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Abstract 
Consumptive water use by crops, often referred to as evapotranspiration (ET), is a substantial 
element of an agricultural region’s water balance. In the Sacramento-San Joaquin Delta of 
California, ET data can inform water resource management in a region with coexisting demands 
for agriculture, cities, the environment, and inter-basin transfers through large-scale water 
projects. Established methods for the estimation of ET include two-step crop coefficient 
approaches and computational models which process remotely sensed data from satellites to 
estimate ET on larger spatial scales based on vegetation characteristics and energy flux data. 
Though ET estimation methods are well-documented in the literature and have been applied 
globally, there are few comparisons of estimation methods which discuss the impacts of using 
different methodologies and input datasets to quantify ET in a region. Furthermore, to date few 
studies have used multiple methods, field-measured data, and land use surveys to inform water 
management in a region as complex and important as the Delta. 

This thesis advances analysis and insights from a comparison of seven established ET estimation 
models which was previously reported by the Center for Watershed Sciences at the University of 
California Davis (available at https://watershed.ucdavis.edu/project/delta-et). It covers 
agricultural and non-agricultural lands in the 679,594-acre Delta Service Area in the 2015 and 
2016 water years (October 2014 through September 2016). Land use survey data was used to 
analyze monthly ET estimates at 30-meter resolutions, and a field meteorological campaign was 
also done to estimate ET from bare soil, alfalfa, corn, and pasture using surface renewal, eddy 
covariance, and water vapor flux stations. The total estimated ET from agricultural lands in the 
Delta was about 1.44 million acre-feet (MAF) in 2015 and 1.38 MAF in 2016, with all seven 
models within 12% of the ensemble mean and averaging an absolute difference of 6% for both 
years. While most of this consumptive use originated from the primary crops in the Delta 
(alfalfa, corn, pasture, and to a lesser degree almonds, tomatoes, and vineyards), increased fallow 
lands in 2016, open water, and non-agricultural vegetation were also estimated to consume large 
amounts of water. A detailed comparison between model estimates on satellite overpass days 
over fourteen two-acre sites revealed that methodological similarities and common input datasets 
encouraged agreement among models, but the operator judgement and unique assumptions of 
each model will frequently cause systematic, regional, and temporal differences between 
estimates. Field-based ET estimates at the same sites were generally lower than model estimates, 
with a mean bias of -1.2 mm/d and a RMSE of 2.1 mm/d, suggesting that microclimates and 
other factors unique to the Delta and not factored into models may impact crop ET. 

Some policy implications arise for enhancing collaborative modeling and measurement of ET in 
California. These include the potential use of ET data to supplement manual diversion reporting, 
assist with precision irrigation scheduling, inform water management for ecological restoration, 
and improve the accuracy of data inputs to models for groundwater management, water quality, 
environmental protection, and inter-basin transfer operations. A preliminary study comparing ET 
estimates to reported diversions Delta-wide showed strong agreement in timing and magnitude 
for several islands and large regions of the Delta. With additional data on local conditions and 
the places and nature of us of water rights, remote ET estimates may help reduce reporting 
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burdens and streamline water rights administration. Continued and improved land use surveys, 
field measurement stations, model cooperation and comparison, and a collaborative state 
consortium to advance ET estimation science and applications in California are recommended 
and to expand the use of consumptive use data in water resource management. 
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1. Introduction 

Consumptive use in water systems is the quantity of water not returned for reuse elsewhere via 
surface runoff or deep percolation into groundwater. Evapotranspiration (ET), the combination 
of water evaporated from the soil and transpired from plants (Womach, 2005), is often the 
predominant consumptive water use from agriculture or natural vegetation, so consumptive use 
and ET are often used interchangeably. ET and consumptive use are measured in linear units 
over time (here in millimeters per day, mm/d), which can be multiplied by land area and time to 
calculate a volume of water (here in acre-feet, AF, or thousand acre-feet, TAF). 

Because consumptively used water is subtracted from the water balance of a watershed and is not 
available for other uses, a variety of parties are interested in the estimation of ET. 
Quantifications of ET may help farmers schedule irrigation to meet crop water needs, manage 
soil moisture, determine leaching requirements, and anticipate runoff. Water managers use ET 
data to in the calculation of stream depletions, basin outflow, groundwater recharge, and other 
hydrologic and hydraulic elements. Other agencies or regulators may also use ET estimates to 
compute water available for market trading (Hanak et al., 2011) or to administer water rights by 
estimating actual use (Allen et al., 2005a). In the Sacramento-San Joaquin Delta (“Delta”) of 
California, a region with many water needs facing complex challenges (Hanak et al., 2013), an 
understanding of consumptive water use is critical for the allocation of agricultural water, 
management of inter-basin transfer operations, water quality model calibration, and 
environmental habitat and species protection. This objective of this thesis was to develop a better 
understanding of consumptive water use in the Delta by coordinating the modeling, 
measurement, and comparison of ET across a variety of independent research and estimation 
efforts. 

The science of ET estimation has developed field-based methods using meteorological 
measurements and empirical desktop approaches for specific crops. Abtew and Melese (2012) 
describe ways of measuring and calculating ET from crops and other natural and manmade 
systems in a watershed; direct field ET measurement methods include lysimeters and eddy 
covariance, while field-based estimates can be made using surface renewal, pan evaporation, or 
other of micrometeorological techniques. Two-step or so-called “crop coefficient” estimation 
methods involve measured inputs and empirical approximations, including pan method with 
coefficients, temperature-based methods such as Thornthwaite, Blaney-Criddle, and Hargreaves-
Samani, and radiation-based methods such as Abetew, Priestley-Taylor, Turc, solar radiation 
maximum temperature, and mass transfer. Crop coefficient approaches also include more 
complex methods based on a physical model, including Penman and Penman-Monteith (Allen et 
al., 1998). Satellite images and observations of energy fluxes to and from the earth’s surface 
have made large amounts of spatial data available, allowing the estimation of ET at large scales 
using so-called “remote sensing” techniques based on a combination of meteorological inputs, 
specific assumptions, and empirical methods (Kustas and Norman, 1996). Established remote 
sensing models include the Surface Energy Balance for Land (SEBAL), the Surface Energy 
Balance System (SEBS), Mapping Evapotranspiration at High Resolution with Internalized 
Calibration (METRIC), Satellite Irrigation Management Support System (SIMS), and others. 
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Some simple models work for applications in which meteorological and other data are limited, 
but more data and computational power may facilitate adoption of more complex and accurate 
methods. 

The study described in this thesis involved the direct comparison of ET estimates from field 
methods, two-step approaches, and several remote sensing models for two years over a large and 
predominantly agricultural region of California. Similar efforts have been made to various 
degrees in scientific literature. Kite and Droogers (2000) compared ET estimates from nine 
methods (including two field stations, two crop coefficient approaches, two hydrologic models, 
and three remote sensing models with common input datasets) in western Turkey. Sörensson and 
Ruscica (2018) completed a large comparison of seven ET estimation methods (two remote 
sensing approaches and five land surface models) over nine regions of South America. 

Other studies have made related remote sensing or field data comparisons with implications for 
ET estimation. Fisher et al. (2008) compared global remote sensing-based estimates of ET to 
field measurements at 16 sites. Alexandridis et al. (2009) developed a customized remote 
sensing-based ET estimation approach for Greece and compared its results to a crop coefficient-
based approach. Itenfisu et al. (2003) and Alkaeed et al. (2006) compared the results of various 
methods for computing grass or alfalfa reference evapotranspiration using common input field 
data, while Senatore et al. (2015) compared multiple remote sensing approaches for reference ET 
calculation. Comparisons of individual energy balance components, rather than the resulting ET 
estimates, from field sites and remote sensing approaches were made by Timmermans et al. 
(2007), Choi et al. (2009), and Paiva et al. (2011). 

In the Delta, Medellín-Azuara and Howitt (2013) demonstrated a proof-of-concept study for 
comparing crop consumptive water use data, including one remote sensing model and two crop 
coefficient-based approaches over about 36,000 cropped acres on five islands. Szilagyi and Jozsa 
(2018) recently used historic field measurements and empirical soil-air relationships to map and 
compare ET trends across California’s Central Valley from 1979-2015. 

This thesis summarizes a unique approach to comparing ET estimation methods for an applied 
water management problem, covering a large area with a variety of land uses over two years. 
Multiple estimation methods, including crop coefficients, remote sensing, and multiple types of 
field stations were integrated, and collaboration yielded results with generally high agreements 
between model estimates. The impacts of method assumptions on ET estimates at small spatial 
and temporal scales were examined, field findings suggested unique meteorological conditions 
potentially not incorporated in models, and further recommendations were made on the use of 
remote ET estimates by water managers in California. These include precision irrigation 
scheduling, groundwater model improvement, basin-wide accounting, environmental 
management, and water rights administration.  

A potential application of consumptive use estimates to water rights administration was included 
in this thesis. Siegfried et al. (2014) previously showed that remote estimates of ET, combined 
with a physical model, could be used to predict diversions and return flows from areas in the 
Delta. Their study required significant ground-truthing and high-resolution data to model two 
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islands, and the results showed promise when compared to historic measurements and other 
models. A more robust Delta-wide analysis was done here to compare ET data to actual 
diversions reported by water users over the same period. For some Delta islands and larger 
regions, favorable correlation between ET and reported diversion was found in both timing and 
magnitude. Results suggest that remotely-estimated ET values show strong promise to aid in the 
administration of water rights in the Delta. Further examination of local conditions, 
documentation of water uses, and data collection on irrigation technology, land cover, and places 
of use would improve this analysis and likely expand the application of consumptive use 
information for water management, planning, administration, and enforcement. 

This thesis summarizes, discusses, and extends a collaborative effort of numerous researchers 
(see Acknowledgements). Considerable portions of it were previously reported to the Delta 
Watermaster’s Office by Medellín-Azuara et al. (2018), and figures and information reproduced 
from that technical report are noted. This thesis expands upon those efforts and presents 
additional data, analyses, and applications of consumptive use information to water resource 
management in the Delta. 

2. Study Area and Methods 

The comparative study was done in the Sacramento-San Joaquin Delta for the 2015 and 2016 
water years (October 2014 through September 2016). Two years of land cover data overlay and 
support evapotranspiration estimates, aiding comparisons across seven established methods and a 
field measurement campaign at 18 different sites and four different land uses (Paw U et al., 
2018). The following sections describe the study area and its land uses, the different models 
compared, the field campaign, and the methods employed to compare models and field data. 

2.1. The Sacramento-San Joaquin Delta and Land Use 

The Sacramento-San Joaquin Delta (“Delta”) is the confluence of California’s Central Valley, 
with the Sacramento River flowing from the north and the San Joaquin River in the south. Their 
waters mix in a series of channels separated by islands and levees, eventually discharging west 
through the Carquinez Strait into San Francisco Bay and the Pacific Ocean. The Delta estuary 
system provides habitat for native species, water for irrigation and urban use within its boundary, 
and is the main transfer hub for California’s interconnected water supply system (Hanak et al., 
2013). 

Since 1965 the California Department of Water Resources (DWR) has defined boundaries of the 
Delta Service Area as areas irrigated from channels in the Delta, though its official boundaries 
were defined as the slightly larger Legal Delta by the 1959 Delta Protection Act (DWR, 2017a). 
The DSA covers 679,594 acres of generally congruent land and water surface and was the 
primary area addressed in this study; the Legal Delta covers 737,625 acres. Both Delta areas are 
shown in Figure 1. 

Since 1950, DWR (2018d) has done land use surveys of portions of California to quantify crops 
grown in various regions. In 2015 and 2016, vector land use maps were developed to define field 
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boundaries and true irrigated area in the Delta during the primary growing season; a 2-by-2-
meter resolution was obtained from the Pleiades satellite in July 2015, and National Agricultural 
Imaging Program (NAIP) imagery at a 0.6-by-0.6-meter resolution was used in May-July 2016 
(Land IQ, 2018). The datasets, which were rasterized to match the resolution of remote sensing 
models for this study, classify all lands within the Delta into 36 categories, 28 of which were 
considered agricultural for this study. Delta land uses in 2015 and 2016 are mapped in Figure 1 
and summarized in Table 1. 

Figure 1 and Table 1 show that the Delta’s landscape was roughly 70% agricultural in 2015, 
covering about 477,690 acres, which decreased by 2% to 464,742 acres in 2016. Non-
agricultural lands correspondingly increased from 201,904 acres in 2015 to 214,852 acres in 
2016. The dominant crops in the Delta in both years were corn, alfalfa, and pasture, though 
fallow fields became the largest land cover in 2016 (likely driven by land preparation for the 
planting of permanent crops) and semi-agricultural or right-of-way areas also covered large 
areas. Other major crops included grape vineyards, tomatoes, rice, almonds, and other field and 
vegetable crops. Major non-agricultural land use classes were urban areas, open water, and 
upland herbaceous zones. 

The major land use changes from 2015 to 2016 include decreases in alfalfa, corn, and pasture 
(about 36,000 acres in total, 5% of the DSA), increased fallow land (about 29,000 acres, 4% of 
the DSA), increased almond and safflower planting (about 16,000 acres in total, 2% of the DSA), 
and decreases in tomatoes, truck crops, wet herbaceous/sub-irrigated pasture, and other 
deciduous crops (about 26,000 acres in total, 4% of the DSA). An analysis of lands which 
changed uses from 2015-2016 showed that the largest shifts were the fallowing of corn (about 
19,200 acres), tomatoes (about 13,700 acres), alfalfa (about 9,200 acres), and truck crops (about 
4,800 acres), the planting of corn and safflower on fallow lands (each about 5,100 acres), the 
shift from other deciduous plants to almonds (about 4,200 acres), and the conversion of pasture, 
fallow, and wet herbaceous/sub-irrigated pasture lands to upland herbaceous areas (about 6,900, 
1,500, and 1,200 acres, respectively). Some reported land use shifts may suggest improvements 
in remote land cover interpretation rather than actual land use changes. 
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Figure 1: Land uses in the Delta, 2015-2016 (Medellín-Azuara et al., 2018). 
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Table 1. Land uses in the Delta Service Area, 2015-2016 (Medellín-Azuara et al., 2018). 

