic dynamic program with uncertain
inflow and ambient temperatures rather than an adaptive control model with an explicit hydrologic variable
approximated by Bayes’ Theorem with a first-order Markov Chain because we are concerned with seasonal
planning goals, e.g., how much cold pool storage to release over an entire stratified season, an ideal October
carry-over storage target, or an ideal April beginning of season target, rather than specific release targets in
any given month. Risk is distributed and, with the recursion function, releases are allocated and curtailed
when benefits are greatest. Net benefit accumulates with time so this objective ultimately maximizes the
sum of monthly habitat values across stages such that:
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This standard stochastic dynamic program formulation is not formally constrained by temporal corre-
lation in the state of the outcome variables (e.g., providing cold river habitat). It assumes the resource
availability of the outcome variable (cold water habitat) is infinite and renewable at each time-step such that
overall outcomes can be summed across months in a season, independently of the state of the ecosystem
in the previous stage. While this is often the method used to solve temperature control problems, it has
shortcomings. With the exception of systems for which drought is a non-issue, and/or if somewhere a river
exists for which temporal correlation is unimportant (there is almost no system in the world for which this is
true), this unconstrained version of the temperature control problem, with this standard dynamic program,
with or without forecasting, is likely sufficient.

3.5.3 Maximin Dynamic Programming

For most reservoirs, storage is limited and the state of an ecosystem is related over time. There are at least
five reservoir conditions for which a standard dynamic program falls short because it does not adequately
capture long-term ecosystem health. Therefore a new method was developed that explicitly addresses these
concerns, specifically, for temperature control, with respect to:

� cold water pool scarcity

� total storage scarcity

� a small reservoir capacity that can not sustain warm water inflow without dumping significant cold
water reserves during the stratified season of a wet year;

� undefined downstream (temperature and distance) targets resulting in impossible to sustain large
releases, or ineffectual small releases;

� failure to consider correlation in ecosystem health between time steps (e.g., stressing an ecosystem with
inconsistent ecosystem support).

Four of these five circumstances are drought-related, when water storage is often a limitation; all five are
most pressing during extreme flood or drought years, or worse, years when flood and drought alternate.
The best approach may be formulations that, in addition to finding good policy behavior over time (as
with the general dynamic programming approach) may hedge explicitly to manage inter-annual reservoir
shortages with stronger ecosystem performance (temporal correlation) across months. The maximin approach
addresses these issues. The maximin approach hedges releases to maximize the minimum suitable habitat
area existing across all months. Worst-case outcomes are ordered to the beginning of time to eliminate
regrettable decisions over the longer-term (e.g., avoiding storage depletion and poor temperature months).
The standard dynamic program is modified to both minimize storage release decisions that lead to larger
future temperature problems and maximize sustainable benefits with a maximin objective function. Method
execution is a three step maximin process (Equations 7 - 9). First, unlike standard dynamic programs,
immediate benefits can not exceed sustainable future benefits. The first step takes the minimum of the
immediate and future benefits of each choice of each state. The value of the release in this period cannot
exceed the expected value of the optimized release made in the future period with this period’s outgoing
storage (Equation 7).
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Next, because there is no sense in creating temperature habitat in any one month that cannot be sustained
in future life stages (wasting stored water), if the benefits from the accumulated objective function (future
benefit) are less than the immediate benefit, current releases are reduced (hedged) to meet the lesser benefit
of the next period (except for a need to spill), saving cold water to improve future conditions, given that the
hedged release decision is feasible within the reservoir’s capacity constraint and expected weather conditions
(Equation 8).
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(8)

The final benefit (equation 7) for the current period then, is the maximum of the minimum expected
benefit of each state for each stage, with the set of monthly release decisions (Equation 8) for a range of
considered disturbances.
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This new approach caters to temporal persistence in the outcome variable and hedges against regettable
release decisions. By comparing it to a standard dynamic program, similar to [Tejada-Guibert et al., 1995],
who test the value of correlated temporal persistence in inflow, we test the effect of correlated temporal
persistence in outflow, and the value of developing operational models to conserve storage when temporal
persistence is violated, with respect to quantity and quality. We propose that hedging to release only when
temporal persistence can be preserved will improve river management. With this approach, releases hedge
to meet the best expected seasonal outcome across monthly stages and avoid the worst (Equation 8). When
necessary, releases are hedged to meet but not exceed the benefits of the worst month, starting with the
worst-performing month. In a practical sense, ordered hedging, until the worst has passed, conserves stored
water until cold water habitat can be sustainably provided through the end of a season. With this approach
we meet current downstream needs for the longest duration possible, without exceeding storage capacity or
the ability to meet future needs. Cold pool storage is released and reduced for the short-term, but not if it
will result in long-term scarcity. The logic of this mathematical sequence maximizes seasonal benefits and the
likelihood of providing cold river habitat, and minimizes the likelihood of having an empty reservoir and inter-
annual risk. Optimized policy solutions solved with the maximin objective function, when iterated over the
range of feasible initial cold pool storage conditions, finds the largest initial cold water storage pool volume
(e.g., of April of year 1) for which the reservoir can remain operational. Without the use of the maximin
objective function, an inflexible carryover storage constraint could rigidly force inter-seasonal conservation,
but building a model with this rigid constraint prevents learning about the worst-case conditions.
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Alternative hedging formulations could include a ’worst case’ state variable (xWCn), or, a state variable
that represents the current state of an outcome variable (e.g., cold water habitat) given the variable’s
performance in the previous period, without the maximin solution algorithm ([Adams et al., 2017]). Each
worst case cold water habitat benefit, n, (e.g., n=2 river miles) could be compared against the immediate
and current benefit. When the worst-case state variable performs worse than the current and immediate
benefit, the release is constrained to meeting the needs of the worst-case. Since the worst case state variable
does not represent additional exogenous information, including a worst case outcome state variable and a
maximin solution algorithm wastes computation time calculating infeasible options by exploring sub-optimal
results in which a theoretical worst-case is worse than the actual worst-case. Operating for this scenario
would needlessly over-constrain the system and could result in potential flooding; it also wastes computation
time. Nonetheless, we outline this formulation for which each stage’s minimum would be the minimum of
equation 7 and this worst case state variable (equation 10).
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Releases would be adjusted with equation 8, and then final benefit would be adjusted again with these
hedged releases, like in equation 7, and then the maximum computed:
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Since the worst-case state variable (xWCn) is not based on additional exogenous information, the worst
possible case given the system constraints is already captured by the minimization function of the current
and future benefits. For example, if the benefit is cold water habitat miles, than the worst case would be
a vector of feasible cold habitat miles outcomes. However, the system already solved for worst-case cold
water habitat miles for each decision variable, given the system constraints, so constraining the system by
a set of worst-case state variables is redundant - the worst-case cold water habitat will be captured by the
system constraints and the current and future benefits. Specifically, computation time is wasted for those
computations in the new action space for which:
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Similarly, having a state variable that serves as a proxy for the outcome variable (cold water habitat) and
the maximin solution algorithm is also redundant, optimized cold water habitat reach is already optimized
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with the maximin formulation, which already constrains the releases on the objective function. This dis-
sertation characterizes long-term operations with two methods - an additional state variable or a maximin
objective function - but avoids redundancy by avoiding implementation with both at once.

Maximin Dynamic Programs for Extreme Drought When severe drought is of significant concern
and the benefit function is convex with negligible flood damage potential, as in a protracted drought, then
extreme hedging can be warranted. In these cases, the likelihood of scarcity is so high the reservoir is operated
exclusively for drought, either with the stochastic dynamic program with hedging formulation (Equations 7
- 9) that considers only dry - extreme drought year water types, or with the determinstic maximin dynamic
program with hedging formulation with a water-year type of extreme drought. The stochastic version would
use the hedging procedures outlined in equations 7 - 9, but equation 7 would be replaced with the below
equation focused on dry times (wetter years omitted or assigned small probabilities).
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∨extreme drought ≤ yt ≤ drought

Maximin Dynamic Programs Managing Multiple Resources Sometimes a specific downstream de-
mand may be particularly high priority such that the objective function of temperature control is insufficiently
characterized by cold water habitat. In these cases, the objective function becomes a multi-objective function
to include additional exogenous conditions. This additional information could be anything, including fish
population size, agricultural shortage, or any number of other hydraulic, biophysical, spiritual, cultural, or
economic non-renewable or renewable objectives (F ) with specific monthly river requirements xF

t (Equation
14). Release decisions are then made in conjunction with cold water habitat goals. The additional objective
becomes an additional state variable and a component of the objective function. The expected benefit of this
additional state are modeled in two ways, depending on whether this additional information will consider
temporal persistence. A period’s fish population size depends on the fish population size of the previous
period, for example, or a farm’s profit from agricultural production (crop acreage) is likely dependent on
agricultural production of the previous period.

xF
t =

{∑
t p
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t Bt(N

F
t,N

F
t+1, Qt, T
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t ) if temporal persistence matters∑

t p
QTa

t Bt(N
F
t, Qt, T

a
t ) otherwise

(14)

Expected benefits (Equation 15), and consequently releases (Equation 8) are limited by the cold water
habitat demand of additional demand priority (e.g., fish population size/natural mortality) in addition to the
the cold water habitat afforded and demanded by the immediate and future benefit like the single-objective
maximin algorithm (Equation 7).
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Like single-objective maximin hedging, to avoid making regrettable unsustainable release decisions, if
the benefits from the accumulated objective function (future benefit) or the resource benefit function are
less than the immediate benefit, we constrain (hedge) current releases to meet the lesser more sustainable
benefit, given that the adjusted release is feasible within the reservoir’s capacity constraint and conservation
of mass, with equation 8.

The final benefit is a function of these hedged releases - hedged for the future, the past, cold water habitat
needs, storage, inflow, ambient conditions, the policy outcome goals, and this external consideration (e.g.
fish mortality, Equation 16).
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For this additional state variable to add value, fish population information needs to be available in time
for adaptive decision making (e.g., incoming adult population from the ocean or the precise location of
redds downstream). Without this added information, it could be argued, that like assigning weapons to
targets in military applications [Castanón and Wohletz, 2002], assigning water to fish below a dam is an
unreliable discrete resource problem. The precise outcome is unknown (which targets will be successfully
hit, where in the river the fish will naturally die or spawn) - and the lag time in receiving fish population
information exceeds the time at which information is needed for adaptive decision making. In this case, it
would make sense to maximize cold river habitat to the extent water is available (the current logic of the
maximin approach) as a single-objective problem to give the fish a greater chance of success, and because
the computational burden of additional state variables is expensive. So, if the information needed for
the addiitonal state variable, e.g., fish population size, is available, adding an additional state variable to
the objective function can provide additional internal slack upon which to hedge (e.g., negligible incoming
population size could lead to reducing or delaying cold releases for returning adults or a negligible redd
population count a distance downstream of the dam could result in diminished temperature and flow releases)
- all of which would result in reduced storage demand, otherwise this additional state variable is unnecessary.

Other examples of multi-objective problems (Equation 16) could be for the economic cost of shortage to
agricultural production (agricultural profit is mostly a function of flow and location - although, sometimes
water is so cold it hinders agricultural production) or to add a state variable for downstream salinity require-
ments. Hedging water deliveries for economic as well as environmental benefits would likely be operationally
beneficial.
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3.6 Numerical Examples

We present results from solving the temperature management problem in reservoirs with the three solu-
tion algorithm approaches (Figure 3.3) proposed here: a greedy standard operating policy (SOP), dynamic
programming (DP) and maximin dynamic programming (Maximin).

3.6.1 A Range of Weather Conditions

Results were solved with a range of perfectly forecasted deterministic weather types (with joint probability of
ambient temperature and inflow from the historical record of p = 0.01, 0.1, 0.5, 0.9, and 0.99), and stochastic
expectations of weather types (expected value, drought weighted, and extreme weather (drought and flood)
weighted) highlight patterns, strategy, and success in meeting temperature targets for each month for each
of the solution algorithms.

� The greedy standard operating policy (Figure 3.3a) meets river temperature requirements early in the
stratified operating season (April), but often runs out of cold and total water before the end of the
year, potentially causing ecosystem collapse for one year and potentially failure to carry over storage
for multiple years (a multi-year failure).

� The stochastic dynamic program (Figure 3.3b) operates to maximize net benefits, which means some-
times the program hedges early in the year and sometimes not. Sometimes running out of water later
in the year is optimal, other times hedging and intentionally missing downstream targets early in the
stratified season is optimal - because the function maximizes net benefits, but does not force an order
on the benefits, so they sometimes occur later and other times earlier, within an operating season.