Commodity 
(* denotes agricultural land use) 

2015 2016 
Acres Percent of DSA Acres Percent of DSA 

Alfalfa* 74,267 10.9% 64,946 9.6% 
Almonds* 5,216 0.8% 13,275 2.0% 
Bush Berries* 1,202 0.2% 1,255 0.2% 
Cherries* 2,094 0.3% 2,876 0.4% 
Citrus* 9 0.0% 6 0.0% 
Corn* 91,712 13.5% 70,845 10.4% 
Cucurbit* 3,984 0.6% 3,047 0.5% 
Fallow1* 51,856 7.6% 80,801 11.9% 
Floating Vegetation 3,526 0.5% 2,720 0.4% 
Forage Grass* 4,466 0.7% 6,727 1.0% 
Olives* 1,474 0.2% 1,531 0.2% 
Other Deciduous* 7,702 1.1% 1,744 0.3% 
Pasture* 48,097 7.1% 42,418 6.2% 
Pears* 5,945 0.9% 5,524 0.8% 
Pistachios* 146 0.0% 266 0.0% 
Potatoes* 4,115 0.6% 3,823 0.6% 
Rice* 7,630 1.1% 7,953 1.2% 
Riparian Native Vegetation 21,700 3.2% 22,799 3.4% 
Safflower* 5,904 0.9% 13,581 2.0% 
Semi-Agricultural/ROW2* 48,467 7.1% 48,240 7.1% 
Sunflower* 33 0.0% 252 0.0% 
Tomatoes* 36,248 5.3% 25,127 3.7% 
Truck Crops* 9,557 1.4% 2,620 0.4% 
Turf* 2,137 0.3% 2,093 0.3% 
Upland Herbaceous3 54,379 8.0% 63,446 9.3% 
Urban 62,227 9.2% 62,688 9.2% 
Vineyards* 36,996 5.4% 37,339 5.5% 
Walnuts* 3,469 0.5% 5,261 0.8% 
Water 60,072 8.8% 63,045 9.3% 
Wet Herbaceous/Sub-Irrigated Pasture4* 24,964 3.7% 22,614 3.3% 
Other Crops5* - - 729 0.1% 

TOTAL 679,594 100% 679,594 100% 

1 Agricultural lands that show evidence of recent cultivation (past 1-2 seasons) but were not planted with a crop at 
the time of survey. Actual surface cover varies and may include bare tilled soil, leftover crop residue, or weeds. 

2 Rights-of-Way, includes areas associated with crop cultivation but outside field perimeters (i.e. farmsteads, ditches, 
fence lines, etc.), roads, levees, transmission lines, and other farm, residential, or commercial/industrial facilities. 

3 Natural vegetation areas with dry soil moisture regimes caused by deeper groundwater conditions or better 
drainage, including rangeland, annual grassland, oak woodland, and scrub. 

4 Natural vegetation areas with wetter soil moisture conditions that are not within a riparian corridor (i.e. marshlands 
and meadows). Sub-irrigated meadows and irrigated or sub-irrigated pastures may share similar characteristics, so 
these lands may oscillate between being classified under this category or pasture depending on land management. 

5 Includes Asparagus*, Carrots*, Eucalyptus, Nursery, Sudangrass, and Young Orchard*, which were only included 
in the 2016 survey. Any land planted with those crops in 2015 was included in another category. 
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2.2. Consumptive Water Use Models 

Seven established methods or models which use remotely-sensed data, satellite imagery, and 
field measurements to estimate ET were compared by Medellín-Azuara et al. (2018). Estimates 
were developed by respective research teams and results were submitted for separate analysis by 
an independent research team from the Center for Watershed Sciences at the University of 
California (UC) Davis. The seven methods developed and applied by a variety of academic and 
governmental research organizations were: 

 CalSIMETAW: California Simulation of Evapotranspiration of Applied Water, by DWR. 
 DETAW: Delta Evapotranspiration of Applied Water, by DWR. 
 DisALEXI: Disaggregated Atmosphere-Land Exchange Inverse method, by the U.S. 

Department of Agriculture Agricultural Research Service (USDA-ARS). 
 ITRC-METRIC: Mapping Evapotranspiration at High Resolution with Internalized 

Calibration (METRIC) method, applied by the Irrigation Training and Research Center 
(ITRC) at California Polytechnic State University (Cal Poly) San Luis Obispo. 

 SIMS: Satellite Irrigation Management Support System, by the National Aeronautics and 
Space Administration Ames Research Center (NASA-ARC) and California State University 
Monterey Bay (CSUMB). 

 UCD-METRIC: METRIC method, implemented by UC Davis. 
 UCD-PT: Priestley-Taylor optimized approach, by UC Davis. 

2.2.1. Study Approach and Data Sources 

ET estimates were developed with improvements developed through collaboration over a two-
year study. An interim report (Medellín-Azuara et al., 2016) summarized the results of a “blind” 
comparison, with all seven models submitting ET estimates for 2015 with access only to the 
2015 DWR land use data and common reference ET datasets. Following the release of the 
interim report, the 2016 land use data, and field data for fallow fields in 2015 and alfalfa, corn, 
and pasture fields in 2016, models were permitted to make methodological improvements and 
final updated results were submitted for both 2015 and 2016. Final results presented by 
Medellín-Azuara et al. (2018) are replicated here, reflecting model improvements, lessons from 
the initial blind data comparison, and access to the two years of field campaign and land use 
data. Estimates prior to the final submissions are not reported here. 

Final model ET estimates were developed for the 2015 and 2016 water years (from October 1, 
2014 to September 30, 2016), and input datasets to the models were standardized where possible. 
Land use information for the Delta were sourced from DWR’s 2015 and 2016 land use datasets 
(Land IQ, 2018). Grass reference evapotranspiration (ETo) data was sourced from the California 
Irrigation Management Information System (CIMIS) maintained by DWR, specifically the 
Spatial CIMIS dataset developed by Hart et al. (2008). Spatial CIMIS uses satellite observations 
from the NOAA Geostationary Operational Environmental Satellite (GOES) to interpolate data 
from over 130 CIMIS field stations and cover California with a 2-by2-km resolution grid of data 
at a daily interval. ETo values are calculated using the ASCE version of the Penman-Monteith 
equation (EWRI-ASCE, 2005). Spatial CIMIS data for the Delta was developed with data from 
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15 CIMIS stations in the vicinity, five of which (242-Staten Island, 243-Ryde on Grand Island, 
247-Jersey Island, 248-Holt on Roberts Island, and 249-Ripon) were deployed within the Delta 
as part of this study to improve accuracy for the 2016 water year. ETo values from specific 
CIMIS stations, calculated from a modified form of the Penman-Monteith equation following 
Temesgen and Eching (2013), were used for comparison to the field campaign data. 

The five remote sensing-based methods (DisALEXI, ITRC-METRIC, SIMS, UCD-METRIC, 
and UCD-PT) used primarily Landsat 8 multispectral imagery (rows 33 and 34 of path 44) at 30-
meter resolution in 16-day intervals to derive ET estimates. To increase temporal frequency, 
DisALEXI, ITRC-METRIC, and SIMS also used Landsat 7 satellite data after filling Scan Line 
Corrector (SLC) gaps. All remote sensing methods except for SIMS used Landsat thermal 
imagery, sharpened from 100 to 30-meter resolution using their own selected methods. The 
different methods chose Landsat images at their discretion, typically using clear sky scenes with 
minimal cloud obscuration. On average, remote sensing models used two overpass dates in water 
year 2014 (usually for interpolation of early water year 2015 data), nine dates from water year 
2015 (roughly one successful overpass a month), 18 from water year 2016 (roughly one 
successful overpass every three weeks), and two from water year 2017 (primarily for 
interpolation of later water year 2016 images). Overpass dates were more frequently used by 
models in March through December, when images from California’s Central Valley are less 
likely to have clouds (Jankowski et al., 2018). 

Some methods such as DisALEXI, SIMS, and UCD-PT utilized additional satellite data from the 
Moderate-Resolution Imaging Spectroradiometers (MODIS) and other sources. Though no 
specific error analysis was conducted by models as part of this study, available ranges of errors 
based on prior applications are cited below. Kite and Droogers (2000) suggested uncertainties 
between 32 and 52% in estimating ET from an energy balance residual approach, though 
improvements in remote sensing techniques and data availability have increased considerably 
since then. 

2.2.2. CalSIMETAW 

CalSIMETAW is a crop coefficient-based tool developed by Orang et al. (2013) and used by 
DWR to determine potential crop evapotranspiration (ETc) for 26 different land use categories 
statewide for use in developing California Water Plan Updates. Crop coefficient (Kc) values 
determined by regional farm advisors or sourced from available literature, ETo data from Spatial 
CIMIS, air temperature data from the Parameter-elevation Regressions on Independent Slopes 
Model (PRISM), and other climate data from National Climate Data Center (NCDC) stations are 
ingested to develop daily ETc estimates either at a 4-km resolution or for each of the 482 
Detailed Analysis Units and Counties (DAU-COs) across the state; six of these DAU-COs fall 
within the Delta. The model can also calculate evapotranspiration of applied water (ETaw) using 
soil water holding capacity and depth information from the USDA Soil Survey Geographic 
(SSURGO) database, though this data was not used in this study (Orang et al., 2018). 
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2.2.3. DETAW 

DETAW is a crop coefficient model developed by Kadir (2006) and Snyder et al. (2013) to 
estimate daily actual evapotranspiration (ETa) and inform DWR’s water balance and water 
quality models for the Delta. DETAW generates estimates for 15 different land use categories 
across 168 subareas of the DSA which generally outline major islands and upland areas. Kc 
values for either normal or dry years are taken from state crop literature, and ETo inputs for each 
subarea area are generated by spatially correcting data from the Lodi/Stockton CIMIS station. 
Spatial correction isolines, with reductions up to 20% in the east Delta and increases up to 10% 
in the west, were developed using modern CIMIS station data so that historical ETa estimates 
can be made back to 1922. DETAW also makes ETaw estimates, which were not compared in 
this study, for each subarea using a daily soil-water balance (Kadir and Liang, 2018). Since its 
initial release, DETAW was refined by Liang and Suits (2017) through multiple comparisons to 
remote sensing data, averaging an absolute 16% difference from the SEBAL platform for Delta-
wide ET over 14 months. 

2.2.4. DisALEXI 

DisALEXI is a pure energy balance model developed by Anderson et al. (2011) to use thermal 
infrared remote sensing of land surface temperature and separate soil-canopy and atmospheric 
boundary layers to produce ETa estimates at continental and 5-10-km scales. Daily estimates at a 
disaggregated 30-meter resolution were produced for this study by fusing inputs from Landsat 
and MODIS (Anderson, 2018). Though DisALEXI is a pure energy balance approach which 
does not use ETo data, it did produce assumed ETo estimates for this study. Anderson et al. 
(2011) calibrated and tested DisALEXI through applications for drought monitoring in the 
continental U.S., irrigation management in Europe, and hydrologic decision support in Africa. 

2.2.5. ITRC-METRIC 

ITRC-METRIC, developed by Howes et al. (2012), is a version of the Mapping 
Evapotranspiration at High Resolution with Internalized Calibration (METRIC) model originally 
developed by Allen et al. (2007a; 2007b). The Irrigation Training and Research Center (ITRC) at 
Cal Poly modified the original model to use a grass reference crop (ETo), incorporated different 
aerodynamic resistance and albedo computations for certain crops, and developed a semi-
automated calibration procedure. METRIC processes remotely sensed data from Landsat and 
uses an energy balance approach to develop daily average ETa estimates on overpass days at 30-
meter resolution. These are scaled to monthly average estimates by computing fraction of 
reference evapotranspiration (EToF) values and temporally interpolating with ETo data from 
Spatial CIMIS; ITRC-METRIC also developed corrected spatial ETo datasets which were not 
used for this study. The METRIC model uses land use data to correct aerodynamic wind 
resistance values for vegetation and aid the selection of reference “hot” (bare soil) and “cold” 
(well-watered grass) reference pixels in satellite images. For the Delta, a self-corrected version 
of the National Agricultural Statistics Service (NASS) Cropland Data Layer from the USDA was 
used to develop ITRC-METRIC’s ET estimates (Howes, 2018). Howes et al. (2012) used IRTC-
METRIC’s estimates to inform groundwater storage computations and irrigation efficiency 
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management in the Mexicali Valley. 

2.2.6. SIMS 

SIMS was developed by Melton et al. (2012) to aid agricultural irrigation and water management 
decisions in California by developing estimates of daily basal crop ET (ETcb) at a 30-meter 
resolution. ETcb estimates assume well-watered conditions and dry exposed soil surfaces, 
approximating a crop’s biological water demand, and were assumed to be representative of field 
conditions for the majority of agricultural land in the Delta (Melton et al., 2018). Field trials by 
Melton et al. (2012) over six years in 15 major California crops indicated that ETcb was within 
±10% of ETa for well-watered crops and ±15% overall. SIMS uses NASA’s Terrestrial 
Observation and Predictions System (TOPS) computing framework to process satellite 
observations from Landsat and MODIS to estimate fractional crop cover (Fc) and basal crop 
coefficient (Kcb) values. Land cover data were used to screen out non-agricultural areas prior to 
making estimates. ETcb was computed by multiplying Kcb values by ETo data from Spatial 
CIMIS. Melton et al. (2012) compared SIMS estimates to remote sensing estimates from SEBAL 
in the San Joaquin Valley and field-based stations in the Salinas Valley and other areas of 
California. 

2.2.7. UCD-METRIC 

UCD-METRIC follows the original METRIC energy balance approach developed by Allen et al. 
(2007a; 2007b), applied by UC Davis. The first of three models was implemented in the Google 
Earth Engine platform (Gorelick et al., 2017) to automate processing of Landsat images and 
provide some diagnostic tools. UCD-METRIC made daily ETa estimates at 30-meter resolution 
which were upscaled to monthly estimates using a proportional mean. UCD-METRIC uses an 
alfalfa reference crop (ETr) to make initial ETa estimates, but grass reference ETo values from 
Spatial CIMIS were used for spatial or temporal interpolation when necessary. A procedure to 
sharpen coarse thermal data from Landsat satellites was developed specifically for the Delta, and 
DWR’s land use data were used to correct aerodynamic resistance values for some crops and aid 
hot and cold pixel selection processes (Alexander et al., 2018). A METRIC application by Allen 
et al. (2005b) was within an absolute 15% of lysimeter ET measurements over four months, 
while Allen et al. (2005a) showed that difference increase to 30% for eight individual overpass 
days. The METRIC algorithm has been calibrated and tested in many locations in the U.S. (Allen 
et al., 2015) and around the world. 

2.2.8. UCD-PT 

UCD-PT was developed by Jin et al. (2011), following Fisher et al. (2008), to use the semi-
empirical Priestley-Taylor (PT) equation to estimate ET by approximating eco-physical 
constraints on ET as a function of crop vegetation characteristics, moisture indicators, and 
temperature. The approach originally made monthly ET estimates at a 1-km resolution by using 
MODIS satellite data and AmeriFlux tower measurements, but it was modified by Jin and Wong 
(2018) for this study to use Landsat data to develop daily and monthly ETa estimates at 30-meter 
resolution. Further improvements were made to net radiation computations, and PT coefficients 
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were optimized using field measurements over six different crops (alfalfa, almonds, citrus, corn, 
and rice) in California. These crops were identified in the Delta using DWR’s land use data, and 
a generalized PT coefficient optimization was done for other crops where no ground 
measurements were available. UCD-PT was originally applied by Jin et al. (2011) to develop ET 
estimates for the continental U.S. and was refined through calibration to additional field 
measurements as part of this study (Jin and Wong, 2018). 