� The maximin dynamic program (Figure 3.3c) hedges to maximize net benefits like the dynamic pro-
gram, but will order failures at the beginning of the year, thereby conserving stored water, in particular
cold water. Risk is taken at the beginning of the season to minimize seasonal, yearly, or multi-year
failure. The recommended April release curtailment to meet the long-term goal also tion of how an
operator could prepare for a worst case, the expected carryover storage at the end of a season, and
how low the reservoir total and cold pool storage could be before it becomes impossible to sustain one
year-class of fish.
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3.6.2 Worst-case Scenarios

Next, comparisons are made under dire conditions with a) low initial April storage conditions and a fore-
cast of extreme dry and hot drought (Figure 3.4), b) low April incoming storage and limited forecasting
(probabilistic/stochastic) of extreme weather (Figure 3.5) and c) all incoming April storage possibilities with
limited forecasting (probabilistic/stochastic) of extreme weather (Figure 3.6) Extreme weather is modeled as
a 90% chance of drought and a small expectation of extreme flood. This captures difficult drought conditions
as well as the worst of the worst cases, in which an operator expects significant wet, cold inflows (and lowers
reservoir levels for floods) but instead receives dry inflows (potentially intensifying a drought down river).
Because of the intensified draw-down, this worst-case scenario could result in potentially worse performance
than operating with perfect foresight for a drought. Our numerical example for Shasta reservoir creates
cold water habitat below Keswick Dam with a coarse resolution scale (grid size = 400 taf/6,700 cfs). With
this coarse resolution, release choices are large and consequential. For example, to make minimum monthly
releases (independently of the temperature of those releases) between April and March, requires 4.8 maf -
an extremely impactful volume of water relative to that required, for example, to meet minimum monthly
releases, for example, with a grid scale of 106 af - 1.2 maf. Moreover, in an extreme drought year Shasta
reservoir receives only about 2.8 maf. Therefore, in a drought, with this coarse resolution, some monthly
failure is inevitable. In a sense, these different solution algorithms, like all optimizing solution algorithms,
optimize the timing and the magnitude of that failure. A bottleneck occurs for all approaches between
May and July when temperature targets are most difficult to meet. Details of finer resolution results for
optimizing Shasta releases for the Sacramento river as well as Sacramento river temperature requirements
are in Chapter 4.
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Low Incoming April Storage with perfect (deterministic) hydrologic and temperature fore-
casting knowledge of extreme drought Likely annual release and end storage volumes (taf) for the
Shasta Dam - Sacramento River system operated with perfect foresight of an extreme drought (exceedance
probability p = 0.01) and initial April storage condition at the beginning of the planning cycle of 1.2 maf.
Model results are coarsely gridded, at a scale of 400 taf, to illustrate and compare methods and general
concepts and trends - not for operations.

Seasonal Cold pool Annual (Apr - Average End of Year
Solution Algorithm Storage Depletion Total Annual Mar) Cold Pool (March) Storage

(April 1 - Oct 31) Releases Releases (All Cold)
Greedy SOP 1200 2000 1200 0

DP 0 2000 1600 400
Maximin DP 0 2000 1600 400

Figure 3.4: Probability of meeting the monthly temperature target for the Shasta Dam - Sacramento River
system operated with perfect foresight of extreme drought (exceedance probability p = 0.01) and initial April
storage condition at the beginning of the planning cycle of 1.2 maf with a greedy standard operating policy
(SOP), dynamic program (DP), and maximin dynamic program (Maximin DP). Model results are coarsely
gridded, at a scale of 400 taf/6,700 cfs.

With this scenario, the same result is prescribed by the dynamic program and maximin dynamic program;
significant hedging at the beginning of the planning cycle must occur to avoid long-term collapse. Both the
dynamic program and the maximin result in end of year cold storage because they hedge early since more
net months can have high cold water habitat length if releases are conserved at the beginning of the year.
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Low Incoming April Storage with limited forecasting of extreme weather Here we model the
same incoming storage for April of 1.2 maf, but with limited forecasting (stochastic). Forecasting for this
illustration is weighted heavily towards the expectation of extreme drought (joint probability of hot and dry
weather with p = 0.9) or flood (joint probability of a smaller cold and wet flood p = 0.01) or extreme flood
(p = 0.09).

Seasonal Cold pool Annual (Apr - Average End of Year
Solution Algorithm Storage Depletion Total Annual Mar) Cold Pool (March) Storage

(April 1 - Oct 31) Releases Releases (All Cold)
Greedy SOP 1200 2000 1200 0

SDP 0 2000 1200 0
MaximinSDP 0 2000 1600 400

Figure 3.5: Probability of meeting the monthly temperature target for the Shasta Dam - Sacramento River
system with limited forecasting of an extreme event - likely an extreme drought (with exceedance proba-
bility of p=0.9 from dry and hot), with initial April storage of 1.2 maf with a greedy standard operating
policy (Greedy SOP), stochastic dynamic program (SDP) and maximin stochastic dynamic program (Max-
iminSDP). Model results are coarsely gridded, at a scale of 400 taf/6,700 cfs.

Even though all three solution algorithms meet the temperature target with the same frequency, the
maximin dynamic program uses less cold pool storage and ends with more cold pool storage than the greedy
standard operating policy algorithm and the dynamic program. Having end of period cold pool storage
helps prevent multi-year problems. Here, only the maximin conserved cold water pool, the dynamic program
releases early for the big flood benefits, regardless of long-term consequence.
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All incoming April storage possibilities with limited forecasting knowledge of extreme weather
Likely storage and end volumes (af) for the Shasta Dam - Sacramento River system for a range of weather
conditions with higher weight given to extreme drought (p=0.9 to dry and hot) and the remaining probability
for extreme flood, for the full range of initial April storage conditions (0 to full capacity) at the beginning
of the seasonal planning cycle. Model results are coarsely gridded at a scale of 400 taf/6,700 cfs.

Seasonal Cold pool Annual (Apr - Average End of Year
Solution Algorithm Storage Depletion Total Annual Mar) Cold Pool (March) Storage

(April 1 - Oct 31) Releases Releases (All Cold)
Greedy SOP 1850 3200 2400 0

SDP 1850 3200 2400 0
Maximin SDP 730 3160 2550 440

Figure 3.6: Probability of meeting the monthly temperature target for the Shasta Dam - Sacramento River
system for a range of weather conditions with higher weight given to extreme drought (p=0.9 to dry and
hot) for the full range of initial April storage conditions (0 to full capacity), at the beginning of the planning
cycle at a scale of 400 taf/6,700 cfs.

Here, the value of ordering risk makes a difference; the maximin dynamic program outperforms the
dynamic program and the standard operating policy.
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Value to Fish and other Wildlife Because the maximin solution algorithm hedges against inter-annual
risk and does not make releases unless the value of the release is better or equal to expected future releases;
ideal cold water habitat conditions are only provided for fish if they can be sustained over time. For
anadromous fish, such as the Winter-run Chinook in the Sacramento river, this means that without hedging
(with the greedy standard operating policy), if unsustainable volumes of water are released for all delivery
purposes, including temperature, early in the season (May - July), there might not be enough water to
sustain the large population saved earlier in the year as they develop into juveniles, and then for the next
year, should a multi-year drought occur. When looking at results when releases are made with this large
grid size, it seems that this could be what happened in 2014-2016 during California’s recent drought. ”Flows
released early in the season (May-June), encouraged adults to spawn over a wide area below the dam.
However, flows then abruptly decreased in July and August because of the depleted cold-water pool in the
reservoir, resulting in extremely high mortality rates of developing embryos, presumably from a combination
of warmer temperatures and reduced hyporheic flow, reducing oxygen delivery to embryos (Martin et al.
2017). An additional impact of Shasta and Keswick Dams has been coarsening of the substrate in spawning
areas from large releases from the dam. Such releases move spawning gravel downstream, while preventing
new gravel inputs from upstream (Stillwater 2006). This has decreased available spawning habitat over time
and requires continuous gravel augmentation in the reaches below the dams for spawning habitat [Moyle
et al., 2017].” Here, we simulate fish flow releases at a coarse grid-scale for the illustrative purposes for the
Sacramento River below Shasta Dam.

Expected Fish Expected Cold Expected Total
Survival (% population) Storage (maf) Storage (maf)

month SOP Maximin DP SOP Maximin DP SOP Maximin DP

April 100 18 2.4 2.4 2.4 2.4
May 100 18 2.4 2.4 2.4 2.7
June 91 18 2.1 2.3 2.4 3.0
July 82 18 1.8 2.1 2.0 2.9

August 82 18 1.5 2.1 1.7 2.7
September 73 18 1.3 2.1 1.3 2.5

October 64 18 1.0 1.9 1.0 2.2
November 55 18 0.8 1.7 0.8 1.9
December 45 18 0.5 1.6 0.5 1.6

January 36 18 0.4 1.2 0.4 1.2
February 27 18 0.2 0.8 0.2 0.8

March 18 18 0.1 0.4 0.1 0.4
EXPECTED FINAL 18 18 0.1 0.4 0.1 0.4

Table 3.3: Expected proportion of fish population to survive (based on frequency with which temperature and
flow targets are achieved) and expected cold and total reservoir storage (maf), per month. Fish population
is proportional to the minimum success of meeting the temperature and flow target, over the course of the
year.

In a drought, without hedging, releases can save many eggs (May - July), but deplete water to sustain
the fish as juveniles (September - February), such that the fish die. Early cold water releases, in effect, were
”wasted,” which affected fish and other water users downstream from curtailments and storage depletion.
Because of these trade-offs, ”management of the cold water releases from Shasta Dam was among the most
controversial of all water issues in the state [Moyle et al., 2017].” In policy terms, saving fish, because of their
legal status, can be expensive. Here, the same proportion of the fish population is saved but less storage is
required to save the fish with the maximin dynamic program than with the standard operating policy.
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3.7 Discussion

The logic of the mathematical models used here is similar to the logic of financial hedging, a risk man-
agement technique used to offset substantial financial losses and gains in exchange for stability. Hedging
can occur with many different methods on many different factors. In reservoir operations, hedging poli-
cies have been analytically and numerically demonstrated beneficial for managing flood damage[Hui et al.,
2018] and increasing economic benefit [Draper and Lund, 2004; You and Cai, 2008a,b], energy production
[Tejada-Guibert et al., 1995], and downstream environmental benefit [Adams et al., 2017], particularly when
shortage and scarcity are of concern. In each case, hedging incurs a small certain loss now to reduce larger
future risks, e.g., intentionally releasing small floods to avoid large ones, or conserving some storage and
causing some immediate shortage to avoid deeper drought. We borrowed from this literature and adapted
two traditional operational conditions that encourage reservoir hedging:

� A1. a concave function of (approximated) release benefits [Draper and Lund, 2004]; and

� A2. substantial probability of persistent drought [Klemeš, 1977].

We further define the advantages of different formulations of the benefits function for temperature manage-
ment in reservoirs with:

� B1. defined policy goals (e.g., a monthly distance and temperature threshold that designate cold water
habitat);

and add one variant that encourages hedging not just for benefits and against difficult weather, but also to
avoid inter-annual risk from storage depletion or failure to meet seasonal temperature goals:

� B2. maximin behavior, that maximizes monthly downstream benefit and minimizes the possible loss
of the worst-case month.

(B1) turns the policy goal into a function of the diminishing margin of cold habitat river length over time,
given release temperature and flow. Optimizing release decisions to meet this concave function (A1) hedges
seasonally available cold water pool so that benefits are allocated when release value (cold habitat length)
is greatest and curtailed release value (cold water habitat) is least. Reducing wet-cold releases to con-
serve storage supports both seasonal and inter-annual operations, should persistent drought occur (A2).
Implementation of one or more of these approaches, with one of the three solution algorithms outlined in
this paper, results in hedging on different factors and time-scales (Table 3.4). Of the three solution algo-
rithms, only the maximin (B2) avoids regrettable decisions and hedges not just with weather and release
flow and temperature, but also orders all risk to the beginning, encouraging the system to further hedge
inter-annually, thereby reducing large multi-year catastrophes. Therefore, the maximin performs best with
respect to long-term storage and river management goals.
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The greedy standard operating policy makes releases to meet the current value of the benefit function
(here, cold habitat distance and temperature) given water availability from weather and incoming conditions.
The dynamic programs try to meet this current target, but also hedge against risk by maximizing net benefits
across the duration of the year. The maximin approach hedges for current yearly net benefits like the
dynamic program. The maximin hedges further for inter-annual benefits by reducing monthly performance
so no month exceeds expected performance of any month. In some sense, all of these algorithms hedge for
fish (and therefore other ecosystem benefits): they support fish-specific habitat distance and temperature
requirements, weather conditions, and flow and temperature goals both seasonally, inter-annually, and within
year-classes.

3.8 Limitations

Model results are coarse in this chapter; chapter 4 addresses this limitation. This study could benefit from an
analytical derivation of the cost-to-go functions of the dynamic programs and the greedy algorithm for this
temperature control problem. Sensitivity analysis is expensive in dynamic programming, but could provide
insights.

3.9 Conclusions

Current literature on reservoir operations and environmental flows neglect temporal persistence in outcome
variables (here, cold water habitat miles and ecological conditions) even though ecosystems have memory and
reservoir storage and wildlife survival processes are almost always correlated across time steps. If one month’s
reservoir releases make a river uninhabitable and deplete river species, or if a large cold release is made that
depletes cold water reservoir storage, future ecological outcomes and reservoir operational flexibility will be
affected. Behavioral economics describes managing this problem as ”regret avoidance” for which an agent’s
current decisions have a backward looking component that ”avoids information which threatens to cast a
past decision into an unfavorable light [Krähmer and Stone, 2005]” such that ”you should choose the option
that minimizes the regret you will feel at the end [Halpern and Leung, 2016].” We adapt this idea to reservoir
operations - that an operator will ”regret” ”wasting” cold water from storage if later period releases have
less benefit. To avoid regrettable decisions, we apply a maximin operator to the objective function. We
maximize the minimum of the intermediate and future benefit. We minimize releases, specifically targeting
cold water releases, required to obtain the maximum benefit.

Operating with regret avoidance conserves cold pool storage as well as total storage until releases can
be made with outcomes that are likely sustainable over time. Hedging storage and releases is predicted to
improve cold water habitat be making it consistently available for longer seasonal and inter-annual time
periods. The methods developed here will provide a natural variation in temperature below a dam (with the
benefit function), a river that flourishes when it can be sustained (Equations 7 - 9), adaptive management
guidelines to support choosing an optimal cold and warm pool volume release decisions for any cold and
warm reservoir state of any month (Equation 8), and a means by which to approximate a critical threshold
for abandoning operations of a year, a season, or a month (when the prescribed optimal release is zero
because releasing any incoming storage cannot be sustained for the long-term). This method leverages the
certainty that a release will have a downstream effect, rather than focusing exclusively on uncertainty in
weather or human decisions (reservoir release choice). Implementation of this method may require courage.
Although in principal it is risk averse and minimizes the probability that an operator will make a regrettable
release decision, it is a novel approach that deviates from the greedy standard operating policy and incurs
some immediate losses. The mathematics and logic of such cold water hedging operations can be related
more directly and conventionally to reservoir hedging for water supply, hydropower, drought management,
and flood control.
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4 Temperature Management of the Shasta Reservoir-Sacramento
River System
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4.1 Introduction to Temperature Management of the
Shasta Reservoir - Sacramento River system.