2.3. Field Evapotranspiration Measurements 

In addition to the models which developed ET estimates, a series of meteorological field stations 
were deployed by the Biomicrometeorology Research Team from the Department of Land, Air 
and Water Resources at UC Davis (Medellín-Azuara et al., 2018; Paw U et al., 2018). Several 
stations were deployed in the 2015 and 2016 water years to measure weather and energy balance 
components to determine actual evapotranspiration (ETa) from selected fields in the Delta. The 
field stations computed ETa as a residual of the surface energy budget equation, which is the 
same principle upon which many remote sensing ET models are based: 

𝑳𝑬 = 𝑹𝒏 − 𝑯 − 𝑮                 (1) 

Where: 
LE = Latent energy flux (energy used in evapotranspiration) 
Rn = Net radiation 
H = Sensible heat flux (heating or cooling of the atmosphere by the surface) 
G = Ground heat flux (heat energy stored in the soil) 

Evapotranspiration is calculated as a function of latent energy flux: 

𝑬𝑻𝒂 =
𝑳𝑬

𝑳𝒗
                  (2) 

Where: 
Lv = Latent heat of vaporization (amount of energy needed to evapotranspire one unit of water) 

Ground-based meteorological measurements were made at multiple field sites to determine 
values for the elements of Equation (1) and use Equation (2) to calculate ETa. Rn was measured 
with net radiometers, and at most stations H was measured with fine-wire thermocouples using 
the surface renewal (SR) technique described by Paw U et al. (1995). At these sites it was 
assumed that daily average soil and crop temperatures changed little from day-to-day, so for 
daily ETa estimates there is negligible ground heat flux and G ~ 0. Snyder et al. (2008) 
demonstrated that high-frequency field measurements with the SR technique showed no mean 
bias compared to high-precision measurements of ETa using lysimeters. Because SR-based 
energy budget residual calculations of ETa require specific assumptions and are not a direct 
measurement of ET, SR results are referred to here as “field-based estimates.” 

At one site for each land cover type, additional sensors were employed to measure H using a 
sonic anemometer following the eddy covariance (EC) technique described by Paw U et al. 
(2000). EC stations also measured G using ground heat flux plates, soil temperature probes, and 
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additional meteorological and soil sensors. These measurements were used to develop calibration 
factors to apply to the data collected at SR sites and to estimate uncertainty with the assumption 
of negligible G on the daily scale. Hirschi et al. (2017) demonstrated that corrected eddy 
covariance-based ETa values showed errors of -7% to +5% when compared to lysimeter 
measurements of ETa on an annual basis, so values developed at EC sites are referred to here as 
“measurements” of ET. 

At one site in 2016, a Campbell Infrared Gas Analyzer and Sonic Anemometer (IRG) was used 
to directly measure ETa using high-frequency wind speed and humidity measurements, as 
described by Horst et al. (2016). IRG data were also post-processed and corrected following 
Twine et al. (2000). ETa data developed at the IRG site are referred to here as “measurements” 
of ET. Final cross-comparisons between sensors and against other standard sensors were done 
before and after the field campaign to calibrate measurements and estimate uncertainty in energy 
balance components and calculated ETa values. ETo data from Spatial CIMIS and field 
meteorological measurements from CIMIS field stations, all of which are deployed to well-
watered grass pasture fields, were also used for comparison (Paw U et al., 2018). 

2.3.1. 2015 Field Campaign on Fallow Lands 

Four SR stations and one EC station (which included SR equipment) were installed in fallow 
fields between September 7 and 9, 2015. All stations had elevations above sea level and were 
removed on October 5, 2015, resulting in less than a month of measurements. One station, D4, 
did not yield accurate or precise results in a post-deployment field calibration, so its results were 
excluded from further analysis in this study. Table 2 summarizes the field stations deployed in 
2015, and they are mapped in Figure 2. 

2.3.2. 2016 Field Campaign in Alfalfa, Corn, and Pasture Fields 

In 2016, field measurements were taken in 14 fields representing the predominant crops in the 
Delta: five in alfalfa, five in corn, and four in irrigated pasture. One station in each crop (D11, 
D12, and D13) included both SR and EC instruments, and IRG equipment was also installed in 
the alfalfa field (D13). Pasture sites D03, D04, and D05 were co-located with CIMIS stations, 
and alfalfa site D14 was co-located with the AmeriFlux site US-Tw3 maintained by Falge et al. 
(2017). Measurements began at some sites in late April 2016 in an effort to capture the peak 
growing season, with additional stations being set up through mid-August 2016. If necessary, 
corn stations were removed shortly before harvest dates in September 2016, but most remained 
in the field past the end of the 2016 water year (September 30, 2016). Table 2 summarizes the 
field stations deployed in 2016, and their locations are mapped alongside nearby CIMIS stations 
in Figure 2. 
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Table 2. Field campaign station information, 2015-2016 (after Paw U et al., 2018). 

Water 
Year 

Station 
Land 
Use 

Island/Area 
Elevation 

(ft.) 
Deployed Removed Type 

2015 

D1 Fallow Knightsen 10 9/11/2015 10/5/2015 SR 

D2 Fallow Knightsen 10 9/11/2015 10/5/2015 SR 

D3 Fallow Outside DSA 56 9/10/2015 10/5/2015 SR 

D5 Fallow Middle Roberts 3 9/9/2017 10/5/2015 SR/EC 

2016 

D01 Corn Union -5 4/19/2016 9/23/2016 SR 

D02 Alfalfa Staten -4 4/28/2016 After 9/30/2016 SR 

D03 Pasture Staten -11 5/31/2016 After 9/30/2016 SR/CIMIS 

D04 Pasture Jersey -12 6/7/2016 After 9/30/2016 SR/CIMIS 

D05 Pasture Ripon 22 6/9/2016 After 9/30/2016 SR/CIMIS 

D06 Corn Holland -12 7/13/2016 After 9/30/2016 SR 

D07 Alfalfa Bouldin -11 7/14/2016 After 9/30/2016 SR 

D08 Corn Bouldin -12 7/14/2016 9/26/2016 SR 

D09 Corn Bacon -18 7/15/2016 After 9/30/2016 SR 

D10 Alfalfa Bacon -15 7/15/2016 After 9/30/2016 SR 

D11 Corn Staten -13 4/20/2016 9/23/2016 SR/EC 

D12 Pasture Twitchell 13 6/17/2016 After 9/30/2016 SR/EC 

D13 Alfalfa Roberts 2 7/18/2016 After 9/30/2016 SR/EC/IRG 

D14 Alfalfa Twitchell -11 8/10/2016 After 9/30/2016 SR/AmeriFlux 

2.4. Comparison Method 

Evapotranspiration estimates developed by models and measured in the field varied in spatial 
and temporal resolution, as well as types of ET estimated and if estimates were made for all land 
uses. The models and field campaign are summarized in Table 3; years are reported by water 
year (September of the previous calendar year through October). 

To comparatively analyze the study results, independent results collected from models were 
standardized to 30-meter resolution, with ET estimates in the form of monthly average rates in 
mm/d or volumes in acre-feet (AF); a 30-by-30-meter pixel is about 0.22 acres and 1 mm/d over 
this area is equivalent to about 0.02 AF/acre/month (ft./month) of ET. Often an ensemble mean 
of the seven methods was computed to provide a baseline estimate of ET magnitude and examine 
when and where some models may deviate from predominant trends. 
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Figure 2. Field campaign stations and nearby CIMIS stations, 2015-2016 (Medellín-Azuara 
et al., 2018). 

Most models submitted monthly estimates for each water year as 12-band geotiff rasters with 30-
meter resolution; UCD-METRIC’s results for overpass days were averaged to the monthly scale 
by a proportional mean. CalSIMETAW and DETAW submitted daily results in spreadsheet 
format which covered a limited number of crop categories (26 for CalSIMETAW, 15 for 
DETAW) with coarser resolutions than the other models (DAU-COs for CalSIMETAW, DSA 
subareas for DETAW) within only the DSA. Their estimates were standardized for the study by 
cross-matching each of the 36 Delta land uses in Table 1 to one of their limited crop categories, 
casting ET estimates to 30-meter pixels of the corresponding crop in the corresponding 
geographic area, and averaging daily estimates to monthly results (Jankowski et al., 2018). SIMS 
did not make ET estimates for non-agricultural areas, including semi-agricultural/ROW and wet 
herbaceous/sub-irrigated pasture lands which were considered agricultural land uses for this 
study, so the ensemble mean ET of the other six models for the DSA was used to represent SIMS 
results for these pixels. 

Land use data, rasterized to 30-meter resolution to match model outputs, and ET estimates were 
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uploaded to the Google Earth Engine remote sensing cloud computing platform (Gorelick et al., 
2017) for analysis. Summary statistics for each land use class were computed for each monthly 
ET band by reducing all pixels of a given land use over a given region. The data included the 
number of cells, the mean, standard deviation, and distribution of data (9th, 25th, 75th, and 91th 
percentiles). Volumetric estimates were calculated by multiplying the average monthly ET rate 
(mm/d) by the number of days in the month and the number of cells. These monthly estimates 
and volumes over the 679,594-acre DSA were used for many of the comparative analyses 
between the seven models in this study (Jankowski et al., 2018). 

More specific comparisons required that temporal interpolation processes used by models to 
extrapolate daily estimates to monthly averages be removed. The finest timescale on which 
models made ET estimates was on Landsat satellite overpass days, when remote sensing models 
extrapolate instantaneous satellite observations to make a more “direct” estimate of daily ET. 
Among the five models, a total of 70 different overpass dates were used from water year 2014 
through 2017; a total of eight Landsat 8 overpasses were used commonly by all five of the 
remote sensing models. Models were compared in pairs only for overpass dates which both 
methods used for direct ET estimation (Jankowski et al., 2018). Though CalSIMETAW and 
DETAW do not utilize satellite data, their daily estimates on the 58 different overpass dates used 
by the five remote sensing models in 2015-2016 were assumed to be sufficiently representative 
for comparison purposes. Field data from at least one station were available for comparison on 
three of the overpass dates in 2015 and 20 of the dates in 2016 (Jankowski et al., 2018); in 2016, 
only daily average field ETa data were used for comparison since no models provided half-
hourly estimates. 

Spatial interpolation, often done to mask clouds in satellite images, was also minimized to isolate 
differences between model and the field data. Model results were averaged over small areas of 
the predominant crops in the Delta. Since alfalfa, corn, and pasture covered 26-32% of the DSA 
during the study and field stations were deployed to 14 fields of these crops during water year 
2016, these sites (Figure 2) were selected for both model and field data comparisons. 
Comparisons between models were not limited to days with field data, however. To eliminate 
small local variations, model estimates were averaged across a 3-by-3-pixel grid (8,100 m2 or 
about two acres) around each field station. It was verified that none of these pixels contained 
atypical vegetation growth or non-crop areas such as farmstead or roads. A sensitivity analysis 
was also done to compare these “grid”-scale ET estimates to ET estimates over the entire farmed 
field (“parcel,” as identified in the vector DWR land use dataset) where stations were located. 
Statistical testing suggested that that the small differences between the two datasets were not 
significant within a 95% confidence interval (Jankowski et al., 2018), so grid-scale estimates 
were used for all comparisons between model and field ET estimates. 

Comparative plots and statistics, as well as specific questions tailored to each model, were 
distributed to modeling teams by the independent analysis group. Individual meetings with each 
group helped identify key methodological differences models and the prospects for ET estimates 
converging in the future. A workshop with all study participants and other experts in remote 
sensing and ET estimation followed these discussions to resolve any remaining issues and 
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discuss findings. Jankowski et al. (2018) provided minutes from each of these meetings which 
were summarized for this thesis. 

Table 3. Summary of ET estimation models and field campaign data, 2015-2016. 

Model 
(Operator) 

Estimate 
Made 

Land Uses 
Covered 

Spatial 
Resolution 

Temporal 
Resolution 

No. of 
Landsat 

Overpasses 

Data 
Format 

CalSIMETAW 
(DWR) 

ETc 
All, in 26 
categories 

DAU-CO, 
6 in DSA 

Daily 2015-2016 NA 
Spreadsheet 
database 

DETAW 
(DWR) 

ETa & 
ETo 

All, in 15 
categories 

168 DSA 
subareas 

Daily 2015-2016 NA 
Spreadsheet 
database 

DisALEXI 
(USDA-ARS) 

ETa & 
ETo 

All 
30x30-
meter 

Daily & Monthly 
2015-2016 

4 in 2014, 
1 in 2015, 
20 in 2016, 
3 in 2017 

Geotiff 
raster 

ITRC-
METRIC 
(ITRC at Cal 
Poly) 

ETa All 
30x30-
meter 

Overpasses & 
Monthly 2015-
2016 

1 in 2014, 
12 in 2015, 
14 in 2016, 
2 in 2017 

Geotiff 
raster 

SIMS 
(NASA-Ames 
& CSUMB) 

ETcb 

All agricultural 
except semi-
agricultural/ROW 
& wet 
herbaceous/sub-
irrigated pasture 

30x30-
meter 

Daily 2016, 
Monthly 2015-
2016 

4 in 2015, 
35 in 2016, 
3 in 2017 

Geotiff 
raster 

UCD-
METRIC 
(UC Davis) 

ETa All 
30x30-
meter 

Overpasses 2015-
2016 

11 in 2015, 
10 in 2016 

Geotiff 
raster 

UCD-PT 
(UC Davis) 

ETa All 
30x30-
meter 

Daily & Monthly 
2015-2016 

4 in 2014, 
19 in 2015, 
17 in 2016, 
3 in 2017 

Geotiff 
raster 

Field 
Campaign 
(UC Davis) 

ETa 
Fallow, Alfalfa, 
Corn, Pasture 

4 sites in 
2015, 
14 sites in 
2016 

Half-Hourly 2016, 
Daily 2015-2016 

NA 
Spreadsheet 
database 

3. Consumptive Water Use Estimates 

Estimates of ET by models provide insights into the magnitude of total annual ET in the Delta in 
2015 and 2016, as well as the nature of ET from specific crops and non-agricultural land uses. 
This section presents these results for the seven models, examines general differences between 
models for various crops, compares ET estimates at various spatial and temporal scales, and 
presents the results of the two-year field campaign over four different land uses. 

3.1. Consumptive Water Use in the Delta 

Total ET volumes, in acre-feet (AF), estimated by all seven models were summed for the Delta 
Study Area. Results were separated by the agricultural and non-agricultural land uses specified in 
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Table 1. These total Delta ET estimates are summarized for the 2015 and 2016 water years in 
Table 4. 

Table 4. Total ET volume in the DSA, by model, from agricultural and non-agricultural 
lands, 2015-2016. 

Model 
2015 ET Estimates (AF) 2016 ET Estimates (AF) 

Agricultural Non-Agricultural Agricultural Non-Agricultural 

CalSIMETAW 1,556,298 648,799 1,513,156 718,300 

DETAW 1,477,917 709,877 1,468,087 770,473 

DisALEXI 1,290,463 448,361 1,262,823 499,669 

ITRC-METRIC 1,497,256 625,144 1,338,436 636,006 

SIMS 1,419,050* 612,471* 1,379,551* 653,242* 

UCD-METRIC 1,565,246 660,842 1,478,065 698,707 

UCD-PT 1,307,830 581,803 1,215,091 596,300 

Ensemble Mean 1,444,866 612,471 1,379,316 653,242 

Ensemble Standard Deviation 110,494 82,846 113,839 88,663 

 *SIMS does not estimate ETcb for semi-agricultural/ROW, wet herbaceous/sub-irrigated pasture, or any non-
agricultural land uses. These values include the average ET of the other six models for those land classes. 

Model ET estimates in the Delta (Table 4) were broadly consistent with other published values 
for the region, though the ensemble mean was slightly higher. DWR (2018b) publishes the 
annual Dayflow dataset with estimates of daily average outflows from the Delta estuary. The 
annual datasets also contain estimates of Delta-wide gross channel depletions (GCD) developed 
using the Delta Island Consumptive Use (DICU) model (Hutton et al., 1995). Dayflow-reported 
consumptive use totaled 1,669,385 AF in water year 2015 and 1,675,557 AF in water year 2016, 
an average of 18% lower than the ensemble mean of models here. The Delta Plan (DSC, 2013) 
estimated that total in-Delta net water use averages about 900 TAF annually based on Dayflow 
data from 1930-2011. Net channel depletions (CD) in Dayflow are calculated by subtracting 
precipitation and non-consumptive diversions from ET (GCD) estimates (DWR, 2017b). Net 
water use is therefore considerably lower than total ET; Dayflow CD totaled 1,176 TAF in 2015 
and 955 TAF in 2016, an average of 36% lower than GCD for the same period. The California 
Water Plan Update 2013 for the Delta region (DWR, 2014) also plotted values from Dayflow, 
stating that in-Delta consumptive uses are about 1,688 TAF in a wet year (i.e. 1998), 1,690 TAF 
in an average year (i.e. 2000), or 1,688 in a dry year (i.e. 2001). DWR (2018a) reported that 2016 
was a Below Normal year in the Sacramento basin and a Dry year in the San Joaquin basin, 
while 2015 was a Critical year in both basins, so ET estimates were about 17% higher than the 
Water Plan Update’s numbers. DWR (2018c) will use the CalSIMETAW model to estimate 
statewide consumptive water use for the upcoming Water Plan Update 2018. 
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The seven model estimates (Table 4) were within -12% to +10% of the ensemble mean 
agricultural ET in the Delta for both years of the study, averaging an absolute difference of 6% in 
2015 and 7% in 2016. Non-agricultural lands had larger relative differences from -27% to +18%, 
with absolute average deviations of 9% in 2015 and 10% in 2016. Most remote sensing methods 
based on a surface energy balance are typically calibrated for agriculturally managed vegetation 
and are not specifically designed to estimate ET from more heterogeneous natural vegetation, 
open water, and urban areas, however. Overall total ET estimates differed an absolute 7% in 
2015 and 8% in 2016, ranging from -15% to +10%. These model divergences are considerably 
lower than similar studies. The nine approaches compared by Kite and Droogers (2000) averaged 
a 23% absolute difference from the mean daily ET for two cropped sites on two satellite overpass 
days. The seven methods compared by Sörensson and Ruscica, (2018) were within 60% of the 
ensemble mean total annual ET in any given region of South America, while relative differences 
were closer to 100%. The three models compared by Medellín-Azuara and Howitt (2013) 
averaged a 12% absolute difference from the mean total ET for eight different crops on five 
Delta islands over one water year. 

In addition to quantifying total consumptive water use in the Delta, the spatial ET estimates can 
show effects of geographic land use trends and regional weather patterns on ET. Maps of annual 
ensemble mean ET, at a 30-meter resolution, are shown in Figure 3; the low range of 150 mm is 
equal to about 0.5 AF/ac. (ft.) annually, and the high range of 1,500 mm is about 5 ft. annually. 
Non-agricultural land uses (see Table 1) are shown in white in Figure 3. The Delta was 
delineated into five major regions based on the jurisdictional boundaries of local water agencies; 
ET estimates for each region may inform local water management practices. The boundaries of 
these regions are mapped in Figure 3, and Table 5 summarizes ensemble mean agricultural ET 
estimates and other information on each region. 

Following lands uses (Figure 1), ensemble mean ET estimates in the Delta (Figure 3) varied 
considerably. The northwest and west-central Delta showed clusters of agricultural areas with 
higher ET (light and dark blue) where the dominant land uses were pasture and alfalfa. Some 
areas near Walnut Grove with a diverse crop mix also showed high ET. The southern Delta 
demonstrated scattered areas of high ET, primarily in alfalfa. The central Delta and agricultural 
areas near urban centers in the southwest edge of the Delta are among areas with the lowest 
annual ET (yellow and brown). By region, average per-pixel ET rates decreased from 2015 to 
2016 and the largest estimates occurred in the Yolo Bypass both years (971 and 931 mm, about 
3.2 and 3.1 ft./year, respectively). The lowest estimates shifted from the Central Delta (769 mm 
or 2.5 ft./year) in 2015 to the South Delta (749 mm or 2.5 ft./year) in 2016. 

The North Delta, being the largest and most agricultural region of the Delta, had the highest 
estimated annual ET for both years and the highest standard deviation of model ET estimates in 
2016 (Table 5). Though the Yolo Bypass had the lowest agricultural ET, it had considerably 
higher standard deviation and the highest unit ET (total agricultural ET divided by agricultural 
area, 3.5 AF/acre or ft.) of any region. This suggests that the large-scale pasture fields and 
patches of rice grown near the bypass are water-intensive, but large bodies of water in the area 
may make remote ET estimation more difficult. The South and West Delta, which had unit ET 
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values equal to the average for the DSA (3.0 ft.) and the lowest standard deviation values, had 
good agreement among models even with very different magnitudes of ET and agricultural areas. 

 

Figure 3. Maps of ensemble average annual ET in the DSA and its regions, 2015-2016 
(Medellín-Azuara et al., 2018). White areas are non-agricultural lands. 

Agricultural lands decreased in all regions of the Delta from 2015 to 2016, causing net 
reductions in total ET for all regions and an overall reduction of -4.6% in the DSA (Table 5). 
This decrease was most prominent in the West Delta, with a 3.7% reduction in agricultural 
acreage causing a decrease of 8.6% in total agricultural ET. Due to the large amount of State-
owned land in the West Delta that would be unlikely to change land uses, this was likely caused 
by increased land fallowing and preparation for permanent crops near Brentwood. The Yolo 
Bypass had the largest decrease in total ET, which appears to have been caused by large-scale 
fallowing in the area from 2015 to 2016. The Central and North Delta had the least changes in 
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total ET. A slight decrease in unit ET for many areas suggests that large-scale land fallowing 
decreased overall water use and may also indicate changes in irrigation practices which resulted 
in lower consumptive use. 

Table 5. Attributes and agricultural ET estimates for major regions of the DSA, 2015-2016. 

Delta Region 
Total 
Area 
(ac.) 

Percent 
Agricultural 

Ensemble Mean ET 
(AF) 

Ensemble Standard 
Deviation of ET (AF) 

2015 2016 2015 2016 2015 2016 

Central Delta 176,718 68.6% 66.8% 352,779 341,899 27,989 16,182 

North Delta 175,269 78.9% 77.7% 422,733 411,206 32,614 37,896 

South Delta 142,807 76.2% 75.5% 315,921 303,146 25,926 25,408 

West Delta 122,321 52.6% 48.9% 194,540 177,985 25,779 23,595 

Yolo Bypass 63,119 71.5% 68.2% 158,894 145,080 33,005 27,728 

Delta Service 
Area 

679,594 70.2% 68.3% 1,444,866 1,379,316 110,494 82,846 

3.2. Consumptive Use by Major Crops 

Annual land use datasets from DWR were used to examine ET trends by different models for 
specific land uses. The ensemble mean of the seven models is a reasonable estimate of ET from 
specific crops and non-agricultural land uses and allows an examination of the general spatial 
and temporal distribution of ET in the Delta. The DWR land use dataset resents a “snapshot” of 
planting patterns during the summer (Land IQ, 2018), when most ET occurs; it is unlikely that 
many crops would be planted in the non-growing season (roughly October through April). 

Models generally predicted low ET in the off-season since remote sensing methods observed 
bare soil, lower energy fluxes, and periodic cloud cover in satellite images. Crop coefficient-
based methods include assumed planting and harvest calendars which accounted for low plant 
growth in the off-season. Even year-round crops such as almonds, pasture, and vineyards would 
be expected to be dormant during the winter, with correspondingly lower ET relative to the 
growing season. Table 6 summarizes the ensemble mean total annual ET in the DSA for the 
same land uses in Table 1, as well as the annual ET per unit area for the entire water year (in ft., 
which is equivalent to AF/acre) from each crop. Grass reference ET (ETo) values from Spatial 
CIMIS over the entire 679,594-acre DSA are provided at the bottom of Table 6 for comparison. 

In both years of the study, all seven models estimated that an average of 60% of the total 
agricultural ET in the Delta originated from six significant crops which covered about 40% of its 
land area: alfalfa, almonds, corn, pasture, tomatoes, and vineyards. Non-managed fallow and 
semi-agricultural/ROW lands, as well as non-agricultural upland herbaceous zones, urban areas, 
and open water also contributed considerable ET, though most models were not typically 
calibrated to estimate ET from these surfaces.  
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Table 6. Annual ensemble mean ET quantities, by land use, in the DSA, 2015-2016. 

Commodity Total ET (AF) Percent of Total ET Unit ET (ft./yr.) 

(* denotes agricultural land use) 2015 2016 2015 2016 2015 2016 

Alfalfa* 282,293 229,046 13.7% 11.3% 3.8 3.5 

Almonds* 17,539 37,682 0.9% 1.9% 3.4 2.8 

Asparagus* -  - 0.0% - 2.1 

Bush Berries* 3,572 3,839 0.2% 0.2% 3.0 3.1 

Carrots* -  - 0.0% - 2.4 

Cherries* 7,089 9,928 0.3% 0.5% 3.4 3.5 

Citrus* 19  0.0% 0.0% 2.1 1.9 

Corn* 267,819 208,197 13.0% 10.2% 2.9 2.9 

Cucurbit* 10,152 7,704 0.5% 0.4% 2.5 2.5 

Eucalyptus - 7 - 0.0% - 1.4 

Fallow* 116,638 186,994 5.7% 9.2% 2.2 2.3 

Floating Vegetation 14,914 11,861 0.7% 0.6% 4.2 4.4 

Forage Grass* 13,947 19,740 0.7% 1.0% 3.1 2.9 

Nursery - 11 - 0.0% - 1.9 

Olives* 4,719 4,711 0.2% 0.2% 3.2 3.1 

Other Deciduous* 19,724 5,583 1.0% 0.3% 2.6 3.2 

Pasture* 169,449 150,417 8.2% 7.4% 3.5 3.5 

Pears* 22,362 20,966 1.1% 1.0% 3.8 3.8 

Pistachios* 373 586 0.0% 0.0% 2.6 2.2 

Potatoes* 11,283 10,538 0.5% 0.5% 2.7 2.8 

Rice* 28,806 29,133 1.4% 1.4% 3.8 3.7 

Riparian Native Vegetation 83,735 91,560 4.1% 4.5% 3.9 4.0 

Safflower* - 37,164 - 1.8% - 2.7 

Semi-Agricultural/ROW* 140,793 137,699 6.8% 6.8% 2.9 2.9 

Sudangrass - 0 - 0.0% - 0.0 

Sunflower* - 699 - 0.0% - 2.8 

Tomatoes* 93,693 63,543 4.6% 3.1% 2.6 2.5 

Truck Crops* 25,592 6,947 1.2% 0.3% 2.7 2.7 

Turf* 7,493 7,022 0.4% 0.3% 3.5 3.4 

Upland Herbaceous 121,528 144,066 5.9% 7.1% 2.2 2.3 

Urban 141,772 139,936 6.9% 6.9% 2.3 2.2 

Vineyards* 97,965 101,346 4.8% 5.0% 2.6 2.7 

Walnuts* 11,091 16,026 0.5% 0.8% 3.2 3.0 

Young Orchards* - 486 - 0.0% - 2.2 

Water 250,521 265,801 12.2% 13.1% 4.2 4.2 

Wet Herbaceous/Sub-Irrigated Pasture* 92,454 82,219 4.5% 4.0% 3.7 3.6 

TOTAL 2,057,337 2,032,558 100% 100% - - 

Grass Reference (ETo) 3,917,185 3,899,342 - - 5.8 5.7 
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Overall trends in ET and estimates by individual models for the six significant crops were further 
examined. Figure 4 summarizes the percent of total agricultural land use and total annual 
agricultural ET volume in the DSA, by model, covered by significant land uses. The “Other” 
crop category includes almonds and all other agricultural land use categories identified in Table 
1. The SIMS columns do not include ET estimates for semi-agricultural/ROW and wet 
herbaceous/sub-irrigated pasture land uses. 

Alfalfa, corn, and pasture totaled 40% and 45% of the land area analyzed in 2015 and 2016, 
respectively (Figure 4). These three major crops represent nearly three-fifths of DSA crop 
consumptive use on average. All methods estimated that alfalfa used the most water of a single 
crop in both water years and pasture was the only single crop which averaged a higher 
percentage of the DSA’s water use than its land cover in both 2015 and 2016. The total fallow 
area increased 6.5% from 2015 to 2016, occupying more land than any of the three major crops, 
and ET estimates increased proportionally from about 10% of total DSA agricultural water use in 
2015 to 16% in 2016. 

Among the significant crops, corn and fallow showed the greatest differences between models 
with absolute differences from the mean of ±2.4% for corn in 2015 and ±2.2% for fallow in 2016 
(Figure 4). Among models, CalSIMETAW tended to deviate the most for all the major crops (an 
average absolute difference of ±2.3% from the mean), particularly for fallow where it estimated 
far lower ET (5-9%) than the other models (10-17% on average). 

Figure 5 plots monthly ET rates, in mm/d, for the six significant crop categories in the Delta over 
two years. Each model’s average for the DSA is plotted, and the Spatial CIMIS average ETo rate 
over the DSA is included for reference. 