Shasta Reservoir is California’s largest reservoir (4.55x106af/5.5km3). Since construction of the dam was
completed in 1945, it has impounded water from the 6,650 mi2 (17,224 km2) catchment of the upper
Sacramento, McCloud, and Pit rivers. Shasta Reservoir has a maximum depth of 445ft (136m) and water
residence times of 0.3 to 1.3 years, depending on reservoir level and inflow. Shasta Reservoir is classified as
a warm monomictic lake [Rettig and Bortleson, 1983; Bartholow et al., 2001] with cold and mixed winter
and early spring seasons followed by a summer with warm inflows, warming air temperatures and a stratified
warm and cold pool. In the fall, inflow is again cold; the colder, denser, fall inflow sinks in the lake causing
”overturn” which the lake mixes to become fully cold for winter. The tributaries to the Sacramento River (the
Sacramento, McCloud, and Pit Rivers) are cold snowpack and glacial-fed rivers. Inflow to Shasta reservoir,
while not insignificant during summer, is mostly from winter rain and spring snowmelt between November
and May; by April, the reservoir has received almost all expected inflows. This change in temperature
regime and flow, from the creation of this large lake, had significant impact downstream and for California
in general, including on the California water economy.

Figure 4.1: Shasta reservoir inflow (taf/month) and ambient temperatures (F) with a joint probability that
is exceeded (inflow) and deceeded (temperature) with frequency of 0.99 (black), 0.9 (green), 0.5 (royal blue),
0.1 (light blue), and 0.01 (pink).

Construction of Shasta Dam severed migratory access and river connectivity between the upstream
tributaries and the lower mainstem of the Sacramento river. This affected many migratory species; denying
access to historic spawning ground above the dam and reducing the abundance of four thriving salmon runs.
To compensate, Shasta Dam operations are legally obligated to replace historical spawning and rearing
habitat that was above the dam, below the dam, so that fish downstream of the dam are in good condition
[NOA, 2016] and water is supplied downstream for Delta salinity repulsion. Monitoring for this mandate
occurs at several downstream locations (Figure 4.2).
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Figure 4.2: The Sacramento river below Shasta reser-
voir. Dots are Sacramento River Temperature Gauge
Locations. An additional gauging station exists at the
confluence of Clear Creek and the Sacramento River.
Figure reprinted with permission from [Pike et al.,
2013].

To support this legal mandate and to im-
prove fish and wildlife conditions below the
dam, a selective withdrawal intake structure
(temperature control device) was installed at
Shasta Dam in 1997 for $80 million. The
temperature control device has 18 water in-
takes at five elevations so water can be pulled
from multiple combinations of heights along
the lakes temperature profile to better regu-
late temperature and flow downstream in the
Sacramento River when the lake is stratified
in summer and early fall. The tempera-
ture control device has improved river habi-
tat for fish, but problems still exist in drier
years. In summer 2014 95% of California's
Winter-run Chinook salmon died below Shasta
Dam [Vogel, 2016] due to low reservoir in-
flows, instrument failure, and high tempera-
ture releases [NOA, 2016]. Financial and po-
litical will support improvement of the situa-
tion. The Winter-run Chinook are a feder-
ally listed Endangered Species, and (under the
1973 Endangered Specie Act), receive highest
priority protection [act, 1973]. To support
this endangered species and reduce their wa-
ter supply demands (potentially avoiding month-
long irrigation water curtailments to support
fish-flows), the Glen Colusa Irrigation District
spent $300,000 on a fish habitat enhancement
project [GCID, 2016]. Congress appropriated
$20 million in March, 2018 of an estimated
$1.3 billion project to raise Shasta Dam to
enlarge cold water storage capacity [Lochhead,
2018] for Winter-run Chinook below Shasta
Dam.

4.2 Approach

We use optimization to build rules and release schedules with this new temperature operations model, OTM2
(Optimized Temperature Management Model), to determine how much cold water should be released and
stored throughout the year from Shasta reservoir to support downstream Sacramento river environmental
objectives and reduce water curtailments for all downstream diverters including for agriculture, bird sanc-
tuaries, and the Delta. Different operational approaches (e.g., downstream temperature, distance, solution
algorthm and objectve function) were compared over one and many operational seasons (a ”season” often
refers to one water year, because temperature concern occurs mainly in the stratified season of a year) for
the Shasta Dam-Sacramento River system. Computational burden for this large and complex problem was
reduced by aggregating the model’s state, action, and outcome spaces and approximating state variables
based on physical and statistical principles. Results provide insight into different dynamic programming
methods and different policy objectives for selective withdrawal systems. Release decisions were constrained
so no month performed better (on average) than the previous month to hedge against catastrophe for one
and many year-classes of Winter-run salmon. Resulting monthly operational management policies can hedge
downstream river temperature and storage between and within time steps, seasons, and years. Results offer
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an application of methods and theory for temperature management in reservoirs (see Chapter 2 for details)
demonstrate the value of hedging with a maximin objective function and offer some policy, regulatory, and
operational insight for Shasta reservoir and Sacramento river management.

4.3 Temperature Modeling

Most temperature withdrawal system research to date is descriptive, not prescriptive - describing the effects
of using temperature control devices rather than prescribing desirable temperature control. Simulation
models are employed to predict the effects of different factors such as aquatic biogeochemistry of lakes
on temperature management within or below a reservoir [Beard and Willey, 1970; Price and Meyer, 1992;
Nandalal and Bogardi, 1995; Hanna, 1999; Bartholow et al., 2001]. In these cases, management of selective
reservoir withdrawal involves jointly managing releases and storage for three sub-systems: the reservoir
water (storage and temperature), the river (temperature, flow, and downstream ecosystem function and
targets), and operations modeling of release decisions (timing, magnitude, and intake). For a review of the
optimization literature on selective withdrawal systems, see Chapter 3.

Reservoir Modeling Temperature modeling of the reservoir and the river can be physical, empirical,
or a mix of empirical and physical approaches. In all cases, however, the modeling strategy is based on
conservation of energy (Equations 1 - 2). In a mixed lake, heat exchange with the atmosphere and from
incoming waterflow dictate temperature. In a well-mixed stratified lake atmospheric heat exchange governs
the temperature during the stratified season as well as contributions from the hypolimnion and incoming
flows.

Accumulation = Sources - Sinks (1)

Accumulation = Inflow - Outflow± Surface Heat Exchange + Vertical Transport

V wρCρ
dTw

dt︸ ︷︷ ︸
accumulation

= qinρ CρT
in(t)

︸ ︷︷ ︸
inflow

− qinρCρTw︸ ︷︷ ︸
outflow

± JAs︸︷︷︸
surface heat exchange

+ vtA
LρCρ(T

c − Tw)︸ ︷︷ ︸
vertical transport

(2)

Cρ = specific heat (cal/g °C)
ρ = density (g/km3)
As = surface area of the lake (km2)

Quantifying each of the terms of the surface heat flux J :

Jt︸︷︷︸
surface heat flux

= Jsnt + Jant − (Jbrt︸ ︷︷ ︸
radiation terms

+ Jct + +Jet )︸ ︷︷ ︸
nonradiation terms

(3)

Jsnt = net solar radiation
Jant = net atmospheric longwave radiation
Jbrt = longwave back radiation from the water
Jct= conduction
Jet = evaporation
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with net atmospheric longwave radiation:

Jant = σ(T at + 273)4(A+ 0.031ea
1
2
t )(1−D) (4)

where
σ = Stefan-Boltzmann constant = 4.9x10−3 J(m2dK4)−1

A=a coefficient (0.5 to 0.7) (e.g., 0.6)

eat = vapor pressure in overlying air (mmHg) = 0.6(4.596e
17.27∗Tw

t
237.3+Tw

t )
D = reflection coefficient = 0.03

longwave back radiation:
Jbrt = εσ(Twt + 273)4 (5)

ε =emissivity of water (approx 0.97)

conduction:
Jct = c1f(Ut)(T

w
t − T at ) (6)

c1 =Bowen’s coefficient = 0.47mmHgC−1

f(Ut) = 19.0 + 0.95U2
t with Ut =wind speed (ms−1) at a fixed distance (e.g., 7m) above water surface

evaporation:
Jet = f(Ut)(est − eat) (7)

est =4.596e
17.27∗Tw

t
237.3+Tw

t

Within the literature, the empirical approach builds a conceptual two-pool model and the physical ap-
proach models more physical processes with more layers. The two-pool approach simplifies the reservoir into
two completely mixed thermal layers; a lower hypolimnion (cold pool) with constant temperature and an
upper epilimnion (warm pool) with either constant temperature [Rheinheimer et al., 2014] or an externally
driven warming rate [Olivares, 2008]. When included, the metalimnion (the layer that transfers heat be-
tween the cold and warm pools) is a constant based on historical observations [Olivares, 2008; Rheinheimer
et al., 2014]. In contrast, when modeling a many-layered system, the model is usually a vertical profile cali-
brated with a computationally and scientifically intense 1-D model such as DYRESM [Nandalal and Bogardi,
1995; Giuliani et al., 2014; Weber et al., 2017] or WESTEX [Fontane et al., 1981], with 2-D hydrodynamic
and water quality software such as CE-QUAL-W2 [Bartholow et al., 2001; Soleimani et al., 2016], or with
1-D hydrodynamic-ecological software, such as DYRESM-CAEDYM Castelletti et al. [2013]. In all cases
temperature and water volume are coupled.

Downstream Ecosystem Goals The fate and heat transport of temperature in a river are described by
a three-dimensional advection-diffusion equation.

∂T

∂t
+ ux

∂T

∂t
+ uy

∂T

∂t
+ uz

∂T

∂t
=

∂

∂x
(Dx

∂T

∂x
) +

∂

∂y
(Dy

∂T

∂y
) +

∂

∂z
(Dz

∂T

∂z
) +

JAs

ρCρVx
(8)

Because of the large width to depth ratio of rivers downstream of a dam with selective withdrawal intake
structures, and the long time-scale over which selective withdrawal temperature problems are analyzed, it
can often be assumed that temperature in the river is fully-mixed in the vertical and lateral directions. Then
the river modeling problem needs to consider only the one-dimensional transport of temperature down the
river, i.e., changes in riverflow temperature depend largely on the net heat flux of the air-water interface J
and the advection of the temperature as it moves downstream ∂T/∂x.

∂T

∂t
+ ux

∂T

∂x︸ ︷︷ ︸
longitudinal diffusion

=
JAs

ρCρVx︸ ︷︷ ︸
net heat flux

(9)
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For selective withdrawal optimization models, river temperature goals are often modeled as constant targets
at the point of release. Deviations from these targets are penalized [Fontane et al., 1981; Castelletti et al.,
2013; Rheinheimer et al., 2014]. Rheinheimer et al. (2015) and Carron (2001) extend these targets to include
riverflow. Rheinheimer et al., (2015) developed flow networks and penalized cost-weighted deviations of
streamflow release at each river reach for each time step. The targets of Rheinheimer (2015) are the constant
minimum and maximum habitat temperature requirements of the rivers indicator species. Carron (2001)
built a one-dimensional, nonlinear, unsteady representation of river hydraulics and stream temperature that
can forecast the system state and forcing variables to manage river temperature downstream of the reservoir
with 1-2 days warning time. A Principal Components Analysis developed by Guiliani (2014) maximizes
ten socio-ecological objectives of a multi-objective model in both the reservoir and downstream including
temperature, irrigation, reservoir level, sedimentation and algal blooms.

4.4 Methods

Previous literature and approaches were extended to model the three components of the Shasta Dam-
Sacramento River system: lake temperature (Shasta Lake), river temperature (the Sacramento River), and
operation decisions (Shasta/Keswick Dam operations) to develop optimized temperature management policy
and insight.