Monthly ET estimates across all seven methods were generally less than reference ET, with the 
exception of corn in July for most models (Figure 5). CalSIMETAW estimated that almond ET 
exceeded ETo during the summer, likely because it did not account for immature orchard crops 
in its estimates (Orang et al., 2018). All models tracked similar seasonal variation, with 
occasional outliers or shifts one month earlier or later by some models. ET estimates from 
CalSIMETAW and the METRIC models were typically on the higher end for most crops, 
especially during the growing season (March through September). Absolute ET discrepancies 
between methods were more significant for summer months when ET was the highest, but 
relative differences between methods increasingly occurred during late fall and winter months 
for most crops.  
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A) 2015 

B) 2016

 

Figure 4. Contribution of significant land uses to agricultural land use area (far left 
column) and total agricultural ET volume in the DSA, by model, (A) 2015 and (B) 2016 
(Medellín-Azuara et al., 2018). 
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Figure 5. Monthly average ET rates, by model, averaged over the DSA for significant 
crops, 2015-2016 (Medellín-Azuara et al., 2018). 

3.3. Consumptive Use Estimate Variation 
The broad spatial and temporal coverage of ET estimates allows for the examination of 
differences between individual models and the ensemble mean of all seven methods. These 
differences may occur spatially across the Delta, especially for specific land uses, as well as for 
specific times of the year. The coefficient of variation (CV) is a unitless metric which illustrates 
relative variation between models, calculated by dividing the standard deviation of model 
estimates by the ensemble mean of estimates. Alternatively, the absolute variation (in mm/d) 
quantifies the magnitude of model differences from the ensemble mean. The CV was calculated 
on a pixel-level for agricultural lands across the DSA to quantify differences between models 
relative to the magnitude of ET estimated for the entire water year. Annual coefficients of 
variation are mapped in Figure 6, which also shows the mean value for each of the Delta’s five 
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major regions. Monthly CV values are plotted for the eight major crops in the Delta in Figure 7, 
and monthly absolute variations are plotted for the same crops in Figure 8. 

 
Figure 6. Maps of annual coefficient of variation between all seven models in the DSA, 
2015-2016. White areas represent non-agricultural lands (Medellín-Azuara et al., 2018). 

Spatial relative variations between model ET estimates (Figure 6) did not always correlate with 
ET (Figure 3); the southwest Delta east of Tracy had low ET with high variation, clusters in the 
central-eastern and central-southern Delta had both low variation and low ET, and north of the 
Yolo Bypass and Sherman Island had high ET with wide degrees of variation in small clusters. 
Generally, model estimates varied more near urban areas (especially in the south Delta), for rice 
fields around the Yolo Bypass, and areas surrounding flooded fields such as the Cache Slough 
complex and Frank's Tract. Average coefficients of variation increased slightly in all regions 
from 2015 to 2016, especially in the North and South Delta. The West Delta had the highest 
average relative variation between models in both years, while the lowest variation occurred in 
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the North Delta in 2015 and the Central Delta in 2016. 

 

2015 

 

2016 

 

Figure 7. Monthly coefficients of variation between methods for significant crop types in 
the DSA, 2015-2016 (Medellín-Azuara et al., 2018). 

 
mm/d 
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2016 

 

Figure 8. Monthly absolute variation between methods for significant crop types in the 
DSA, 2015-2016 (Medellín-Azuara et al., 2018). 

Coefficients of variation among models were generally higher from September through January 
for most crops, especially corn, tomatoes, and vineyards (Figure 7). ET estimates in these months 
represented about 23% of annual ET volumes, so these relative differences were more prominent 
during months with much less ET. Furthermore, the primarily annual crops of the Delta are not 
typically grown in these months and even year-round crops would typically have considerably 
lower ET when dormant. The annual “snapshot” of land uses in the DWR dataset did not factor 
in planting or harvesting dates, so crop coefficient-based methods (CalSIMETAW and DETAW) 
may differ from remote sensing models in transition months depending on their assumed growth 
calendars. The masking of remote sensing methods to a single crop each year also reports 
wintertime ET occurring from crops that may have been observed as bare soil in satellite images. 
For year round-crops, the lower energy fluxes observed by satellites in the cooler months may 
also cause uncertainty in residual energy balances. The masking of clouds or the use of fewer 
wintertime images would also cause variations among models since their spatial and temporal 
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interpolation methods were not standardized for this study. 

Absolute variations (Figure 8) support the above assertions; the higher relative variation among 
models in the non-growing season represents far less ET than is estimated to occur during the 
primary growing season (March through August). Some crops had greater absolute differences 
among models: almonds, corn, and tomatoes, primarily late in the growing season (July through 
September). Most of these crops also had higher coefficients of variation in other months, 
suggesting greater uncertainty in extrapolation of remotely-estimated ET values to the 
transitional and non-growing season for these land uses compared to other crops like alfalfa and 
pasture. This may be due to their variable ground cover during the growing season or leafy crops 
like corn and orchards causing shadows in satellite images. As with the coefficient of variation, 
the “snapshot” of annual land uses could cause disagreement between methods if the assumed 
planting/harvest schedules in crop coefficient-based methods did not align with bare soils 
observed in satellite images after harvest. 

3.4. Field Measurements 

A field campaign was deployed to measure meteorological variables at several types of stations 
to develop estimates and direct measurements of ET which are presented in this section 
alongside additional field data from CIMIS stations. The 2015 campaign produced data from five 
fallow sites for less than a month, while the 2016 campaign covered fourteen sites in alfalfa, 
corn, and pasture with upwards of five months of data at some sites (Paw U et al., 2018). 

3.4.1. 2015 Measurements in Fallow Fields 

Field measurements were made in four fallow fields in 2015; daily field-based estimates of 
actual evapotranspiration (ETa) were developed at four surface renewal (SR) stations and direct 
ETa measurements were made at one co-located eddy covariance (EC) station. Due to short 
deployment timelines (Table 2), less than a full month of data were gathered, so Figure 9 
presents monthly mean results and standard deviations for September 2015. Figure 9 also plots 
grass reference ET (ETo) averaged for the three CIMIS sites in the Delta at the time (47-
Brentwood, 70-Manteca, and 71-Modesto, see Figure 2). 

Fallow field ETa estimates and measurements were significantly lower than nearby ETo values, 
with the exception of some rainy days at the end of the deployment period (Figure 9). The four 
sites showed an average ETa of 0.22 mm/d, with values ranging from 0.05-0.39 mm/d for the 
limited deployment period at low-elevation stations (3-56 ft.). Because of random errors and 
uncertainty related to the deployed instrumentation, mean values slightly greater than zero fall 
within the range of zero ETa for all stations. Slightly higher ETa values may have been observed 
at both the high elevation site (D3) due to sparse weeds in the field and the low elevation site 
(D5) due to tidal influences on the local water table which may have enhanced the near-surface 
soil moisture availability for evaporation. Fallow fields below sea level were not available for 
study in the initial field campaign (Medellín-Azuara et al., 2016; Paw U et al., 2018). 
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Figure 9. Monthly mean and standard deviation of ETa from bare soil stations and nearby 
CIMIS sites, September 2015 (Medellín-Azuara et al., 2018). 

The short period of bare soil field measurements for less than one month of 2015, a drought year, 
and other factors associated with fallow field selection and conditions limit the ability to draw 
conclusions about bare soil ET from this study alone. Due to uncertainties related to measuring 
and estimating ET from bare soil in the Delta, a pilot study employing field equipment and 
satellite imagery for selected for adjacent fallow and irrigated crop fields is underway in the 
2018 growing season. 

3.4.2. 2016 Measurements in Alfalfa, Corn, and Fields 

The expanded field campaign in 2016 developed ETa data at fourteen different alfalfa, corn, and 
pasture sites in the Delta (Figure 2) between April and September (Table 2). Monthly average 
field-based estimates of ETa from surface renewal (SR) sites, measurements of ETa at one eddy 
covariance (EC) station in each crop type, and ETa measurements at one IRG station at site D13 
are plotted for alfalfa in Figure 10, corn in Figure 11, and pasture in Figure 12. Each station with 
at least eight days of field data in the given month is plotted, and vertical bars show minimum 
and maximum daily values for the same period. The plots also include ETo values from Spatial 
CIMIS, averaged over each 2-by-2-km pixel containing a field station, over the same period. 
Additional data collected in the 2017 water year at some sites (Paw U et al., 2018) is not reported 
here. 

Monthly mean alfalfa ETa data ranged from 2 to 6 mm/d in 2016, generally lower than ETo 
values and peaking in July with daily values as high as 7 mm/d (Figure 10). Direct measurements 
of ETa water vapor flux from the IRG station at site D13 yielded values comparable to the SR 
and EC energy budget residual methods at the same site. Field-based ETa estimates from at site 
D07 in September 2016 were broadly consistent with independent ETa measurements at 
AmeriFlux site US-Bi1 (located about 400 ft. to the east in the same field), while those at site 
D14 were lower than the co-located AmeriFlux site US-Tw3 (Paw U et al., 2018). Fluctuations 
in ETa following alfalfa cuttings were generally averaged out on the monthly scale, though 
values at the beginning of the deployment with less than a month of data could be affected if 
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observations did not include a full cutting cycle. For example, measurements at Station D10 
began mid-July, more than a week after the last alfalfa cutting, and thus caught only the time of 
peak ET and not expected low ETa values post-harvest. 

 

Figure 10. Monthly mean and minimum/maximum daily field ETa from alfalfa stations 
and Spatial CIMIS at the same locations, May- September 2016 (Paw U et al., 2018). 

 

Figure 11. Monthly mean and minimum/maximum daily field ETa from corn stations and 
Spatial CIMIS at the same locations, April-September 2016 (Paw U et al., 2018). 

 

Figure 12. Monthly mean and minimum/maximum daily field ETa from pasture stations 
and Spatial CIMIS at the same locations, June-September 2016 (Paw U et al., 2018). 

Corn stations showed mean monthly ETa values between 1 and 6 mm/d, with daily values as low 
as zero in April and peaking at more than 8 mm/d in July (Figure 11). Measurements from the 
EC station at site D11 were typically higher than the SR estimates at the same site, though they 
dropped lower prior to harvest in late September. Field-based estimates were broadly similar to 
independent measurements in a cornfield at AmeriFlux site US-Tw2 on Twitchell Island (where 
no corn stations were deployed in the 2016 field campaign) in July 2012 (Paw U et al., 2018), 
though caution should be exercised in comparing 2012 data with 2016 data due to the potential 
for interannual variability. 

Pasture ETa values at individual stations varied widely from 3 to 6 mm/d depending on the 
measurement method and site, with monthly averages at least 1 mm/d lower than ETo values 
from Spatial CIMIS (Figure 12). Maximum daily values at sites D03 and D05 were the only ones 
which generally approached mean Spatial CIMIS ETo values (both sites were co-located with 
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CIMIS stations). Station D12 yielded the lowest values, from near-zero to 3 mm/d; that site had 
sparse vegetation inside the measurement enclosure which could have affected net radiation or 
ground heat flux measurements. These low values could also indicate low amounts of irrigation 
and significant canopy cover variations, which were observed by field personnel vising the sites 
periodically for maintenance. A side study completed following the field campaign indicated that 
metal panel fencing used to protect the instruments from livestock damage may have increased 
net radiation observations about 3% compared to an unfenced area (Paw U et al., 2018). 

4. Comparisons Between Consumptive Use Estimates 

Evapotranspiration estimates for the Delta, presented across a variety of crops and areas, 
demonstrate reasonable agreement between the seven methods compared in this study. At such a 
large scale, there are many factors which might influence results and drive differences. To isolate 
variables of importance and discern key differences between methods, this section presents 
detailed comparisons at small spatial and temporal scales between methods. Direct comparisons 
between methods and the field data are also presented, and insights learned from modeling teams 
are discussed. 

4.1. Model Comparison 

Though the seven models compared in this study are in fair agreement regarding total 
evapotranspiration volumes in the Delta, some differences exist between model estimates 
depending on specific crops, times of the year, and regions of the Delta. Potential reasons for 
these differences include the type of evapotranspiration estimated (potential, actual, or basal 
crop), different input datasets, and unique assumptions and procedures employed by each model. 
To insulate multiple influencing factors and facilitate a detailed identification of methodological 
differences that may have caused discrepancies in ET estimates, the methods were compared on 
small spatial and temporal scales; estimates were averaged over a 3-by-3-pixel grid (8,100 m2 or 
about two acres) on select days over fourteen fields in the Delta. The fields contained irrigated 
alfalfa, corn, and pasture, the Delta’s three predominant crops, and were chosen based on the 
location of the field stations deployed in 2016 (Figure 2). 

A spatial comparison of the seven methods is shown in Figure 13 for field station D12, located in 
a pasture field on Twitchell Island. The Landsat 8 overpass date in the summer of 2016 was used 
by all five remote sensing models to make direct ET estimates. The field station site, pixel grid 
around it, field boundaries, and non-agricultural areas screened out by SIMS are also shown. On 
the same day shown in Figure 13, CalSIMETAW estimated a daily ETc of 7.70 mm/d and 
DETAW estimated 6.99 mm/d of ETa (these estimates cover the entire area since these models 
have coarse output resolutions). The deployed SR field station at site D12 estimated a daily 
average field-based ETa of 4.00 mm/d on the same day, while the EC equipment measured a 
daily average ETa of 4.02 mm/d. A two-year timeseries of ET estimates from models for the grid 
around station D12, including overpass dates and continuous daily estimates for those models 
that provided them (see Table 3), as well as field-based ET estimates from the SR equipment, is 
shown in Figure 14. Jankowski et al. (2018) provide similar ET maps and timeseries plots for all 
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14 comparison sites. 

 
Figure 13. Remote sensing estimates over pasture field on Twitchell Island, June 27, 2016 
(Jankowski et al., 2018). 

To eliminate estimate differences caused by temporal interpolation between satellite overpasses, 
model ET estimates were compared only on overpass days which were used for direct 
estimation. Following Jankowski et al. (2018), detailed graphical and statistical comparisons 
were made for overpass days which pairs of models had in common. Though comparison sites 
were selected based on 2016 field station locations, inter-model comparisons were not limited to 
the field deployment period and covered a total of 58 overpasses in water years 2015 and 2016. 
Results from CalSIMETAW and DETAW, which do not use Landsat data, were compared on all 
overpass dates. Field pasture station D05 was outside the DSA, so CalSIMETAW and DETAW 
did not make ET estimates for that site. Figure 15 presents comparative scatter plots between the 
21 possible pairs of ET estimation models, with an axis corresponding with one model’s 
estimates. Comparisons are separated by crop, with each data point representing a pair of ET 
estimates on a single overpass date at a single site. Linear regression lines for each crop and a 1:1 
sloped line are also provided for reference. 
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Figure 14. Timeseries of model and field-based ET estimates over a pasture field on 
Twitchell Island, 2015-2016 (Jankowski et al., 2018). Points represent direct estimates on 
overpass days and lines represent continuous daily data provided by some models. 

 

   

   

Figure 15a. Comparison of daily ET estimates between models on overpass days over 
alfalfa, corn, and pasture fields, 2015- 2016 (after Jankowski et al., 2018). Solid lines 
represent linear regressions and the gray dashed line represents the 1:1 ratio. 
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Figure 15b. Comparison of daily ET estimates between models on overpass days over 
alfalfa, corn, and pasture fields, 2015- 2016 (after Jankowski et al., 2018). Solid lines 
represent linear regressions and the gray dashed line represents the 1:1 ratio. 
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Linear regressions between models (Figure 15) show the correlation and bias between ET 
estimates of paired models. A regression slope of one with a y-intercept of zero would indicate 
perfect agreement in ET estimates; a positive slope suggests the model on the y-axis biases 
towards higher ET estimates than the model on the x-axis, and a positive y-intercept indicates 
positive bias by the model on the y-axis for lower-end ET estimates (the opposite is true for 
negative slopes and/or negative y-intercepts). The coefficient of determination (R2) value for a 
given regression represents the strength of the correlation; a value of one would indicate perfect 
correlation between estimates but not necessarily agreement. Table 7 summarizes linear 
regression results for each model pair; the values are for combined datasets of all three crops, so 
they do not directly relate to the regression lines in Figure 15; Jankowski et al. (2018) provide 
statistics for individual crops. Additional comparative statistics were also computed using 
combined data from all three crops together to quantify major differences between pairs of 
models. Mean bias (in mm/d), the average of the differences between two sets of estimates, 
quantifies which model estimated higher on average. Root-mean-square error (RMSE, also in 
mm/d) quantifies the absolute deviation between two models. These statistics are also presented 
in Table 7. The sections below discuss comparisons (Figure 15 and Table 7) with respect to each 
model. 

4.1.1. CalSIMETAW 

CalSIMETAW’s typically positive mean bias (Table 7) would be expected since it estimates 
potential ET (ETc) rather than the actual ET (ETa) that most other models estimate; ETc would 
typically exceed ETa during times of plant-water stress since it assumes ideal conditions and no 
lack of water, though ETa could be greater depending on unique irrigation practices and canopy 
cover. Agreements between CalSIMETAW’s ETc and other ETa values at a given time and 
location therefore suggest minimal plant stress. CalSIMETAW generally had the lowest slope 
compared to other models, meaning it estimated higher ET on the low end (also demonstrated by 
its positive y-intercepts) and lower ET on the high end. It also generally had lowest linear 
regression R2 values of any models, meaning its estimates were least well-correlated with other 
ET values. 

CalSIMETAW showed zero mean bias compared to UCD-METRIC in pasture and was also 
close to UCD-PT in corn, but overall it matched closest with DETAW (biased slightly higher for 
alfalfa and pasture but lower for corn). This was expected since they are both crop coefficient-
based methods developed by the California Department of Water Resources (DWR). The two 
models still had slightly elevated RMSE values, however, caused by several outlying corn 
estimates where DETAW estimated much higher ET and some alfalfa sites where CalSIMETAW 
estimated higher ET at the low end. Timeseries plots at individual sites (i.e. Figure 14) 
demonstrate that these discrepancies typically occurred in late August through mid-September, 
meaning that they were caused by different assumed harvest dates; if CalSIMETAW assumed 
that crops were harvested earlier than DETAW it would experience a rapid drop in ETc for the 
days afterward. CalSIMETAW’s assumed planting, irrigation, and harvest periods were 
developed with input from DWR’s Regional Offices, who surveyed local farm advisors and 
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farmers directly (Orang et al., 2013; Orang et al., 2018). These assumed calendars, which are 
needed by crop coefficient models, could also drive other temporal differences between models 
depending on the crop growth stage assumed at a given time. 

Table 7. Comparative statistics between model estimates on overpass days over alfalfa, 
corn, and pasture fields, 2015-2016 (after Jankowski et al., 2018). 

Model 1 (x) Model 2 (y) n Slope 
Y-

Intercept 
Linear 

R2 
Mean Bias 

(mm/d) 
RMSE 
(mm/d) 

CalSIMETAW 

DETAW 754 0.79 0.65 0.73 0.10 1.19 

DisALEXI 272 0.42 1.60 0.31 0.92 2.11 

ITRC-METRIC 299 0.74 1.30 0.35 -0.19 2.40 

SIMS 507 0.67 1.02 0.45 0.19 1.85 

UCD-METRIC 273 0.71 1.59 0.35 -0.41 2.39 

UCD-PT 367 0.53 0.98 0.45 0.81 1.98 

DETAW 

DisALEXI 272 0.55 1.16 0.44 0.73 1.73 

ITRC-METRIC 299 0.94 0.59 0.49 -0.35 2.09 

SIMS 507 0.89 0.24 0.64 0.18 1.39 

UCD-METRIC 273 0.95 0.80 0.54 -0.58 1.99 

UCD-PT 367 0.66 0.62 0.60 0.62 1.56 

DisALEXI 

ITRC-METRIC 195 1.40 0.19 0.51 -1.48 2.86 

SIMS 265 0.98 0.92 0.58 -0.86 1.66 

UCD-METRIC 125 1.29 0.91 0.57 -2.05 2.77 

UCD-PT 125 0.91 0.28 0.75 0.03 0.98 

ITRC-METRIC 

SIMS 196 0.44 2.04 0.44 0.63 2.64 

UCD-METRIC 210 1.02 0.16 0.90 -0.24 0.87 

UCD-PT 222 0.61 0.63 0.80 1.34 1.91 

SIMS 
UCD-METRIC 140 1.09 0.43 0.70 -0.90 1.76 

UCD-PT 222 0.69 0.40 0.75 0.87 1.48 

UCD-METRIC UCD-PT 277 0.55 0.81 0.71 1.27 2.05 

Average 294 0.80 0.82 0.58 0.03 1.89 

CalSIMETAW’s coarse spatial coverage, including only six different DAU-COs in the Delta, 
would cause spatial differences compared to models with finer resolutions; this can be observed 
in the CalSIMETAW plots in Figure 15, where a single CalSIMETAW value has a range of 
estimates from other models. Land use classifications required to produce estimates could also 
drive differences; at site D09 the DWR land use survey identified fallow land rather than corn, 
likely biasing estimates lower than they would have been from corn (Medellín-Azuara et al., 
2018). Though CalSIMETAW produces estimates for only 26 different land uses (compared to 
the 36 surveyed uses in Table 1), this would not manifest in this detailed comparison since 
alfalfa, corn, and pasture are all unique crops in the model. CalSIMETAW is undergoing 
additional improvements to account for immature tree crops and will be adapted for groundwater 
planning under California’s Sustainable Groundwater Management Act (SGMA). 
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4.1.2. DETAW 

DETAW was generally in the best agreement with ET estimates by other models; it had linear 
regression slopes close to one, mean bias values that were slightly positive but close to zero, and 
the lowest average RMSE when paired with other models (Table 7). DETAW had its highest 
mean bias over DisALEXI (largely driven by alfalfa, as it was very low for corn) and largest 
RMSE with ITRC-METRIC (though their mean bias was near-zero for alfalfa); its 
methodological differences from both remote sensing-based models are considerable. 

As discussed above, DETAW’s estimates most closely matched those of CalSIMETAW. 
Because the two models are based on the same principles, they would be expected to produce 
similar results if used on the spatial scale with the same inputs, including ETo, Kc, irrigation 
periods, and temperature. However, the two models estimated different forms of ET and are used 
on different spatial scales, CalSIMETAW for statewide water planning and DETAW for water 
accounting in the Delta. This coarser spatial scale limits the potential range of DETAW estimates 
over smaller areas of the Delta and may drive differences compared to models with finer spatial 
outputs. DETAW also assumes that crop coefficients are uniform (i.e. all corn in the Delta has 
the same Kc curve), further limiting its spatial variation. DETAW’s use of unique ETo values 
instead of Spatial CIMIS may also drive regional differences, especially at the far western and 
eastern edges where DETAW applies the largest corrections to the Lodi/Stockton CIMIS 
station’s reading (Kadir, 2006). As with CalSIMETAW, DETAW’s estimates may have been 
biased low at corn site D09 due to incorrect fallow classification (Medellín-Azuara et al., 2018). 
DETAW also estimates ETa from only 15 different land use categories, which may have been an 
issue for fallow lands (classified as native vegetation) but would not impact its separate alfalfa, 
corn (designated a field crop), and pasture categories. 

Convergence between DETAW and other models could be improved through common spatial 
scales, ETo values, temperatures, crop coefficients (for models that use them, including 
CalSIMETAW and SIMS), and planting/irrigation/harvest schedules. DETAW’s inputs and 
methods are being recalibrated using the 2016 field data presented here and incorporating 
CalSIMETAW’s larger range of 26 land uses. More active communication and cooperation 
between modeling groups at DWR was fostered as a direct result of this study. 

4.1.3. DisALEXI 

DisALEXI had the least overpass dates in common with other remote sensing models and 
frequently estimated lower than them, with the most negative mean bias values and relatively 
high RMSE values (Table 7). It had the greatest agreement with UCD-PT, with the lowest 
overall mean bias and second-lowest RMSE of any model pair; their alfalfa estimates had the 
lowest RMSE values for the all comparisons. The biggest discrepancies between the two models 
was over corn fields, where DisALEXI biased higher. DisALEXI had the greatest differences 
from the METRIC approaches, where it biased several mm/d lower and had RMSE values of 
almost 3 mm/d for all three crops (pasture had the greatest RMSE value of any comparison, 
exceeding 4 mm/d). 

DisALEXI has considerable methodological differences from other remote sensing approaches, 
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as it is a strict energy balance method fusing large amounts of satellite data which include GOES 
sensible heat flux measurements at a 1-by-1-km resolution and global-scale insolation inputs 
from the University Corporation for Atmospheric Research (UCAR) Climate Forecast System 
Reanalysis (CFSR). This differed from many models’ use of local-scale meteorological 
measurements from CIMIS stations, so depending on the heterogeneity of the study area the 
sharpening of this data could bias DisALEXI’s estimates compared to other models. Though its 
use of land surface temperature as a primary input is similar to the METRIC methods, this did 
not appear to encourage agreement between ETa estimates. DisALEXI also uses a Priestley-
Taylor component to make an initial estimate of transpiration based on net radiation divergence 
within the canopy, so it would be expected to agree with UCD-PT in times of full vegetation 
cover and minimal water stress. 

DisALEXI’s use of higher temporal resolution satellite data such as GOES and MODIS could 
cause outliers in comparison to remote sensing models that use net radiation data from Landsat at 
a daily scale. Finally, DisALEXI does not explicitly use any input ET measurements such as the 
field data collected for this study. These data would only be used to correct the physical process 
assumptions made by the model, and the model was previously calibrated by Anderson et al. 
(2011) to other locations worldwide. Thus, DisALEXI’s estimates would not be expected to 
converge further with other models unless significant process changes and input datasets changes 
were made to the model. 

4.1.4. ITRC-METRIC 

ITRC-METRIC generally had the highest RMSE values when compared to other models, with 
higher ET estimates evinced by positive mean bias values (Table 7). This is particularly true on 
the low end of ET estimates, as it had linear regression slopes generally less than one and the 
highest y-intercept values on average. ITRC-METRIC diverged considerably from DisALEXI 
and UCD-PT, where it biased more than 1 mm/d higher and had RMSE values close to 3 mm/d. 

ITRC-METRIC’s ETa estimates were very similar to UCD-METRIC, with the lowest overall 
RMSE of any model pair. This would be expected since both are an implementation of the 
METRIC model originally developed by Allen et al. (2007a; 2007b). These systematic 
differences are likely caused by small methodological updates made in ITRC’s approach, as well 
as the modeler judgement that is required to run the METRIC model. METRIC operation largely 
depends on its internal calibration procedure, which requires the selection of bare soil (“hot”) 
and well-irrigated reference crop (“cold”) pixels in satellite images. Each model has developed 
its own semi-automated approach to this procedure with quantitative checks, but ultimately the 
process requires manual tuning which reflect the operator’s professional judgement and 
agronomic experience. This is especially true for leafy crops such as corn, orchards, and 
vineyards, which may cause shadows in satellite images that can alter ETa estimates. While 
UCD-METRIC uses an alfalfa reference crop (ETr) to develop ET estimates from satellite data, 
ITRC modified the model to utilize the grass reference crop (ETo) more commonly used in 
California. These different inputs would not inherently cause differences between the models as 
long as the cold pixel’s fraction of reference ET was appropriately adjusted. However, the 
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hourly-to-daily upscaling computation of reference ET that is built into each model (i.e. the use 
of instantaneous Landsat overpasses data and daily Spatial CIMIS ETo values) may potentially 
cause systematic differences (Alexander et al., 2018). 

Some input datasets also varied between the ITRC and UCD METRIC models. Thermal data is a 
required input to the METRIC model, though it does not include a default process for converting 
it from the 100-meter Landsat 8 resolution into the 30-meter resolution used to report ETa 
estimates. ITRC used the default cubic spline-interpolated thermal data from the U.S. Geologic 
Survey (USGS), though it has developed a custom procedure that was not implemented for this 
study (Howes, 2018). Though land use data is not directly used to make ET estimates in the 
METRIC model, general classifications are required to identify agricultural areas for hot/cold 
pixel selection and to adjust roughness length for orchards and vineyards. ITRC used a quality-
controlled version of the National Agricultural Statistics Service (NASS) Cropland Data Layer 
(CDL) from the USDA (2016), but this would not be expected to cause major differences with 
models that used the DWR land use dataset. Further modifications made to ITRC’s custom 
METRIC model could result in ETa estimates diverging to some degree rather than converging. 
Nevertheless, similar operator experience, internal sensitivity analysis and model iterations, and 
consistent input datasets would all be expected to improve convergence between ITRC and other 
models. 

4.1.5. SIMS 

SIMS’s estimates of basal crop ET (ETcb) assume well-watered conditions and dry soil surfaces; 
they would be expected to exceed ETa estimates if crops were water-stressed, but ETa could be 
higher in cases of high evaporation from exposed soils (i.e. early season irrigation or 
precipitation events which resulted in evaporation from exposed topsoil). High positive linear 
regression slopes and low negative y-intercepts suggest that both of these differences occurred; 
SIMS estimated lower than other models in the low end of ET and higher ET at the high end 
(Figure 15 and Table 7). However, SIMS was generally in good agreement with other models. It 
had mean bias values closest to zero (though slightly negative) and relatively low RMSE values, 
which may have been encouraged by SIMS having the most overpass dates in common with 
other remote sending models. 