4.4.1 Solution Algorithm

We solve the temperature control problem to explicitly allow hedging against the risk of catastrophic failure
- by failing to deliver cold water habitat and intentionally causing small damage now to avoid depleting
the reservoir and causing long-term environmental and economic damage. To achieve this goal, we built
a maximin dynamic program to allocate downstream temperature and flow with a low risk strategy. See
Chapter 3 for mathematical formulation and further details. As the season progresses, optimized release
decisions from the maximin dynamic program provide downstream cold water habitat in equal or worse
proportion than expected future cold water habitat - but not better. With this approach, the worst-case
situation dominates, the system hedges for risk, and catastrophes, especially drought-related catastrophes,
are reduced. Hedging releases with the maximin approach is a three step maximin process (Equations 10 -
12)(See Chapter 3 for details). The first step takes the minimum of the immediate and future benefits of
each choice of each state. The value of the release in this period cannot exceed the expected value of the
optimized release made in the future period with this period’s outgoing storage (Equation 10).
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Next, because there is no sense in creating temperature habitat in any one month that cannot be sustained
in future life stages (wasting stored water), if the benefits from the accumulated objective function (future
benefit) are less than the immediate benefit, current releases are reduced (hedged) to meet the lesser benefit
of the next period (except for a need to spill), saving cold water to improve future conditions, given that the
hedged release decision is feasible within the reservoir’s capacity constraint and expected weather conditions
(Equation 11).
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t =
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(11)
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The final benefit (equation 10) for the current period then, is the maximum of the minimum expected
benefit of each state for each stage, with the set of monthly release decisions (Equation 11) for a range of
considered disturbances.
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4.4.2 Computation Time

Dynamic resource allocation problems, like this temperature control problem, are a type of dynamic program
that suffers from all three ”curses of dimensionality”: dimensionality in the action space (decision variable),
state space, and outcome space [Powell, 2007], so model computation is intensive and required approximate
dynamic programming (Table 4.1). Computation time was reduced by narrowing the problem definition
to a level of sophistication suitable for policy objectives, empirically modeling hydraulic, temperature, and
ecological processes, and employing approximate dynamic programming to coarsen the state, stage, and
decision variables. These approaches reduced the modeling requirements by a factor of about 6, 272L per
stage, with L being the count of discretized choices of state variables (state and decision variables, and con-
sequently outcome variables, were approximated by discretization; continuous state and action spaces were
replaced with a grid.) Given the capacity of Shasta reservoir (approximately 4.6 maf) with an operationally
relevant discretization of 100 taf, L = 46; these approximated steps reduced computational requirements by a
factor of 6, 27246/stage. State variables were reduced by 2L because reservoir temperatures were found to be
well-characterized as a well-correlated alias of pool volume, rather than as explicit additional state variables,
and another (n− 2)L because releases were from a two-pool (cold and warm pool), not a many-layered (n)
pool reservoir model (e.g., HEC-5Q). River temperature was statistically imputed with a Generalized Linear
Model rather than computed from state variables, which reduced the computational time by a further factor
of at least 2L. Lookup tables for climate (air temperature and inflow based on exceedance probability and
month) and cold and warm pool temperature (and consequently release temperature given storage cold and
warm pool volume), coupled with the river temperature GLM approximate the value of release choices (cold
water habitat miles) and operationalize these approximations and aggregations. Modeling releases as a func-
tion of volume, with two choices of either warm or cold pool, without specifying exactly from which shutter
gate from which an optimal release should come - in part because some shutter gates on Shasta Dam are
partially stuck - reduced model demands by another factor of (16−2)L. Final release therefore, is the sum of
two release choices not 16, and release temperature is the weighted average of two choices not 16, reducing
the model by another 28M with M being the count of discretized release choices of M = discretization of L,
100 taf.

The continuous state and decision spaces of this reservoir problem were aggregated into a smaller number
of discrete approximations at several grid sizes. Grid size choice can affect results; larger grid cells result in
more extreme storage fluctuation and larger releases; spill occurs more often, and minimum releases cause
larger storage deficits. Grid size is particularly impactful in flood years, for years with an expectation of both
flood and drought, and years that receive either large volumes of rain but little snow, and years that expect
a flood but actually receive a drought, because of the positive skew in inflow expectations. Nonetheless, a
coarse model with the largest discretization size (one maf) was used to explore policy objectives and build
the code. The historical minimum reservoir release (1987 - 2017) was 2,554 af/mo (43 cfs); 4,431,537 af/mo
(74,605 cfs) was the maximum. The bulk of historical monthly releases exceed one maf. The final model has
a discretization size of 100 taf, which is less than most monthly release records from Shasta, and sufficient
for monthly planning.
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Decision space dimensions vary by month; some months have fewer options, e.g., winter months have no
warm water and no warm water releases. State variables represent beginning of period conditions. Releases
occur at the end of each period. State variables were limited to include only feasible options. Decision
variables include spill. The season with the largest grid of discretized release options is fall. Fall inflow is
cold but incoming fall storage is any combination of warm and cold, therefore fall turnover had the greatest
number of cold and warm release options and states of all the months. Fall season computations, therefore,
have the largest memory requirement of any month. Finer discretizations allow for more operating flexibility
but require more computational time. Memory requirements are a function of the grid size requirement from
the fall turnover matrix - (e.g., for a bin size of 5,000 af/mo there are 415,416 states, 2,316,673 decisions and,
for the stochastic model runs, 5 hydrologic conditions, each requiring 8 bytes of memory = 38,495 GB of
memory)(Table 4.1). After simplifying the problem, memory was the limiting factor in reducing computation
time.

The stochastic version of the program is stochastic both in the benefit and the indirect recursive benefit
function. Considering the probability distribution of expected weather types y for both of these functions
increases program computational time by a factor of y (here y = 5) from the deterministic version that weighs
probablistic outcomes with just the current benefit. A different weighting priority is assigned contingent on
management preferences, i.e., to a ”drought management” (release decisions heavily weighted toward drought
management), an ”extreme weather” (release decisions heavily weighted towards extreme drought and flood
events), or an ”expected value” outcome that assigns weights according to the joint probability of that
particular hydrologic condition.

Maximin Stochastic Dynamic Program Maximin Deterministic Dynamic Program
Bin Size (taf) Memory Reqs (GB) Run Time (min) Memory Reqs (GB) Run Time (min)
1,000 0.8∗10−4 2 1.5*10−5 < 1
400 0.7∗10−2 17 1.5*10−3 3
100 0.3 3586 5.5*10−2 720
5 38,495 np 7,700

Table 4.1: System requirements for running the stochastic and deterministic dynamic programs with hedging
in R. np is not possible with available computing power. Discretizations smaller than 10 taf/mo are likely
smaller than those needed for operational purposes. These computational requirements are for one season
with 15 stages as well as the forward-looking algorithm that approximates the stationary schedule for each
possible incoming storage state.

Were the dynamic program modeled with explicit stochastic methods, than the computational require-
ments for each decision M of each state L of each time step t are that of Y, with Y being the chain of
probabalistic outcomes for each possible combination of water year types. Here, for one year of 12 months,
for example, with 5 hydrologic conditions, Y = 5(12−1) = 48,828,125. To run a multi-year temperature control
problem to convergence, for example, should convergence take 3 years, requires Y = 535 computations, which
is an intractable increase of 535− 5 ∗ 36 ≈ 535. Future research could formulate a feasible method for solving
the explicit stochastic version of the temperature control problem. Here, all functions were vectorized in R
to reduce computation. Binary user-inputs select the solution algorithm and other reservoir characteristics
(e.g., capacity, grid size, exogenous information time series). The model and its components can be found
on github account leladams.

4.4.3 Reservoir Temperature

For Shasta reservoir, monthly cold and warm pool reservoir temperatures are alias’ of monthly warm and cold
pool storage volumes. We built a reservoir temperature model based on a two-pool model conceptualization
[Olivares, 2008; Rheinheimer et al., 2014]. The volume of each 50’ stratified layer was computed with a
hyposgraphic curve relating Shasta’s temperature and reservoir elevation and then re-discretized to the grid
size at which the model was being run. Mean warm and cold pool temperatures of each pool (the mean of
the sum of each pool’s layers) are significantly predicted by the volume of each pool. Monthly temperature
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observations were aggregated from two-week measurements recorded for pre-Temperature Control Device
Shasta Lake (1950 -1951, 1960-1974, 1976, and 1988 - February 1997) every 50’ [Nickel et al., 2004]. Monthly
layers were re-discretized to the selected model grid size and then each layer sorted into ’warm’ or ’cold’
water pools by a temperature partition of 52◦F. Warm and cold pool temperatures are the average of the
pool’s layers (layers are aggregated before they are released from the Temperature Control Device). Layers
lacking observations were interpolated from nearest-neighbors to create a lookup table from which cold and
warm pool temperatures are approximated based on cold and warm pool volumes (Figure 4.3).

Figure 4.3: Average warm pool (left) and cold pool (right) temperatures for each combination of Shasta
Dam warm and coldpool storage (af/month) when the historical record of observations is discretized by 105

af.

Cold pool temperatures have low variability; the temperature is almost always the same, regardless of
pool volume. Within the range of available data, excluding the winter of 1985-1986, and three other months
before installation of the Temperature Control Device for which cold pool temperatures were below 40◦F,
the average cold pool temperature of the raw data is 45.9◦F with variability was less than 2% of the mean,
1.2 ◦F. The average cold pool temperature of all observations is 46.1◦F with variability of 0.8◦F, which is not
statistically different than observed data: (Wilcox Test of the means (p=0.003) and F - test of the variances
(p < 0.5 ∗ 10−5)), even though it significantly predicts it (p=0.005). Average warm pool temperatures have
greater variability than average cold pool temperatures and depend on paired volumes of both the cold and
warm pools. Warm and coldpool volumes have strong negative covariance (−3.5 ∗ 1011) as well as large
standard deviations (9 ∗ 105) and (6.5 ∗ 105), respectively, resulting in a negative correlation (r = -0.6).
Together the warm and cold pool predict warm pool temperatures for the historical data (p=1.2∗10−5).
Warm pool temperatures decrease most when the cold pool is largest, and to a lesser extent, when warm
pool is large, or both cold and warm pool are small. Average warm pool temperatures include the epilimnion
and metalimnion and are warm when cold pool is diminishing, between 0.5 and 1.5 maf of cold pool, which
usually happens in mid- to late-summer of a dry year; warm pool is also slightly higher when the ratio
of warm to cold pool is high and the cold volume is low. Using volume as a proxy for temperature also
acts as a proxy for time of year, only certain combinations of pool volumes occur in certain months; with
one exception between rare large end of summer cold pool storage and small very warm warm pools and
large early spring cold pool storage with colder warm pools. An additional state variable for month would
capture this difference, but, for this problem, not at the expense of additional computation time. Historically,
the stratified season usually (with 67% frequency) starts in April and ends (with 77% frequency) with fall
overturn in November, rather than December; consequently we model an April - October stratification season
with November destratification for fall-overturn.

Based on these empirical relationships between cold and warm pool and cold and warm temperatures,
a statisical data binning program was written to group each combination of warm and cold pool reservoir
volumes. For the Shasta reservoir temperature problem, the continuous observations of warm and cold pool
volumes were discretized into increments of 105 af between zero and Shasta reservoir capacity. The median
temperature of each bin’s observations represents that bin’s cold and warm pool temperature. Historical
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temperatures were significantly predicted from the lookup table approximations based on cold and warm
pool volumes with p < 2.2 ∗ 10−16. Since not every reservoir volume has an observation, temperatures of
bins lacking observations were generically imputed by bringing last or fist observation’s forward, depending
on the ordered position of reservoir volume according to neighbors and available data using R’s generic locf
function.

4.4.4 Release Temperature

Release temperature is the weighted average of the release temperatures from available cold and warm pool
volumes. Available cold and warm pool is different than beginning of period cold and warm pool (V c, V w)
since the pools include accumulated (e.g., V c + ∆V c and V w + ∆V w). When available storage exceeds the
reservoir capacity, then spill must occur. If the monthly available storage is less than the capacity of the
reservoir, then the warm and cold temperatures are looked up from the cold and warm pool lookup table. If
not, then if the warm or cold availability is greater than the capacity, the temperature of that volume is set to
the maximum historical temperature; if the warm or cold availability is less than capacity, the temperature
of that volume is found in the lookup table as the temperature assigned to that volume and its compliment.
If the cold or warm pool volume is zero, than the temperature is zero; code improvements are required such
that the temperature of only that volume is zero. Code for the release temperature lookup can be found on
github account leladams.

4.4.5 River Benefits

The explicit benefit that is within control of reservoir operating decisions is release temperature, which
consequently, in corroboration with geomorphology, creates cold water habitat to save wildlife, usually
fish. For the Sacramento River-Shasta Reservoir system, the goal is to maximize the length of cold river
habitat x below Keswick Dam, the after-bay impoundment of Shasta Dam across all stages. We define
the temperature threshold for a ”cold river” in two ways, and the ”habitat” available at three downstream
distances. We compared the consistency and frequency of achieving these targets, and the extent to which
they are ecologically significant. Comparisons were developed with a stochastic standard operating policy
built from a range of historical weather conditions.

Policy Goals for different Operating Approaches
Temperature Goal Downstream Location of Goal (river miles (RM) below Keswick Dam)
Monthly-Varying Clear Creek (13 RM)
Constant Ball’s Ferry (26 RM)

Jelly’s Ferry (36 RM)

Table 4.2: Approaches for defining cold water habitat goals.
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4.4.5.1 The Value of Monthly-varying Targets for Ecosystem Function

Current operating policy regulates the Sacramento River temperature threshold below Keswick Dam at
a constant 13.3◦C/ 56◦F, although during a drought, e.g., during 2014-2016, the target temperature was
raised to 56.75◦F and even 58◦F [sac, 2017]. We compared the success of two policy approaches, one with
fixed temperature threshold targets (TZ)(e.g., to create a perennial artificial coldwater river below Keswick
Dam) and another with a monthly variable downstream temperature (TZt ) goal based on a monthly-varying
ecological value. We selected a variable target to more closely mimic the natural thermal regime to benefit
the downstream ecosystem in general, but specifically for the Winter-run Chinook (Figure 4.4).

Figure 4.4: The life cycle of the Winter-run Chinook in the Sacramento River. Rendered by (Quiñones,
2013)

The Winter-run Chinook are not a perfect indicator of the river’s status, but, in addition to having
federal legal protection, they also indicate broader ecological health downstream. In that sense, the Winter-
run Chinook are a flagship native fish that naturally evolved in the Sacramento River watershed and its
natural temperature regime (cold spring-fed baseflow with cold snowmelt pulses in spring and warm summer
rains). Temperature targets are focused on supporting the variable temperature demands of each life-history
stage of the Winter-run Chinook (Table 4.3).

Fish Life History Stage Months Variable Temperature Threshold Constant Temp Target
Returning Adults March-April 18◦C/ 64◦F 13.3◦C/ 56◦F
Embryo Incubation May- July 13◦C/55◦F 13.3◦C/ 56◦F
Emergents August 20◦C/68◦F 13.3◦C/ 56◦F
Outmigrating Juveniles September - February 19◦C/66◦F 13.3◦C/ 56◦F

Table 4.3: Variable thermal tolerances of Winter-run Chinook in California’s Central Valley [Moyle, 2017][Mc-
Cullough, 1999]. Constant thermal tolerances are the current operational temperature target.
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Supporting the Winter-run Chinook, the variability of the Winter-run Chinook temperature needs (Table
4.3) offers more operational flexibility and potentially greater ecological welfare than meeting a constant
temperature requirement.