SIMS’s ETcb estimates were closest to ETc estimates by CalSIMETAW and ETa estimates by 
DETAW, biased slightly less. This suggests that the basal crop coefficients developed by SIMS 
using the relationship between normalized difference vegetation index (NDVI) and fractional 
crop cover reasonably matched the literature-based crop coefficients in the DWR models. 
However, RMSE values above 1 mm/d suggest that SIMS observed greater spatial variation in 
ET since its coefficients are corrected to account for meteorological differences and local crop 
conditions. SIMS had the greatest differences from ETa estimates by the METRIC, models, 
UCD-METRIC having a high positive bias and ITRC having high RMSE values. These 
differences were greatest for pasture sites, where both models were biased more than 1.5 mm/d 
and where ITRC had a RMSE greater than 4 mm/d compared to SIMS (though SIMS and ITRC 
had a near-zero mean bias for alfalfa). Timeseries plots of single stations (i.e. Figure 14) suggest 



-39- 
 

that large discrepancies occurred over short periods during the peak growing season. 

SIMS is specifically targeted to inform field-level water management and irrigation scheduling 
(Jankowski et al. (2018) showed that its estimates averaged at the parcel-scale biased slightly 
lower than the grid-scale averages compared here) without thermal input data, so its results may 
not be expected to converge with other models in the near-future due to their inherently different 
purposes and methods. However, increased consistency in input datasets and communication 
between modeling groups regarding assumptions are promising avenues to explore prospects for 
convergence. 

4.1.6. UCD-METRIC 

UCD-METRIC generally estimated higher ETa than other models, with the highest average 
mean bias and relatively high RMSE values (Table 7). However, with y-intercept values very 
close to zero it was considerably closer to other models on the low end of ET. As previously 
discussed, its ETa estimates differed considerably from DisALEXI but were very close to those 
of ITRC-METRIC. Though ITRC-METRIC used Landsat thermal inputs with default 
sharpening, UCD-METRIC developed a custom process for the Delta to mask out open water 
and riparian areas before sharpening thermal data (Alexander et al., 2018). METRIC software 
may have a small impact on model differences, as the model is continually being updated by the 
University of Idaho with respect to individual energy balance components and in functions for 
specific crop types such as trees and vines. UCD-METRIC used 2014 v4B of the METRIC 
software, while ITRC-METRIC is based on the 2013 version and includes many modifications 
(some of which were made in parallel to the University of Idaho’s efforts, some of which were 
developed specifically by ITRC). 

UCD-METRIC is still in the development stage and is being refined with additional iterations, 
analysis software tools, and analyst experience. More work is anticipated to fine-tune METRIC’s 
parameters for California’s regional microclimates (i.e. not “perfect days,” fog, and the “Delta 
breeze”) and unique crop mixes (especially empirical equations for corn, vineyards, and 
oranges). These efforts would be expected to increase agreement between UCD-METRIC and 
other remote sensing models as better diagnostic tools are developed and its estimation 
procedure is streamlined. 

4.1.7. UCD-PT 

UCD-PT was the only remote sensing model which directly used the field data collected in 2016 
for model development, with 70% used to calibrate its coefficients for alfalfa, corn and pasture 
and 30% used for validation (Jin and Wong, 2018). Thus, any differences between field data and 
other models (discussed in the next section) would drive differences between them and UCD-
PT’s ETa estimates. This was particularly true in the low end of ET, where UCD-PT generally 
had the lowest negative y-intercept values and high slopes (Figure 17 and Table 7). Nevertheless, 
UCD-PT’s relatively low (slightly negative) mean bias and RMSE values suggest good 
agreement with other models. It also had the highest R2 values, meaning its ETa estimates 
correlated well with those of other estimates regardless of magnitude. 
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As discussed above, UCD-PT had excellent agreement with DisALEXI for corn and was biased 
slightly higher for alfalfa and pasture. Its estimates differed most from those of CalSIMETAW 
and the METRIC models. UCD-PT’s approach to remote sensing differs slightly from other 
energy balance-based models, as it uses field data to optimize coefficients specific to certain land 
uses. These Priestley-Taylor (PT) coefficients capture ecophysiological constraints on plant 
water needs due to environmental conditions such as drought (Jin et al., 2011). This was done for 
the three primary crops in the Delta using the field data, as well as for almonds, citrus, and rice 
using data from AmeriFlux towers; other land covers used a generalized optimization pooling 
data from all crops (Jin and Wong, 2018). 

While UCD-PT can produce ETa estimates without field data calibration, its modeling team 
believes that calibration to additional field data increases its model accuracy and makes it more 
robust and optimized. This may cause issues if the model is calibrated to less than a full season 
of field data, which was the case for corn in this study. UCD-PT is undergoing refinements to 
use additional field and satellite data, so the accuracy of its estimates is expected to increase 
further and may better converge with other models. 

4.1.8. General Model Insights 

For the fine-scale comparisons presented between the seven models, differences in ET estimates 
can be attributed to several factors: the estimation of different types of ET (impacting crops 
which are maintained in less than optimal condition), non-standardized input datasets (i.e. ETo, 
thermal inputs, land use data), hardcoded assumptions (i.e. planting and harvesting calendars for 
CalSIMETAW and DETAW), and the modeler judgement inherently required to fine-tune model 
operations and estimates. Broader differences for many crops across the entire Delta may have 
also been impacted by the use of different Landsat overpass dates (which were selected at each 
modeling team’s discretion), interpolation methods (both temporal, between overpasses, and 
spatial, over clouds in satellite images), and empirical relationships used by each model to 
account for spatial variation in ET and behaviors by specific crops (i.e. METRIC’s relationship 
between hot and cold pixels, SIMS’s determination of crop coefficients based on NDVI, and 
UCD-PT’s partitioning of available energy to latent heat). 

The unique characteristics of the Delta, such as its many water channels and wind corridors, may 
cause differences between models depending on the accuracy of their assumptions. Each of the 
seven methods compared in this study was developed and tested with various calibration and 
validation datasets collected over various time periods and locations, often outside the Delta 
study area, chosen at the discretion of each model’s operator. Estimates of total ET over larger 
areas of the Delta would be expected to converge among methods if increasingly standardized 
datasets and assumptions were used, but the requirement for occasional data interpolation and the 
complex relationships between model inputs and estimates will likely always result in some 
disagreement. 

Remote sensing methods are generally best suited for large regional ET estimates, where field 
measurements cannot practically provide broad areal coverage cost-effectively. Crop coefficient 
approaches offer similar results in a simplified format, but they may fail to capture field 
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responses to local conditions on fine spatial scales. Advantages of remote sensing methods 
include consistency in aerial image acquisition time, relatively low costs for publicly available 
data, and efficient processing of new images. However, challenges remain in estimating ET 
using remotely-sensed thermal observations due to the complex energy and water exchange 
processes among crops, soil, and the atmosphere, as illustrated in Figure 16. 

 

Figure 16. Challenges of estimating ET remotely (Medellín-Azuara et al., 2018). 

A 30-meter pixel may encompass soil and crops with a variety of root and canopy systems in 
vertical layers, affecting the accuracy of calculations which assume homogeneity. Short-term 
irrigation or precipitation and the presence of some atmospheric gases may influence thermal 
signals from the land surface, especially when they occur in localized areas that may be different 
from calibration sites. While some remote sensing approaches avoid such complexities by not 
using thermal data, they may not capture crop water stress or bare-soil evaporation. Cloud 
masking and the removal of shadows also pose challenges, especially if they occur in a sequence 
of satellite images. Other scientific advances such as enhanced regional-scale weather modeling, 
soil-plant-atmosphere land surface models, and remote sensing technologies will substantially 
improve ET estimation and potentially improve forecasting of future water use. Higher 
spatiotemporal resolution in satellite-based data will also help overcome limitations in current 
platforms. 

4.2. Field Data Comparison  

The field data collected for this study, over four fallow fields in 2015 and 14 alfalfa, corn, and 
pasture fields in 2016 (Paw U et al., 2018), was compared to ET estimates by models on fine 
spatial and temporal scales to examine notable differences and discuss the reasons they may have 
occurred. 
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4.2.1. 2015 Comparison for Fallow Fields 

Fallow field evapotranspiration estimates were compared between the seven models and four 
field stations in the Delta in 2015. Because field measurements were taken for less than a 
complete month, from September 7 through October 5, 2015, field-based estimates and model 
data (both in mm/d) were averaged for September 2015. Model estimates were averaged across a 
3-by-3-pixel grid (8,100 m2 or about two acres) around each of the 2015 field stations (see 
Figure 2), all of which included field-based ETa estimates from SR equipment and one EC site 
with ETa measurements. Comparisons between field data and model ET estimates, as well as 
Spatial CIMIS ETo values at the corresponding locations, are plotted in Figure 17. 

 

Figure 17. Comparison of monthly average ET estimates by models and field sites in fallow 
fields, September 2015 (Medellín-Azuara et al., 2018). The black dashed line represents 
Spatial CIMIS ETo, the red dashed line SR-based ETa estimates, and the solid red line EC-
based ETa measurements. 

 *Station D3 was located just outside the DSA, so CalSIMETAW and DETAW did not produce ET estimates at its 
corresponding pixel. Station D4 was excluded due to uncertain calibration of a sensor. 

Seepage from bare soil in areas below sea level and recent precipitation can both increase 
evaporation from bare soil. All 2015 field stations were above sea level (3 to 56 ft.) and 
precipitation had not occurred for well over a month before the start of field measurements, 
though precipitation did occur on September 30. All model and field-based estimates of bare soil 
ET in September 2015 were well below ETo values for the same time and location (Figure 17). 
The ensemble mean model estimate was about 1.5 mm/d for stations D1 and D2, 1.8 mm/d for 
station D3, and 1.8 mm/d for station D5, all of which were larger than field data. The bias of 
models over the field estimates ranged from fractions of a millimeter per day to nearly 3 mm/d 
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for UCD-METRIC at station D2 and DETAW at station D5. Where available, CalSIMETAW 
generally reported bare soil ETc values closest to ETa reported at field stations, and DETAW’s 
ETa values for all but station D5 were also very close to field values. UCD-METRIC generally 
estimated the highest ET for the period. 

Satellite-acquired data (i.e. radiation and thermal) would be expected to capture conditions 
matching the actual bare fields as long as images were used within the field equipment 
deployment period. Three different Landsat overpasses occurred in September 2015, and all 
remote sensing-based methods except for UCD-METRIC used at least one of these overpasses to 
make a direct ET estimate. UCD-METRIC’s closest overpass date used was in mid-August, so 
the high values estimated by the model for D1 and D2 were likely due to temporal interpolation 
from a time with higher evaporation (neither of these fields had a crop planted during the 2015 
irrigation season), though it appears the mid-August overpass still captured lower post-harvest 
ET in fields D3 and D5. CalSIMETAW and DETAW’s lower estimates were produced using a 
two-stage evaporation model developed to account for ET from fields during the non-growing 
season (Orang et al., 2013; Snyder et al., 2013). 

Field-based monthly average estimates may have been biased slightly lower than methods since 
the first six days of the month were not measured and ETo was likely declining throughout the 
month at the sites. Limited model parameterizations for bare soil may have also caused 
variations. For example, UCD-PT used a generalized PT coefficient for fallow lands because 
there were insufficient bare soil field measurements available for calibration (Jin and Wong, 
2018). Though SIMS ETcb estimates do not include evaporation from bare soil, basal crop 
coefficient (Kcb) values are set to 0.15 for bare soil observed in satellite images (Jankowski et 
al., 2018). Any residual vegetation left in fields D3 (where corn was planted during the growing 
season) or D5 (where alfalfa and oats were planted) following harvest would further elevate Kcb 
values and cause higher ET estimates, however. 

Other discrepancies between model estimated and field data may have been caused by 
methodological differences that were resolved in the 2016 season. No bare soil field ET 
measurements were available in 2016, so these methodological changes pertaining to bare soil 
are difficult to evaluate. The short duration of the fallow field campaign and other uncertainties 
around measurements from bare soil limit the ability to draw definite conclusions about bare soil 
ET measurements and modeling from this study alone. 

4.2.2. 2016 Comparison for Alfalfa, Corn, and Pasture Fields 

In 2016, daily evapotranspiration estimates from each of the seven models were obtained for 
satellite overpass dates on which imagery was used to estimate ET. Daily average field-based 
estimates and measurements of ET were compared for the same days between April 19 and 
September 30, 2016 (though deployment timelines varied, see Table 2). This method allowed for 
the most detailed comparison and minimized discrepancies in monthly ETa estimates among 
models that may have been caused by interpolation between satellite images. Model estimates 
were averaged over a 3-by-3-pixel grid around each of 14 field stations in alfalfa, corn, and 
pasture fields in 2016 (see Figure 2 and Figure 13). A total of 20 Landsat overpass dates had at 
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least one station with available measurements for comparison (Jankowski et al., 2018). Model 
estimates were only compared to field data on overpass dates which were used to make direct 
estimates; CalSIMETAW and DETAW were compared for all 20 overpass dates during 
deployment. Field pasture station D05 was outside the DSA, so CalSIMETAW and DETAW did 
not make ET estimates for that site. 

Comparison scatter plots between the field data and each model are plotted by crop, including 
linear regression lines, in Figure 18. In these plots a single point represents a model estimate and 
a field data point for a given field station on a given satellite overpass date. The SR sites 
provided the most data for comparison (n = 168), and measurements from EC (n = 37) and IRG 
(n = 2) sites were limited, so no distinction is given between field station types in Figure 18. 
Comparative statistics between models and the field data for each individual crop and all three 
datasets together appear in Table 8. These statistics include the dimensionless index of 
agreement (IOA) (Willmott, 1981) and coefficient of efficiency (COE) (Nash and Sutcliffe, 
1970). Both normalized performance metrics measure the degree of model prediction error, with 
a value of 1 representing perfect agreement. An IOA value of zero indicates no agreement, while 
a COE of zero means model and field data have equal variance. A negative COE value indicates 
that model variance is greater than observed field variance. 

Field-based ET estimates and measurements in 2016 ranged from slightly negative to 8 mm/d 
across all stations, while the model-estimated ET range on overpass dates varied from near-zero 
to 12 mm/d depending on the crop (Figure 18). Estimated ET values from all methods showed 
similar trends to field-based values, capturing temporal and spatial variation between stations, 
though most models showed a systematic positive bias over field data for all three crops. In the 
high ET range (> 6 mm/d) for alfalfa and pasture, however, models were biased slightly less than 
field data. UCD-PT used partial 2016 UC Davis field data to calibrate its model, randomly 
selecting 70% of the field-based ET estimates and measurements to optimize its PT coefficient 
parameterization for alfalfa, corn, and pasture. The remaining 30% were used for independent 
validation (Jin and Wong, 2018). Thus, UCD-PT had the lowest mean bias and RMSE values 
when compared to the field-based estimates on its overpass dates (Table 8). 