Figure 4.5: Probability of meeting temperature thresholds with constant and variable temperature goals per
distance target for all possible states. Results were generated with a greedy operating strategy releasing
water with resolution of 105 af/month (˜1,500 cfs).

With the modeled results, both monthly-varying and constant temperature goals met their targets fre-
quently, failing for only about 6% of years (a failed year is equivalent to the worst-performing month of
all the year’s months - failing in one month causes long-term consequences because of the memory of the
river ecosystem). Any one month, however, is expected to fail only 0 - 6% of the time. Both temperature
target types fail when the cold pool volume has been depleted or is tiny relative to the warm pool volume,
particularly in May, if the incoming storage state is nearly all warm water.
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Expected inflows are larger in May than the rest of the summer, so heavy warm May rains spill more
often than June or July, and June more than July, causing more failures in May than June or July. Monthly-
varying temperature goals are met more reliably than constant goals; particularly when the variable goal
is less stringent than the constant goal, between August and October, and in April. Meeting the variable
temperature target requires less storage and therefore offers more system flexibility. For example, the most
conservative volume of cold water release required to meet each temperature target is:

∫

t

(minRct |TZt −minRct |TZ)dt (13)

during the stratified season, between April and October at 300 taf/season (with a grid size of 100 taf) with
the variable target and 800 taf/season with the constant temperature target. The variable temperature
target approach uses less stored water. And although the monthly-varying approach eliminates Winter-run
Chinook that can spawn in August, it is also more meaningful from the Winter-run Chinook perspective.
The constant temperature goal is too hot for embryos in early summer and unnecessarily cold during the
rest of the stratified season, often providing water beyond Winter-run Chinook demand, and other times
underproviding for their temperature needs. Ignoring the temperature requirements of the priority river
species wastes cold water that could be saved for next year’s cohort or later seasonal contingencies. The
remainder of this paper employs a variable temperature target approach.
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4.4.5.2 River Miles of Cold River Habitat

Current Shasta Reservoir operating policy also states that the location where temperature thresholds must
be achieved changes every two-weeks to either Ball’s Ferry (26 miles downstream of Keswick) or Clear Creek
(13 miles downstream of Keswick) depending on which location seems most attainable at the beginning of
each two-week period [sac, 2017]. Effectively, this makes the goal Ball’s Ferry, although that can change
if a two-week forecast indicates that it is better to hedge the target to Clear Creek. Hedging to meet a
stationary downstream location could prevent the short-term benefit of large cold water releases when cold
water storage is abundant, but at the expense of storing the abundance for times of cold water scarcity and
consequently consistent delivery of cold river water goals. Although Winter-run chinook have spawned as
far downstream as Red Bluff Diversion Dam [Martin et al., 2001], we compare policy outcomes with three
downstream targets (Clear Creek, Ball’s Ferry, and Jelly’s Ferry (36 miles downstream of Keswick) since the
vast majority (an average of 95%) of fish spawn above Clear Creek ([Calfish, 2018]). Outcome variables are
continuous so intermediate target distances can be met in addition to the final distance goal (e.g., possible
to meet Ball’s Ferry when aiming for Jelly’s Ferry).

Figure 4.6: Probability of meeting temperature thresholds with variable temperature goals for each of the
three target locations (Clear Creek, Ball’s Ferry, and Jelly’s Ferry, 13, 26, and 36 miles, respectively, from
Keswick Dam) for all possible states in the immediate period. Results were generated with a standard
operating policy releasing water with resolution of 100 taf/month (about 1,500 cfs).
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We found that downstream targets have the same minimum annual cold water storage requirement,

∫

t

xt|minRct |TZt dt (14)

Results indicate that target location has little influence on providing cold water habitat for each month.
Each location still requires 300 taf/season of cold pool storage, 100 taf in each of May - July, and none
otherwise. Perhaps more importantly, few Winter-run chinook spawn below Clear Creek, so operating for
temperature above Clear Creek is the priority. For the remainder of the chapter we use a distance target of
13 river miles and a monthly-varying temperature operating approach because it uses less storage, targets
the specific ecological problem and requires less computation time than further downstream targets.

4.4.6 Temperature Management Release Requirements

Optimized cold and warm pool release schedules for each possible combination of warm and cold pool states
requires more water with a constant temperature approach during the stratified summer months of May
- September than with a monthly-varying temperature approach, independent of the downstream location
target.

Figure 4.7: Minimum cold pool requirement for a constant versus a monthly-varying temperature goal,
excluding spill at Clear Creek (CC), Jelly’s Ferry (JF) and Ball’s Ferry (BF).

4.4.7 River Temperature Modeling

Statistical regression, rather than a physical-process based model, was used to predict downstream temper-
atures based on Shasta Dam release temperature because of the high correlation between monthly air and
water temperatures [Benyahya et al., 2007], because surface heat-flux effects are often negligible for large
monthly time-scales, and because statistical regression is more computationally efficient (and sometimes
more accurate) than more physically based models. A first-cut full statistical model was built to predict
the maximum Sacramento River length under a defined temperature threshold given Shasta Dam release
temperature, release flow, release month, and monthly air temperature. The final functional form of the
selected Generalized Linear Model reduces the number of control variables for this problem as much as pos-
sible; all final models significantly predict river temperature by release temperature alone. Details are in the
Appendix.
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4.5 Results

We apply our method to temperature control for the Shasta Dam-Sacramento River system for an expected
probability distribution of weather conditions (based on the joint probability of inflow and ambient tem-
peratures of the historical record) and the range of incoming April storage conditions, including even below
empty until capacity. We solve the problem for Shasta Dam with i) the maximin stochastic dynamic pro-
gram developed in Chapter 3, ii) a greedy stochastic standard operating policy, and iii) a stochastic dynamic
program. Results here differ from Chapter 3 because they use a finer computational discretization (100 taf).
The greedy standard operating policy emulates the current policy approach to temperature management,
generally speaking, and maximizes current benefits, irrespective of the future or past. The dynamic program
maximizes net benefits including from the future and the past, but irrespective of the order of poor outcomes
or avoiding a worst-case outcome (see Chapter 3 for further details and model formulation) and the maximin
dynamic program minimizes possible loss and maximizes net benefit for both the short- and long-term.

Figure 4.8: Probability of meeting temperature thresholds for each optimal policy approach with a stochastic
range of weather conditions for each of three solution algorithms that optimize release temperature and
volume from Shasta reservoir for the Sacramento River. Monthly-varying temperature goals were set for
Clear Creek, 13 miles downstream of Keswick Dam, for all possible states in the immediate period. Results
were generated for each incoming storage state of a resolution of 100 taf/month (about 1,500 cfs) between
empty and a full reservoir capacity. Results are different than those of Figures 5 and 4.5 because this
compares only optimal policy schedules for each incoming April storage state, Figures 5 and 4.5 are based on
all possible states of each month, regardless of whether or not they are part of an optimized annual policy.
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Meeting monthly-varying downstream temperature targets until Clear Creek, for an expected value of
historical weather conditions, requires the same volume of water for all three solution algorithms to find
the optimized release schedules - although the monthly timing of failures differ. All solution algorithms met
downstream cold water habitat requirements for all months for 96% of all (0 to capacity) incoming April
storage conditions, and consistently at the end of the year. Failures occurred for all three strategies for some
months during the embryo stage between April and July when incoming April storage is less than 300 taf
- less than non-operational deadpool storage at Shasta reservoir (550 taf). The standard operating policy
operates only for the immediate benefit and consequently fails near the end of embryo season from running
out of water - potentially wasting April and May storage on unsustained cold river miles. The policies with
the recursive function, the stochastic dynamic program, or the maximin stochastic dynamic program, hedge
for temperature in April and May to conserve storage. The maximin hedges to avoid long-term risk, in flow
or temperature, and consequently hedges in April, so benefits are hedged over time and no water is spent
on unsustainable cold water habitat. The stochastic policy does not hedge in April since sufficient water is
available.

4.5.0.1 Hedging for Weather

Cold water pool management must be managed throughout drought, particularly when the expectation of
drought is uncertain or could likely span multiple years.

Stochastic Solutions Optimized release schedules were produced with drought-weighted forecasting (p
= 0.5, 0.25, 0.15, 0.05, 0.05 for joint probabilities of inflow and temperature with extreme drought, drought,
mean, wet, extreme wet, respectively) and extreme drought and weather-weighting (p= 0.9, 0, 0, 0.09, 0.01)
for all incoming April storage conditions. Weights were assigned to skew management and release decisions
to favor drought risk management and storage conservation. Drought weights help address the flood bias
in release schedules from the positive skew of the magnitude of expected inflows from wet-cold years. For
Shasta reservoir, drought weighted cold water habitat provision results do not vary from expected value
results (Figure 4.8). Weather forecasting did not affect temperature management decisions because there
is always enough water to manage for temperature control in the Sacramento River, even during drought.
Uncertainty in weather is not significant enough to affect meeting downstream cold habitat requirements
alone.

Deterministic Solution Optimizing operational decisions for the worst-case set of system inputs - for
inflow and air temperature with a joint exceedance probability of 1%, fails to meet cold water habitat
requirements with the same probability distribution as all the stochastic model runs. Extreme drought was
synthetically produced from the joint probability of inflow and temperature of the historical record (Figure
4.4).

Table 4.4: Years and observations of joint exceedance probability of inflow and ambient temperatures for
1% extreme drought (1985-2016).

The fish require low volumes of water (when coupled with intentional fish habitat). Even during a
synthetically produced extreme drought, more extreme than seen to date with the historical record - the
minimum required monthly release to meet temperature control delivery requirements is less than expected
inflow (less atmospheric losses). Each month, minimum water demand is 100 taf - either of cold or warm
pool storage (although more than 100 taf can still meet temperature requirements too, e.g., releasing 500
taf of cold and 100 taf of warm from storage conditions of 3.5 maf of cold pool storage and 200 taf of warm
pool storage). A minimum of 300 taf of cold water pool storage (with cold and warm pool separated at
52◦F) is required between May and July for the redds; the demands of the other months are met with warm
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pool alone. In April and between August and October (water demand of 400 taf) inflow between April
and October (e.g., snowmelt and spring flow) exceed demand by 500 taf in an extreme drought - which
is enough to sustain between November and March (demand of an additional 500 taf). Therefore, when
isolating temperature control operations, with this proposed monthly-varying temperature goal to Clear
Creek, Shasta reservoir only fails to meet cold water habitat requirements when initial conditions are below
deadpool - not because of weather conditions. Should future weather conditions become drier and hotter
than those synthetically produced here, with available summer inflow (inflow less atmospheric demand) less
than 900 taf, for example, then weather could become a barrier for providing cold water habitat downstream
of Shasta reservoir.

4.5.0.2 Hedging for a River Temperature Goal

While the choice of weather forecasting does not affect results, there is a difference, both in the ability to meet
downstream temperature targets as well as in the storage requirements of meeting these targets, between
the monthly-varying temperature policy proposed here (monthly-varying temperature goals from Keswick
Dam until Clear Creek, Figure 4.9a) and the more stringent cold water habitat requirements intended to
reflect current Shasta reservoir operations (with a constant temperature goal of 13.3◦C/ 56◦F from Keswick
Dam until Jelly’s Ferry, Figure 4.9b). Optimized release policies solved for the monthly-varying approach
met river temperature targets for 96% of incoming storage conditions (2/46 incoming storages: 100 and 200
taf); the constant approach met its downstream temperature objective 89% of the time.

(a) Monthly-varying temp goal until Clear Creek. (b) Constant temperature goal until Jelly’s Ferry.

Figure 4.9: Probability of optimized policies meeting downstream temperature target with two different
downstream temperature goals modeled with a probabilistic expectation of a range of weather forecasts.

The constant temperature operating approach fails more often than the monthly-varying approach be-
cause it is more stringent and requires more storage. Assuming an expectation of a stochastic range of
incoming weather conditions, the constant temperature approach requires incoming April storage of 500-600
taf to avoid failure whereas the monthly-varying temperature approach requires only 300 taf. While this
difference shows an advantage of the monthly-approach, in practice the difference is mostly meaningless; the
dam cannot operate below deadpool. Even though the constant approach provides colder water in fall and
the variable approach in early spring, both operational strategies essentially always meet their operational
goals as long as Shasta reservoir storage is above deadpool. The discernable difference between these choices,
therefore, is their biological basis (which temperature choices are appropriate) and their storage requirements
(which matters most inter-annually) and not their ability to achieve downstream temperature targets.
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4.5.0.3 Hedging for Storage Conservation

The advantages of the maximin algorithm (over the greedy algorithm) and the monthly-varying target at
Clear Creek (over the constant target at Jelly’s Ferry) are that they both optimize release schedules to
provide cold water habitat downstream within a season, and, by conserving storage, between years. In
Shasta reservoir, enough water is always available to meet cold water habitat requirements (with initial
storage conditions above deadpool) when cold water habitat requirements are considered in isolation, without
other water release demands, even with a forecast of extreme drought, regardless of operational approach
(e.g., solution algorithm, downstream target).

The Converged Schedule for the Expected Value Stochastic Maximin Dynamic Program With
the expected value of the maximin solution algorithm, which considers all expected weather conditions, the
stationary operating policy converged after 1.5 years. After convergance, expected cold pool storage always
exceeds 2.1 maf (Figure 4.10). As anticipated, warm pool storage grows from April to November before
all the warm pool becomes cold when the reservoir flips and mixes in November or December. Cold pool
storage diminishes throughout the summer and builds again during the cold winter and early spring. With
optimized schedules, cold releases never exceed 100 taf during the summer after the schedule has converged.
Releases in general are much larger during the winter.

Figure 4.10: Expected cold (Vc) and warm (Vw) pool storage for the range of possible initial April cold
storage conditions when operating with optimal policy. Results were created with discretization of 100 taf
with variable temperature and Clear Creek downstream goal with a drought weighted objective function and
the maximin solution algorithm. Model convergence occurred after 1.5 years.
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Expected final storage volume with the converged schedule ranges between 2.2 and 2.8 maf - well within
the range of historical average monthly carryover storage conditions.

Figure 4.11: Historical incoming October storage conditions.

Drought forecasted Deterministic Policy Schedules Even with multi-year predictions of extreme
drought, operating the reservoir only for temperature did not fail, even after multiple years, as long as year
one initial storage exceeds deadpool - although storage depletion was less with the monthly-varying than
with the constant temperature targets (Figure 4.12).
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4.5.0.4 Hedging for Competing Purposes

Including water deliveries for non-habitat purposes in this temperature control model is vital for finding an
optimal temperature control solution. The magnitude of delivery requirements often exceeds inflow (Figure
4.13). Between April and June expected delivery demand exceeds incoming expected wet year inflows
and in late summer expected delivery demand exceeds inflow of even a cold-wet flood year with exceedance
probability of 99%. Monthly delivery requirements meet or exceed downstream temperature demand volumes
in all months.

Figure 4.13: Expected inflow to Shasta reservoir during an extreme drought, the minimum monthly storage
requirement to meet downstream temperature goals, and expected delivery requirements below Shasta Dam.
Demand volumes are provided independently of their required temperature.

Diversions are modeled as constraints, not as part of the objective function. Release decisions prioritize
diversions for other water supply purposes (e.g., agriculture, Delta outflow) over (downstream) temperature
based environmental flow. Diversions are allocated from the warm and then the cold pool, according to
storage availability. Deliveries are modeled as mean monthly Shasta releases before the Endangered Species
Act was put into place requiring temperature-specific flows (CDEC, 2018). We compare the probability of
meeting cold water habitat temperature goals for increasingly difficult-to-achieve targets with the maximin
and greedy solution algorithms for (a) the monthly-varying temperature goals to Clear Creek, (b) constant
temperature goals to Jelly’s Ferry, and (c) constant temperature goals and delivery goals to Jelly’s Ferry.
Modeling inflow as a deterministic time series of extreme drought isolates weather conditions to focus results
on the highest priority concern situation.
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With a greedy algorithm larger cold pool volume conditions provide more cold water habitat; 1 maf gives
2 months of cold water habitat, 2 maf gives 4, and 3 maf provides 5 months. But even when the reservoir is
filled to capacity, insufficient storage is available to meet cold water habitat requirements for all consecutive
months of a year (April to March), in extreme drought. With the maximin dynamic program algorithm
enough storage is available to provide cold habitat from April to March only when incoming April storage is
near or at capacity. Regarardless of the solution algorithm or policy choice, with full water demands and an
expectation of extreme drought the reservoir always fails by the second year and does not recover (Figure
4.15).

Figure 4.15: Expected storage of cold pool (Vc) and warm pool (Vw) with an optimized release schedule
solved with a deterministic maximin dynamic program for a range of incoming April storage conditions
(range zero to capacity) and an expectation of extreme drought to meet a monthly-varying temperature
requirement at Clear Creek when meeting downstream delivery demand and temperature demand.

To stay above deadpool and meet temperature control requirements during an extreme drought, some
delivery curtailment is required. Curtailing deliveries during extreme drought is part of expected regulatory
protocol. Larger curtailments afford meeting one season of downstream temperature targets more often.

For multi-season analyses, however, even with curtailments of at least 50%, the reservoir fails by the
end of year 2. Missing downstream fish temperature targets is not a function of fish demand, but rather of
meeting downstream water delivery demand - and potentially trying to keep higher flows that meet delivery
demands cold enough for fish.
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Figure 4.16: The probability of meeting the temperature target when operating with the maximin dynamic
program and a monthly-varying temperature threshold to Clear Creek, with different percentages of curtail-
ment.

When operating during extreme drought with delivery curtailments of 75% and the maximin algorithm,
we also start to see the value of operating with a hedging philosophy compared with operating with a greedy
philisophy (Figure 4.17). The greedy algorithm performs better than the maximin approach when incoming
storage is large and worse than the maximin when incoming storage is small. In exchange for the success at
the large volumes, operating with the maximin dynamic program offers stability and long-term reliability.
With the monthly-varying approach and drought curtailments of 75% on diversions (Figure 4.17), however,
the system can sustain multi-year drought. With the greedy algorithm, incoming storage below 800 taf
depletes the reservoir by year 1, 1.6 maf depletes by year 2, and 2.6 maf depletes by year 3. With the
maximin algorithm, in contrast, storage is completely depleted for all three years when incoming storage of
year 1 is below 200 taf, which is anyway non-operational since it is below deadpool.

Further curtailments and knowledge of a forecast for wetter, colder weather (e.g., less intense drought or
average conditions), or lfor adaptive forecasting (explicit stochastic forecasting) could also make it easier to
meet both cold water habitat requirements and downstream deliveries more frequently.
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4.5.0.5 Hedging for Risk

Risk, by definition, is the probability of failure multiplied by the damage from that failure. Failure in
temperature control is often from storage depletion, or as measured here, failure to provide cold water habitat
length - but in some cases, failure also could be measured in a species-specific indicator, such as fish mortality.
Here, we post-process expected fish mortality from operating with the maximin dynamic program versus
the greedy operating policy for each of the three downstream goals: a monthly-varying temperature goal, a
constant temperature goal, and a monthly-varying temperature goal with deliveries. Expected monthly fish
population information is from 2003-2017 surveys of carcasses of chinook adult. Adults are predominantly
observed to finish spawning (deposit new redds) in July, and die after they spawn.

Figure 4.18: Expected cumulative monthly fish population density [Calfish, 2018].

The probability of the system failing from failure to deliver cold water habitat depends on the fish
population presence and cold water habitat availability of this period pfisht ∗

∫
t−1

pfailure, based on weighted

expectation of the proportion of the fish population pfisht−1 by the probability of failure of the previous period∫
t−1

pfailure.

pfisht−1 ∗
∫

t−1

pfailure + pfisht ∗
∫

t

pfailure (15)

With the greedy algorithm, fish are sometimes ”saved” temporarily that can not be sustained for the
entire year, wasting stored water. This is particularly the case when optimizing to meet full deliveries and
downstream temperature goals. When meeting full downstream deliveries during drought, for example, no
fish will ultimately be saved, but the greedy policy uses storage to try and save them temporarily (and
sometimes futilely). The greedy policy will temporarily grow and then kill about 1,500 fish. The maximin
dynamic program, in contrast, under dire conditions, recognizes the impending doom, saves no fish, and
conserves storage for next year.

When solving the temperature control problem at Shasta reservoir with the maximin solution algorithm
for extreme drought and delivery curtailments of 75%, enough water is available to meet river temperature
goals and save some fish. Here we see the logic of operating with hedging for temperature control. With a
greedy policy, more fish are expected to be saved early in the season, but as the reservoir depletes, populations
decline. In contrast, with the maximin solution algorithm, the expected population of Winter-run Chinook
saved in early months is sustained throughout the season, through all fish development stages, to migrate
out to the ocean around March (Figure 4.19). By conserving storage, the maximin performs better for both
expected water storage and fish population size.
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Figure 4.19: Expected fish population for cold water habitat allocation decisions made with maximin and
greedy operating strategies for extreme drought. Each scenario must first allocate water supply for other
users before allocating for temperature. Temperature goals for the maximin are monthly-varying for 13 river
miles, to Clear Creek, and for the greedy alogorithm, a greedy 36 miles to Jelly’s Ferry. Fish population
surveys are from [Calfish, 2018].

The United States Congress is potentially willing to pay $1.3 billion to raise Shasta Dam for the Winter-
run Chinook [Lochhead, 2018]. Surveys estimate about 2,500 Winter-run Chinook per year below Keswick
Dam - this implies a value of avoiding damage to Winter-run Chinook of $500,000 per fish. The cost of
operating Shasta Dam with the hedged maximin dynamic program and the current Winter-run Chinook
hatchery below Keswick Dam is less than 1% of the cost of the Shasta Dam raise (about $1 per fish [dam,
2016]), and still a significant population are expected to survive, even in extreme drought.

4.5.1 When to Hedge

Temperature management schedules developed with a maximin solution algorithm find the global solution
for every state of each stage. This means the program produces optimized release decisions (Chapter 2,
Equations 7-9) that benefit not just the optimal policy over time, but the contingent policy too - for when
operators find themselves at the beginning of a month with an unanticipated storage state. This is important
because the non-stationarity of human decision making and natural events (e.g., forest fire, weather) often
leaves a reservoir in an unpredicted, or even sub-optimal state. For this reason, analysis of the fraction of
states of each stage for which a solution meets stakeholder performance expectations (in this case, cold water
habitat), or in other words, the fraction of satisficed states [Herman et al., 2014] (which includes sub-optimal
states) is potentially more useful than analyzing the fraction of stationary schedules that meet stakeholder
performance expectations.

Here, we visualize the expected present value (cold habitat river length) of operations with the greedy
standard operating policy and the maximin policy. Here, the visualization is both a release guide (com-
municates the value of each warm and cold pool release choice combination for each warm and cold pool
state) and a means of communicating when hedging occurs with the optimized release schedule (maximin
solution algorithm instead of greedy standard operating policy). With the maximin solution algorithm all
solutions for each state of each stage (e.g., the minimum release with the maximum value) are satisficing,
with the greedy algorithm and the dynamic program, they are not. Within the displays, each colored dot is
a feasible release for a feasible incoming warm and cold pool storage state for each month. Blanks indicate
either a) releases not within the set of discrete state and release combinations we model here, or, b) the
release decision is infeasible for a given state, the release demand is too large and exceeds water availability.
Spill is built into the program, which avoids situations for which releases are too small and would cause a
flood. Only feasible states are displayed; the sum of cold and warm pool storage is always less than reservoir
capacity; the maximum cold and warm release choices are less than that historically available from a full
reservoir and a heat budget. Results for the solution of a stochastic standard operating policy (Figure 4.20)
solved with a monthly-varying temperature goal at Clear Creek for one possible incoming cold pool storage
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state (1.6 maf) for one stage (May) must include results for the range of feasible warm pool options (0 - 2.8
maf) for all feasible releases of all combinations of cold (0 - 72 cfs) and warm (0 - 78 cfs). Results are shown
for a large grid size (400 taf) so axis labels are legible.

Figure 4.20: Display of stage table for the range of cold pool storage for one state of warm pool storage (1.6
maf) with an initial cold pool April storage volume of 2 maf. The value of each point is the value of the
release (y-axis) of both cold and warm water, given available cold and warm pool storage volumes (x-axis)
with a non-operational discretization of 400 taf. The value of the release is the number of cold river miles
that result from the release’s temperature and flow combination when the operational guidance follows the
solution from a standard operating policy.

The value of releases is the length of cold river habitat (0-13 miles). For this displayed range of cold:warm
ratios and volumes in the reservoir, a release with no cold water is too warm to create the full 13 miles of
river habitat, so the value is lower and the color more yellow than purple. Cold or warm water releases that
exceed water availability are also impossible, such as releasing more than 7 cfs of cold water in May with less
than 200 taf of storage. Other storage and release combinations produce sub-optimal results because of the
release temperature from the ratios and volumes of warm and cold pool storage and release (see Appendix
for details). The solution of the stochastic standard operating policy for one stage (May) displays expected
cold water habitat for each combination of cold and warm pool volume releases (y-axis) for each combination
of incoming cold and warm storage states. Warm pool volume steadily increases along the x-axis. Cold pool
releases steadily increase along the y-axis.

79



F
ig

u
re

4.
21

:
D

is
p

la
y

of
st

ag
e

ta
b

le
fo

r
on

e
st

ag
e’

s
(M

ay
)

b
en

efi
ts

.
T

h
e

va
lu

e
o
f

ea
ch

p
o
in

t
is

th
e

va
lu

e
o
f

th
e

re
le

a
se

(y
-a

x
is

)
of

b
ot

h
co

ld
an

d
w

a
rm

w
at

er
,

gi
ve

n
av

ai
la

b
le

co
ld

an
d

w
ar

m
p

o
ol

st
or

ag
e

v
o
lu

m
es

(x
-a

x
is

)
w

it
h

a
n

o
n

-o
p

er
a
ti

o
n

a
l

d
is

cr
et

iz
a
ti

o
n

o
f

4
00

ta
f.

T
h

e
va

lu
e

o
f

th
e

re
le

as
e

is
th

e
n
u

m
b

er
of

co
ld

ri
ve

r
m

il
es

th
at

re
su

lt
fr

om
th

e
d

am
re

le
a
se

w
it

h
st

a
n

d
a
rd

o
p

er
a
ti

n
g

p
o
li

cy
co

n
si

d
er

in
g

a
p

ro
b

a
b

il
is

ti
c

ra
n

g
e

of
fu

tu
re

w
ea

th
er

(i
n

fl
ow

an
d

am
b
ie

n
t

te
m

p
er

at
u

re
)

co
n

d
it

io
n

s.

80



Still, when cold pool releases are not large enough (independently of the volume of warm released) the
release has no downstream value (the line of yellow low-value releases when cold releases are zero or near
zero). Or, as the ratio of warm to cold pool increases, the value of the release decreases, because the release is
hotter (the cluster of yellow low-value releases from a mostly warm pool reservoir in the right lower corner).

Figure 4.22: Value of all possible release decisions for all possible warm and cold pool storage combinations.
Expected monthly value generated with discretizations of 400 taf for each water year type (extremely wet,
wet, normal, dry, and extremely dry) as well as with a range of weights with a stochastic dynamic program,
without regret avoidance/hedging (standard operating policy).

With the greedy operating policy, the full goal of cold water habitat (13 miles) provided from each cold
and warm release combination given the full range of incoming warm and cold storage volumes for each
month is almost always achieved with a few exceptions: when there is not enough cold water in May - July
during the embryo stage when cold water demands are highest and for any month with low initial storage
conditions.
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Next, the problem is solved with a maximin solution algorithm. Figure (4.23) shows those releases for
which the expected future benefit is less than that of the immediate benefit. The value shown in this figure
is the future benefit, rather than the immediate benefit, or in other words, those releases with a number of
river miles that will be ”lost” should they be chosen. Decisions are regrettable because they deplete cold
pool and/or total storage such that insufficient cold water is available to last until the next November when
stratification ends.

Figure 4.23: Value lost (in number of river miles) from decisions an operator would regret making for each
storage state of each month were the operator to follow a prescription formulated with standard operating
policy without hedging.
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Finally, we show results from the results of the full maximin stochastic dynamic program (Figure 4.24).
This shows the value of the optimized releases with the maximin logic, so releases are optimally hedged, at
coarse resolution (400 taf). The value of a release in the maximin solution is not the value of the release in
the current period - rather it represents the minimum value that that release will have over the course of a
full year. That is why it is often lower than the value of the same release when solved with the standard
operating policy. The standard operating policy is just current benefit - the maximin is the maximun of the
minimum of current and long-term benefit.

Figure 4.24: Value of each release decisions for every combination of warm and cold pool storage combina-
tions. Expected monthly value generated with discretizations of 400 taf for each water year type (extremely
wet, wet, normal, dry, and extremely dry) as well as with a range of weights with a maximin stochastic
dynamic program.
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Hedged decisions only occur between April and December, and in March. In May and June, the model
hedges against releasing too much cold water relative to how much total and warm water is in the reservoir -
because if the cold water does not last until July it is not worth releasing it anyway (the Winter-run Chinook
eggs can not move). In April, the model hedges hard against releasing all its cold water - the optimal schedule
hedges against a full release to a preference of releasing nothing. November and December and March hedge
slightly, it is less optimal to release all available cold water, or, in November, total available water, although
the loss from doing so is not catastrophic. Starting in July all hedging is to avoid draining the reservoir; the
temperature threshold of the release is difficult to exceed.

4.5.2 Optimized Release Schedules for Temperature Management

At the resolution needed for Shasta releases (100 taf), we show the results of one stage (although again, the
values here are the maximum of the minimum values of the releases for current and the long-term future).
Labels on Figure 4.25, one month’s optimized release guide, indicate the type of hedging needed for optimal
operations. Optimized reservoir operating could be summarized into five types of storage-based hedging
rules. By hedging with these rules (i.e., making optimized release decisions), release choice for each state of
each stage is satisficing. Release rule curves for each month are in the Appendix.

Figure 4.25: Display of stage table for one stage’s (May) benefits with hedging. The value of each point is
the value of the release (y-axis) of both cold and warm water, given available cold and warm pool storage
volumes (x-axis) with an operational discretization of 100 taf. The value of the release is the number of
cold river miles that result from the dam release. The release value is the maximum of the minimum of the
current (this month) and long-term value (future months).

� Too Risky Releases that deplete storage to unsustainable levels and cause future damage.

� Flood Control Releases that must include spill to avoid flood damage.

� Infeasible Releases that exceed water availability are impossible.
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� Too Small Releases for which total or cold pool storage availability are too small to meet the down-
stream target.

� Too Hot Releases for which water availability is too hot to meet downstream temperature targets.

Optimized cold and warm pool release decisions for each warm and cold pool storage combination release
more cold pool in May and June, and slightly more cold pool in April, September, November and January
- March when non-temperature deliveries are included. Lesser curtailments require more volume which can
have consequences for long-term temperature and volume management.

Figure 4.26: Optimized cold water pool release curves to optimize temperature management of the Shasta
reservoir-river system focused on the section that highlights changes from delivery.

Optimal May and June releases can vary by up to 200 taf depending on curtailment intensity.
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Figure 4.27: Optimized release curves to optimize temperature management of the Shasta reservoir-river
system.

4.6 Discussion

4.6.1 General Drought and Temperature Management Operating Rules

Several general strategies detailed in this chapter are available that could be helpful to avoid temperature-
related reservoir failures. Managing for temperature in reservoirs has similiarities to drought management
in reservoirs. Both actively manage uncertainty. Both often employ benefit from hedging.
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4.6.2 Event-based Drought and Temperature Management Operating Rules

In some months and years there is not enough incoming cold or total storage to support ecosystem function.
It may be better to ”hedge hard” against uncertainty and perhaps abandon some months or years under
some dire conditions - to conserve their stored water for the future.

Curtailing for temperature management Releases with the maximin dynamic program algorithm are
optimized for weather, storage conservation, river temperature, competing purposes, and risk. This set of
optimized release rules guides when to release in full, release in full plus spill, hedge, or abandon a month.
With the maximin solution algorithm, hedging is the greatest at the beginning of the season, to ensure
storage availability for the season and later years. Here, April and May release decisions are critical; during
these months the operator must decide how much to release, often before that month’s weather is known.
Releasing too much results in unsustainable ecological outcomes. For April, for example, when excluding
deliveries, the derived rules are: a) when coldpool storage in the reservoir exceeds 3.1 maf, release available
cold pool less 3 maf, otherwise do not release any cold pool storage; b) when cold pool storage is 0.3 to
2.9 maf, release 0.1 maf/month of warm pool; and c) when cold pool storage exceeds 3 maf, release 0.2
maf/month. For May, no cold releases are made unless cold pool storage is at least 0.3 maf. Warm May
releases increase as warm water availability increases.

Figure 4.28: Optimized cold and warm release decisions for each feasible storage state of April and May. Re-
sults were generated with a variable temperature goal below Keswick Dam until Clear Creek (13 River Miles)
with best operating policies with a maximin operating policy, extreme weather weights, and a resolution of
100 taf/month (≈1,500 cfs).

Since providing cold habitat downstream is largely independent of weather in April and May, it could be
advisable to develop a policy where no cold water habitat is provided when incoming April storage is below
300 taf (deadpool), since it is impossible to sustainably deliver cold water habitat when incoming storage is
that low.

Abandoning a year Stationary solutions of the maximin stochastic dynamic program and the determin-
istic maximin dynamic program for extreme drought approximated that the policy conditions (incoming
April 1 storage level) under which to abandon a year, even with extreme drought, is when incoming April
storage is below 300 taf. Below this level it may be better to allow a yearly kill-off and conserve available
cold water because cold pool for this year is insufficient to support the entire year. Conservation for the
future may bring benefit, even if some cold pool is lost to internal lake processes. In practical terms, this
means abandoning when levels are below deadpool; when they must be abandoned anyway.

Assuming that deliveries are curtailed to afford temperature releases, the maximin dynamic program
suggests, even with extreme drought, the system is operational above deadpool, even over three years.
However, with the greedy policy, incoming storage above 2.1 maf is needed to sustain operations during
drought, even with 75% delivery curtailments.
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Abandoning a month Abandoning months could occur for three reasons: a) insufficient cold or total
water available for that period, b) a likelihood of insufficient cold or total water for future periods, or c)
insufficient fish present to merit cold habitat conditions. These first two reasons are incorporated into the
hedged releases from the maximin dynamic programming solution. With the third option, when an incoming
adult population returning from the ocean is small or non-existent, it could make sense to conserve cold water
releases and storage until they arrive in May or June. It may even be advisable to always curtail releases in
April for temperature management for the long-term. Between 2003 - 2018, Winter-run Chinook fish count
surveys only found an average of 3 fish in April below Shasta Dam.

4.7 Limitations

The most pressing limitation of this study is the computational requirement of running the maximin dynamic
program. Some additional model changes could improve result precision and insight. First, deadpool storage
is already in the script, it must be turned on and analyses re-run so operations are limited by deadpool rather
than being empty. Second, some details of the physical system were excluded as negligible, but it could be
useful to include more details such as vertical diffusivity between the hypolimnion and the epilimnion, surface
radiation, or explicit population dynamics. We assumed that residence time in Shasta reservoir is large
enough and releases sufficiently distributed (with the Temperature Control Device) that lake temperature
is unaffected by releases; that assumption could be tested. Disaggregating goals into daily or weekly, not
monthly goals could offer the opportunity to consider daily attenuation [Lowney, 2000], which may offer
additional hedging opportunities (although with great computational burden). Each month’s release could
be disaggregated into daily releases t

′
yt,t. With this approach the problem would be solved from a Eulerian

perspective. Each day’s temperature change cumulates from the previous day’s temperature change. The
distance the streamflow travels each day is assumed constant. The change in temperature for each day is
calculated with the sink term of the heat transport equation.

∆T

∆t
=

JAs

ρCρVx︸ ︷︷ ︸
net heat flux

(16)

Downstream release temperature T t is the weighted sum of the releases from the cold and warm pools. The
total number of days n in the month t the streamflow travels before it exceeds the target temperature TZ is
counted. The distance xt covered by the release REt below the threshold temperature is estimated.

REt nt
Ast

= xt (17)

Running the greedy algorithm and maximin dynamic program with California’s 2012-2016 drought inflow
and ambient temperature data, could quantify, in policy-terms, the value of the maximin algorithm and the
monthly-varying temperature goal logic. Formulating the model as a multi-objective optimization model
with cost-weighted delivery shortage penalties and cold water habitat goals, rather than as a single-objective
river temperature model with water deliveries as a hard constraint, could better identify trade-offs in delivery
curtailment and cold water habitat shortage. Applying weighted penalities to allocate warm or cold pool to
satisfy delivery requirements could produce release schedules that result in greater storage conservation by
meeting temperature targets more easily; although likely this is inherently covered in the model. Simplified
release rules based on water availlability (inflow and warm and cold pool beginning of month storage) could
simplify the logic of this dissertation for operational purposes. Regression models could use the results of
this dissertation to impute storage goals based on the frequency with which river temperature targets are
met at different river locations [Young, 1966].

4.8 Conclusion

In terms of operating rule development, Shasta reservoir is not limited to make releases for temperature by
weather; with a constant temperature operating policy (13.3◦C/ 56◦F to Jelly’s Ferry) or monthly-varying
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temperature policy to Clear Creek, operation for cold water habitat provision alone will fail only when incom-
ing storage is below deadpool, even for multiple years. When operating to also meet downstream deliveries,
however, it is impossible to meet Shasta temperature goals during drought without delivery curtailments. A
maximin dynamic program provides a method to build optimized release schedules that support more efficient
tradeoffs of these objectives, and protect against failure. Operating with a monthly-varying schedule further
supports long-term reservoir management goals. The maximin dynamic program, in concert with delivery
curtailment and a monthly-varying temperature goal to Clear Creek, could likely improve reservoir opera-
tions for the Sacramento river below Shasta Dam as well as other large dams faced with managing drought,
temperature, and long-term risk. Developing reservoir release schedules with sometimes curtailing deliveries
and downstream temperature goals could likely hedge the risk of drought and unsustainable delivery of cold
water habitat for temperature management in reservoirs. The model developed here, OTM2 (Optimized
Temperature Management Model), could provide support for achieving long-term drought and temperature
management. Looking to this re-operation approach before making major infrastructure changes such as
dam expansion or new off-site storage might save resources, time, water, and fish.
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4.9 Appendix

4.9.1 River Temperature Modeling

Temperature records were pulled for all California Data Exchange Center stations (1994 - 2017) and for
each of the ten stations in the Sacramento river below Shasta with time series records (river miles from
mouth of Sacramento to Keswick Dam, the first impenetrable wildlife barrier in the Sacramento River), air
temperature observations from NOAA (1943-2017) and CDEC flow measurements for Keswick Dam and
Shasta Dam releases (1994-2017): Emmaton (6), Greens (37), Hood (39), Red Bluff Diversion Dam (243),
Bend Bridge (256), Jelly’s Ferry Bridge (266), Ball’s Ferry (276), Clear Creek (289), Keswick (302) and
Shasta (311). Observations were retained for gauging stations that were not significantly influenced by other
dams or rivers for which the temperature of Shasta Dam releases likely still affected local river temperature,
and for which sufficient data was available: Jelly’s Ferry Bridge (266), Ball’s Ferry (276), Clear Creek (289),
Keswick (302) and Shasta (311).

Figure 4.29: Sacramento River monthly temperature measurements per Sacramento River Mile (CDEC,
2017). Each line is a different month’s measurements at each of several locations.

The full dataset, including these interpolated values, was 133 observations of monthly river temperature
observations. Missing observations were interpolated from the least number of nearby gauging stations
necessary. Clear Creek was found to be best interpolated from Keswick and Ball’s Ferry observations
(p < 2.2 ∗ 10−16) and Jelly’s Ferry from Ball’s Ferry (p < 2.4 ∗ 10−16).

92



Figure 4.30: Interpolated Clear Creek and Jelly’s Ferry observations.

Release volume (log of total release volume) is not a significant predictor of river temperature, either
alone or in combination with other variables. Month is a proxy for air temperature and a plug-in solution
for the omitted surface heat flux variables (Figure 4.1); month predicted air temperature with significant
coefficients (p < 2e− 16 and p = 9 ∗ 10−14, for the intercept and air temperature, respectively) having small
standard errors (0.3 and 0.02, respectively). Scatterplots of observed Shasta Dam release temperature and
river temperature are slightly curved for Ball’s Ferry and Jelly’s Ferry (Figure: 4.33), which indicated that a
polynomial model could be the best fit. A positive correlation between month and downstream temperature
was visualized with the raw monthly Sacramento River temperature and Shasta Dam release temperature
observations (Figures 4.31 and 4.32).
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Figure 4.31: Sacramento River Temperature Measurements per Sacramento River Mile (CDEC, 2017). Each
line is a year of observation.
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Figure 4.32: Sacramento River Temperature Measurements per Sacramento River Mile (CDEC, 2017). Each
line is a year of observation.
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Figure 4.33: Sacramento River Temperature Measurements at Ball’s Ferry (river mile 276) and Jelly’s Ferry
(river mile 266) given Shasta Dam release temperature (river mile 311) (CDEC, 2017). Each point is a
month of observation.

With a Generalized Linear Model the square of the numeric month (e.g., January =1) and Shasta
Dam release temperature predicted downstream location temperature with a large (107) and significant
(p < 2.2 ∗ 10−16) F-statistic. Coefficients’ t-values (how many standard deviations the coefficients are away
from zero) are all significant, they are unwieldy (5, 11 and 3, for the intercept, temperature and month,
respectively). The linear model predicting the temperature at each gauging location based on month and
Shasta release temperature was less significant with significantly lesser adjusted correlation (0.09) and even
larger, more unwieldy, coefficients. Explaining downstream river temperatures exclusively by Shasta release
temperature, and not month and temperature, was the selected method because predicting downstream
temperatures solely from release temperature lost no model explanatory power and gained savings in com-
putational time requirements.

The relationship between Shasta temperature release and Keswick temperature (not flow-weighted tem-
perature releases) is essentially a perfect 1:1 fit (p < 2.2 ∗ 10−16). Clear Creek temperature is predicted
by Shasta Dam release temperature significantly with and without month in the Generalized Linear Model;
both have a small residual error (0.5 ◦F) and very strong positive correlation (adjusted r=0.96).
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Figure 4.34: Sacramento River Temperature Measurements at Keswick Dam (river mile 302)given Shasta
Dam release temperature (river mile 311) (CDEC, 2017). The lines are the true regression line.

For Ball’s Ferry, the adjusted r-square value and residual standard error remain the same as when month
is included as a control variable. The result has a positive correlation of 0.6 and a residual error of 1.8
◦F. With just temperature, the F-statistic also doubles and remains significant (p < 2.2 ∗ 10−16), with
coefficients that have significant t-values. Jelly’s Ferry is similarly explained by just release temperature
rather than month and release temperature. The residual standard error is 1.9 ◦F, the adjusted r=0.6,
and the model significant, with or without month. Not only does it make sense statistically to rely only
on release temperature to estimate downstream temperature, but it also makes sense conceptually. Shasta
release temperature is a function of release flow and release temperature, which both depend on reservoir
volume temperature and volume, all of which endogenously capture month (certain volume combinations
and warm pool temperatures only occurs in certain months), even though no statistical or computational
power is gained by including month exogenously.

Plots of residuals at each location indicate that each of these Generalized Linear Models are accurate.
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Figure 4.35: Residuals and analysis of the residuals from predicting Clear Creek river temperature given
Shasta Dam release temperature.

Figure 4.36: Residuals and analysis of the residuals from predicting Ball’s Ferry river temperature given
Shasta Dam release temperature.
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Figure 4.37: Residuals and analysis of the residuals from predicting Jelly’s Ferry river temperature given
Shasta Dam release temperature.

4.9.2 Monthly optimized Release Guides

Release plots were created for each combination of warm and cold pool releases per month with curtailment
levels of 30%, 50%, and 75% at the operational scale of 100 taf. The list of cold and warm pool combinations
during the stratified season, moving from left to right along the x-axis, is below the figures. Optimized
release schedules all generated with initial storage conditions of 100 taf of only cold pool at the beginning of
April. With this initial condition, with curtailments of 75%, all optimized release choices result in achieving
long-term full cold habitat goals of 13 river miles for the full April - March planning cycle. With 50% or
25%, all release choices result in achieving long-term habitat 0 miles of cold river habitat over the long-term.
This means that the volume of cold water released during March is less likely to achieve a downstream
temperature target with lower curtailments for the long-term not for just that month alone. That is why if
the temperature goal reads as ”0” in March for one set of curtailments, and ”13” for another, with the exact
same release choice - because the long-term effect of these release choices is different. With high curtailments
many release choices drain the reservoir in February and March, and to a lesser but still meaningful extent,
May, June and July. Conserving storage throughout the fall months to prepare for February likely will bring
large conservation benefits, for the long-term.
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Figure 4.38: Cold river miles achieved over the long-term with optimized release schedules in May with 75%,
50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.39: Cold river miles achieved over the long-term with optimized release schedules in June with 75%,
50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.40: Cold river miles achieved over the long-term with optimized release schedules in July with 75%,
50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.41: Cold river miles achieved over the long-term with optimized release schedules in August with
75%, 50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.42: Cold river miles achieved over the long-term with optimized release schedules in September
with 75%, 50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.43: Cold river miles achieved over the long-term with optimized release schedules in October with
75%, 50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.44: Cold river miles achieved over the long-term with optimized release schedules in November with
75%, 50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.45: Cold river miles achieved over the long-term with optimized release schedules in December with
75%, 50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.46: Cold river miles achieved over the long-term with optimized release schedules in January with
75%, 50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.47: Cold river miles achieved over the long-termwith optimized release schedules in February with
75%, 50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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Figure 4.48: Cold river miles achieved over the long-term with optimized release schedules in March with
75%, 50%, and 30% (top, middle, and bottom, respectively) curtailment on deliveries.
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5 Dissertation Conclusion

Current literature on reservoir operations and environmental flow neglect temporal persistence in outcome
variables (e.g., cold water habitat) even though ecosystems often have memory and reservoir storage and
wildlife survival almost always involve correlated processes across time steps. If, one month’s reservoir
releases make the river uninhabitable and deplete storage, or if a large cold release leaves no cold water in
the reservoir, future ecological outcomes will be harmed. Behavioral economics describes managing this
problem as ”regret avoidance” for which an agent’s current decisions have a backward looking component
that ”avoids information which threatens to cast a past decision into an unfavorable light [Krähmer and
Stone, 2005]” such that ”you should choose the option that minimizes the regret you will feel at the end
[Halpern and Leung, 2016].” We adapt this idea to reservoir operations - that an operator will ”regret”
”wasting” water from storage if later period releases have less benefit. To avoid regrettable decisions, two
approaches are taken: a) apply a maximin operator to the objective function and maximize downstream
temperature benefit while minimizing worst-case outcomes, and b) add an environmental state variable
to the objective function (like fish population) and optimize releases to maximize this benefit (e.g.,
fish population size). The environmental benefit function could be based on different environmental
flow methods using different biological or downstream targets such as habitat, insect and bird survival,
groundwater recharge, or even a multi-objective model to benefit multiple species and/or ecological goals:
the environmental hedging principles and mathematics across time steps would remain the same.

Operating with environmental hedging logic maximizes system river benefit, but minimizes the risk of
storage depletion and multi-year failure. For monthly environmental flow releases, it enables operational
decisions to consider releases for biological objectives, and to weigh trade-offs among storing or releasing
water for different cohorts for different water year types and different storage limits. The hydrologic
forecasting in the model can allow for realistic decisions for long-term planning of an unknown future
and short-term planning with adaptation as inflow information becomes known. Operating with the
regret avoidance logic for temperature control requires maximizing delivery of cold water habitat and
other water supply deliveries, but minimizing multi-year storage depletion or unsustainable monthly cold
water releases. A maximin dynamic program, in concert with delivery curtailment and a monthly-varying
temperature goal to a constant downstream location, implement this logic. When applied to Shasta
reservoir, it could improve reservoir operations for the Sacramento river below Shasta Dam as well as
other large dams faced with managing drought, temperature, and long-term risk. With the environmental
hedging algorithm, it is likely that more Fall-run Chinook could be saved below Folsom Dam, with
less water. Developing reservoir release schedules with the logic of sometimes curtailing deliveries and
downstream temperature and/or riverflow goals now, to maximize net deliveries and temperature goals
for the long-term, could likely hedge the risk of drought and unsustainable delivery of cold water habitat
for temperature management in reservoirs. Looking to this re-operational approach before making major
infrastructural changes such as dam expansion or new off-site storage could save resources, time, water,
and fish. The mathematics and logic of such cold water hedging operations can be related more directly
and conventionally to reservoir hedging for water supply, hydropower, drought management, and flood
control.
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6 Summarized Dissertation as a Policy Memo
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To: Central Valley Operations Unit, Bureau of Reclamation 

Regarding: Temperature Management in Reservoirs with an illustrative example 
of Shasta Reservoir Temperature Management 
From: Lauren Adams, Center for Watershed Sciences, University of California-Davis & Planning 
Division MP-700, Bureau of Reclamation 
 

A strategy is proposed for optimizing short and long-term temperature management in 
reservoirs. Similar to financial hedging, hedging for temperature management reduces the 
likelihood of large losses and gains by avoiding greedy operations and by carefully incurring small 
losses. Model results found that hedging releases for temperature and flow management of 
Shasta reservoir might protect against long- and short-term drought-driven reservoir depletion 
and ecosystem catastrophe. These results stem from exploratory model runs done for my 
dissertation; more research is needed. 
 
Drought Hedging: A Strategy for Long-Term Temperature Management in Reservoirs 
Five operating strategies make up "drought hedging," for temperature management.   
 

• Seasonal river temperature hedging reduces early season releases to ensure sufficient 
cold and total water availability late in the season.   

• Annual river flow hedging hedges releases to provide consistent downstream delivery 
and curtails releases in early drought years to save stored water for a potentially long 
drought   

• Monthly-varying downstream temperature targets conserves storage and mimics 
biological, e.g., fish, downstream demand and the natural regime to make more 
ecologically effective use of cold water  

• Annually-varying downstream temperature target locations conserves surplus storage 
with constant, achievable and ecologically-consistent downstream targets  

• Abandon hopeless causes abandons months and years for which the ecosystem almost 
certainly lost, e.g., there is a negligible fish population size, or there is not enough 
incoming cold or total storage to support short and long-term downstream demand and 
ecosystem function  

 
Operating with drought hedging math and philosophy differs from a greedy operating policy. 
A greedy operating policy maximizes current temperature benefits but not seasonal or over-
year benefits.  

 
Drought Hedging versus Greedy Policy 
A numerical example demonstrates the value of operating reservoirs with drought hedging 
versus operating with a greedy operating policy. Hedged reservoir operation results were 
modeled with a maximin stochastic dynamic program (maximizing worst-month performance for 
consistency). Greedy policy operations are modeled with a greedy stochastic algorithm 
(maximizing average immediate benefits).  
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Figure 1: Example comparison of Temperature Performance with      
  Greedy and Hedging Operations for Drought. Probability of  
  achieving a downstream cold habitat target for a range of  
  weather conditions and a full range of initial April storage  
  conditions (empty to full capacity). 

 
 
 
 
 
 
 
 
 
A Temperature Management Strategy for Shasta Reservoir 

• Hedge seasonal river temperature and annual river flow to maximize the minimum 
monthly habitat consistently with a maximin stochastic dynamic program.  

• Create habitat to support ecological function, particularly for the federally protected 
Winter-run Chinook.  

• Operate to meet monthly-varying downstream temperature targets that mimic 
temperature requirements of each life history stage of the Winter-run Chinook. 

• Operate to meet a consistent, achievable downstream target at Clear Creek. On 
average, ninety-five percent of Winter-run Chinook spawn above Clear Creek. Providing 
cold water habitat until Clear Creek requires the same volume as meeting Ball's Ferry or 
Jelly's Ferry cold water location targets: 300 TAF of cold pool and 500 TAF of warm pool 
volume of water.  

• Curtailing downstream deliveries early in drought is highly effective for avoiding flow 
and temperature habitat failures, and storage depletion. When early curtailments are 
made, there are no years when abandoning operations is needed, even with the 
expectation of extreme drought. 

• Abandon months when insufficient cold or total water storage is available for that 
season, or insufficient fish are present to merit cold habitat conditions. 

• It may be advisable to always curtail releases in April for temperature management for 
the long-term; between 2003-2018 Winter-run Chinook fish count surveys only found an 
expected 3 spawning fish in April below Shasta Dam. 

• Avoid a greedy strategy. Greedy policies often put downstream temperature habitat at 
risk. A greedy strategy for Shasta reservoir would maximize current but not long-term 
river and reservoir benefits. Cold water habitat length and temperature would be 
maximized to Jelly's Ferry with a constant cold water temperature to incubate eggs for 
the entire stratified season, independently of the existing fish population size. Months 
or years would never be abandoned for any reason. 

Drought Hedging Policy 

Greedy Policy 
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Expected Shasta Reservoir Temperature Management Results 
When Shasta reservoir is operated for temperature control and downstream delivery objectives, 
the system always fails under drought requirements unless deliveries are curtailed. With enough 
delivery curtailments and operating with a hedging strategy, even with extreme drought, the 
system is operational and achieves temperature targets when initial storage is above deadpool, 
for multiple years. With the greedy policy, incoming storage above 2.1 million acre feet is 
required to sustain operations during a three-year drought, even when curtailing deliveries by 
75%.  
 
Without downstream deliveries, there is always enough cold and total water in Shasta reservoir 
to achieve downstream long-term temperature targets unless initial April storage is below 
deadpool, so it does not matter whether a drought policy or greedy policy is selected.  
 
In a year of extreme drought, operating with a hedging strategy is expected to save about 2,000 
Winter-run Chinook, which is about 130% more than operating with a greedy policy.  
 
Employing a drought hedging strategy could save the system from requiring additional reservoir 
capacity, either off-site or with a raise, for temperature management of the Sacramento River.  
 
The research, conclusions and findings here come from Lauren Adams’ dissertation research at 
the University of California-Davis, Department of Civil and Environmental Engineering. Now 
Lauren Adams is employed as a Modeler/Civil Engineer with the Planning Division at the Bureau 
of Reclamation, MP-700, Sacramento Office, phone number: 916.978.5064.  
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