IOA values were very similar for most models (Table 8), with DETAW and SIMS have the 
highest on average (excluding UCD-PT) and CalSIMETAW and UCD-METRIC having the 
lowest. COE values generally followed IOA values, being lowest and negative for 
CalSIMETAW and UCD-METRIC while slightly positive for DisALEXI and, as expected, very 
high for UCD-PT. Corn showed the greatest general correlation, with high IOA and slightly 
positive COE, while alfalfa had the lowest IOA and the most negative COE values. The 
comparison metrics scored fairly for all three crops across all seven models, with a high IOA and 
a near-zero but slightly negative COE. Since these metrics were designed to evaluate hydrologic 
models, further investigation may be merited to examine their application for ET model 
comparisons. 
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Figure 18. Comparison of daily ET estimates between models and field data on overpass 
days over alfalfa, corn, and pasture fields, April-September 2016 (after Jankowski et al., 
2018). Solid lines represent linear regressions and the gray dashed line represents the 1:1 
ratio. 

Excluding UCD-PT, DisALEXI was generally the closest to available field data on overpass 
dates over the three major crops in the Delta; it was generally the only model with a mean bias of 
less than 1 mm/d over the field data and an RMSE just over 1 mm/d (Table 8). However, 
CalSIMETAW and DETAW were also close to field data from corn fields and SIMS very 
closely matched the pasture field data. UCD-METRIC had both the highest RMSE and mean 
bias over field data for most of the individual crops; ITRC-METRIC showed a similar slope for 
each crop but with less upward bias. While CalSIMETAW and DETAW had relatively low 
overall mean bias compared to the field data, their high RMSE values and shallower slope 
compared to the 1:1 line (Figure 18) indicate considerable outliers in the upper and lower end of 
ET estimates, especially for CalSIMETAW in alfalfa. As a whole, the seven models generally 
had the lowest differences from field data in alfalfa.  
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Table 8. Comparative statistics between models and field data on overpass days over 
alfalfa, corn, and pasture fields, April-September 2016 (after Jankowski et al., 2018). 

Model (y) Crop n Slope 
Y-

Intercept 
Linear 

R2 
Mean Bias 

(mm/d) 
RMSE 
(mm/d) 

IOA COE 

CalSIMETAW 

Alfalfa 60 0.28 4.51 0.15 1.99 2.12 0.38 -2.47 

Corn 78 0.77 0.62 0.34 -0.28 2.19 0.75 -0.24 

Pasture 55 0.43 4.45 0.36 2.04 2.00 0.52 -1.55 

All 3 193 0.61 2.63 0.20 1.17 2.39 0.62 -0.93 

DETAW 

Alfalfa 60 0.37 3.74 0.25 1.52 1.72 0.47 -1.23 

Corn 78 0.88 1.12 0.63 0.54 1.40 0.86 0.42 

Pasture 55 0.45 3.65 0.41 1.31 1.43 0.62 -0.35 

All 3 193 0.71 2.27 0.49 1.18 1.76 0.74 -0.04 

DisALEXI 

Alfalfa 44 0.35 2.04 0.10 -0.34 1.24 0.58 0.08 

Corn 58 0.44 2.77 0.52 0.64 1.32 0.76 0.57 

Pasture 49 0.51 1.95 0.22 -0.02 1.32 0.69 0.34 

All 3 151 0.45 2.27 0.27 0.11 1.46 0.71 0.43 

ITRC-METRIC 

Alfalfa 28 0.68 2.75 0.23 1.68 2.04 0.54 -0.53 

Corn 34 0.73 4.11 0.58 2.97 2.96 0.69 -0.19 

Pasture 30 0.92 2.07 0.44 1.91 2.17 0.75 -0.09 

All 3 92 0.77 3.10 0.42 2.18 2.75 0.68 -0.22 

SIMS 

Alfalfa 59 0.50 2.89 0.27 1.10 1.48 0.56 -0.66 

Corn 76 0.90 2.73 0.77 2.27 2.23 0.73 -0.48 

Pasture 69 0.59 2.03 0.58 0.36 0.92 0.86 0.53 

All 3 204 0.74 2.31 0.48 1.33 1.88 0.73 -0.27 

UCD-METRIC 

Alfalfa 28 0.84 2.56 0.36 2.07 2.25 0.53 -0.71 

Corn 34 0.87 3.92 0.59 3.19 3.20 0.67 -0.47 

Pasture 30 0.96 2.95 0.47 2.94 2.93 0.66 -1.13 

All 3 92 0.92 3.09 0.51 2.76 3.22 0.65 -0.67 

UCD-PT 

Alfalfa 28 0.43 2.03 0.31 -0.06 0.94 0.74 0.66 

Corn 37 0.79 1.00 0.89 0.12 0.75 0.96 0.92 

Pasture 32 0.70 1.05 0.79 -0.34 0.68 0.93 0.88 

All 3 97 0.71 1.11 0.77 -0.06 0.88 0.93 0.87 

Average 

Alfalfa 44 0.49 2.93 0.24 1.14 1.68 0.54 -0.70 

Corn 56 0.77 2.32 0.62 1.35 2.01 0.77 0.08 

Pasture 46 0.65 2.59 0.47 1.17 1.64 0.72 -0.20 

All 3 146 0.70 2.40 0.45 1.24 2.05 0.72 -0.12 
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4.2.3. Potential Causes of Differences 

Participating research groups proposed several reasons which may explain discrepancies between 
model estimates and the field-based estimates and measurements, which vary by both the crop 
type and the specific field station. Several modeling groups expressed concern that field-based 
ET estimates and measurements were lower than expected for well-irrigated crops, suggesting 
that field station installations may have affected measurements due to trampling crops or that the 
fetch distance of the stations was insufficient to capture ET variations across a field. However, 
the field campaign team believes its ETa estimates are supported by independent data in the 
Delta and its micrometeorological techniques were tested in extensive post-deployment 
comparisons. Low field ETa values observed in the Delta may have been caused by deficit 
irrigation, unique soil and nutrient conditions, low water availability, short depths to 
groundwater, plant physiological response to local wind climatology (commonly called the 
“Delta Breeze”), and other variables. Field techniques did not involve plant trampling at levels 
significant enough to discernibly affect turbulent transfer and radiation sensor footprints, and 
adequate fetch was obtained by careful sensor placement height and location (Paw U et al., 
2018).  

Any systematic biases between CalSIMETAW or DETAW and the field data would be caused 
when field conditions did not match observations used to develop crop coefficient (Kc) literature. 
The models may be particularly sensitive to crop coefficients during dry initial and final 
cropping periods, where Kc values are typically set to around 0.15. At other times of the season 
the assumed growth, irrigation, and cutting schedules within these models may have differed 
from actual field conditions. For example: an alfalfa cutting not assumed within crop coefficients 
might bias field data lower than models, assumed corn senescence dates could bias models 
higher or lower than the field if the actual dates did not line up, and a pasture irrigation not 
accounted for in models could bias field-based estimates higher due to surface evaporation. Since 
there were fewer pasture sites overall and one was outside the DSA, there was also less pasture 
data available for comparison to the two models (Table 8). Since the models rely on land use 
classifications to develop crop-specific estimates, they are also sensitive to misclassifications. At 
site D09 the DWR land use dataset mistakenly showed fallow land rather than corn (Medellín-
Azuara et al., 2018), which likely caused some negative bias at the higher end of ET values for 
corn. Finally, the coarse spatial resolution of CalSIMETAW and DETAW alone may have 
caused discrepancies compared to field-scale data which captured finer regional ET variations 
and on-farm practices. Irrigation schedules and soil data were not available for the fields where 
stations were deployed for this study.  

DisALEXI’s differences from field data may be accounted for by unique meteorological 
processes in the Delta not captured in the large-scale model. Corn estimates by the ITRC and 
UCD-METRIC models also have some uncertainties from leaf shadows which must be corrected 
to prevent underestimation of albedo. Systematic differences between models and the field data 
are unlikely to be caused by the hot/cold pixel selection; this would be more likely to skew the 
comparative scatter (with a high y-intercept and a slope less than one or a low y-intercept with a 
slope greater than one) rather than the consistent mean bias observed (slopes close to one with 
positive y-intercepts for all three crops). Therefore, it’s more likely that both models share a 
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consistent calibration philosophy which could have biased results over the field data. 

SIMS ETcb estimates would be expected to have a high bias over field-based ETa estimates in 
the presence of crop water stress or if atypical conditions such as crop speciation or unique 
physiology, water stress, canopy variation (i.e. stomatal resistance caused by water shortage), 
pest damage, waterlogging, regional microclimates, or different soils (which affect crop 
coefficient values rather than explicit inputs to the model) were present at the field sites. Some of 
the fields where stations were installed were irrigated only sporadically (Paw U et al., 2018); if 
farmers were to delay irrigation to aid with harvesting (i.e. mid-season alfalfa cutting), sweeten 
fruit crops (i.e. orchards or vineyards), or adjust for inadequate water supplies, then SIMS 
estimates would be higher than other models and field data. This would also be the case if there 
were residual biomass (i.e. corn stalks) left in the field after harvest. Finally, SIMS is sensitive to 
canopy height variations which affect the empirical relationship between observed NDVI, 
calculated, fractional crop cover, and resulting crop coefficients. 

Remote sensing models which extrapolate instantaneous satellite overpass data to develop daily 
estimates, particularly the METRIC models, could bias ETa estimates if data observed in the 
field did not match the assumption that the overpass (which passes over the Delta at around 
11:00 am PST) was representative of the entire day. The presence of clouds of any type during 
an overpass (i.e. over station D12 on August 30, 2016, during a Landsat 8 overpass) could also 
bias model estimates depending on their method for masking out clouds. Absolute temperature 
measurements by satellites could also be impacted if the vertical atmospheric profiles of major 
greenhouse gases (i.e. water vapor and carbon dioxide) differed from those assumed by thermal 
datasets. Vegetation canopy radiative or turbulence transfer simplification assumptions may also 
differ from actual field surface conditions. Other assumptions inherent to remote sensing and ET 
modeling, including the basic methodological differences among models described previously, 
may also be responsible for observed differences between model and field-based ET 
measurements and estimates. 

In general, remote sensing methods would be expected to capture crop growth and land use 
changes on fairly short temporal scales (every 8 to 16 days based on Landsat overpass 
frequency), depending on cloud obscuration and interpolation methods. However, the effects of 
microclimates on ETa values in the Delta suggested by the field-based estimates and 
measurements could cause differences from models if spatial homogeneity was assumed for a 
given crop (i.e. that a corn field in the north Delta would have similar ET to a corn field in the 
south Delta if they had the same soil and water conditions and were managed in the same way). 

4.2.4. Improving Model Inputs and Field-Model Comparisons 

Existing differences between model estimates and field data could be further investigated and 
potentially reduced through the collection of additional field data. This includes irrigation timing, 
crop conditions such as plant-water stress, soil properties such as soil-water content, and a full 
season of measurements. While field data collection over homogeneous, well-irrigated sites 
would be expected to converge with some modeled ET estimates which assume more ideal crop 
conditions, most models are also designed to represent actual field conditions. Further 
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comparisons to field-collected data, examinations of embedded variables, and incremental 
modifications are crucial parts of model development, but agreement on the value and use of 
field data by modeler developers is required. Further meteorological and physical data collection 
in the field, combined with increased cooperation with remote sensing models through studies 
such as this, may help increase agreement between field studies and models over time. 

5. Comparing Consumptive Use to Self-Reported Diversions 

Remote estimates of evapotranspiration (ET) show promise to improve the estimation of 
agricultural diversions in the Delta (Siegfried et al., 2014), which may aid in the administration 
of water rights by supplementing manual measurements and reporting by water users. To test this 
broader application of ET data, a preliminary study was done to compare the ET estimates 
developed for the Delta to diversions reported by water users. 

A hypothetical island in the Delta surrounded by water might consist entirely of agricultural 
lands irrigated by points of diversion (PODs) from adjacent surface water channels. Precipitation 
(P) or seepage (S) through levees or the subsurface might supplement this irrigation. Water 
would leave the island via evapotranspiration (ET) from crops, pumping of agricultural drainage 
(D), and recharge (R) to groundwater. For this conceptual island model, a water balance may be 
represented as follows: 

𝑷𝑶𝑫𝒔 + 𝑷 + 𝑺 = 𝑬𝑻 + 𝑫 + 𝑹               (3) 

If P and S are assumed to be roughly equal to D and R, or if all four variables are negligible 
compared to the magnitude of water gained from PODs and lost from ET, Equation (3) could be 
simplified as follows: 

𝑷𝑶𝑫𝒔 = 𝑬𝑻                  (4) 

Estimates of ET and user-reported diversions were compared for actual islands in the Delta to 
test the hypothesis of Equation (4). For water years 2015 and 2016, information was gathered on 
the location diversion points and the volume of water diverted monthly. Comparisons were made 
for specific islands or upland areas, as well as larger geographic regions and the Delta Service 
Area (DSA) as a whole. Discrepancies between diversions and ET were investigated, and 
recommendations were developed to expand this work further in the California. 

5.1. Water Rights and Diversions in the Delta 

To develop the conceptual model presented in Equation (4) for actual land areas, the boundaries 
of Delta islands and the location of water rights points of diversion were defined. The boundaries 
of islands and upland areas in the Delta are specified by the 168 subareas of the 679,594-acre 
DSA over which the DETAW model develops ET estimates (Kadir, 2006). The California 
Department of Water Resources (DWR) has also adapted these subareas for use in the California 
Simulation (CalSim 3.0) model, Delta Simulation Model (DSM2), and other water planning and 
analysis models for the Delta (DWR, 2017a). The boundaries of subareas are generally defined 
by channels surrounding major Delta islands or large canals or roads separating upland areas; a 
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map of these subareas is shown in Figure 19. Of the 168 DSA subareas, 122 are classified as 
“lowland” areas and 46 are “upland” zones. Average elevation data for each subarea were 
obtained from a 10-meter digital elevation model (DEM) to verify these classes. Without 
additional information on places of use for individual water rights, an application of the 
conceptual model in Equation (4) to a finer spatial scale than a Delta island would be unlikely to 
yield reasonable comparisons between diversions and ET because applied water would be more 
likely to flow outside the specified area. Related prospects for improving this analysis are 
discussed further below. 

Water users in the Delta hold rights to divert from its channels to serve a variety of demands; 
these include agricultural irrigation through siphons to subsided islands or longer canals to 
upland areas, urban areas pumping water from the Delta, State and Federal inter-basin transport 
projects, and environmental uses supporting wildlife habitat or recreation. The California State 
Water Resources Control Board (SWRCB) maintains the online Electronic Water Rights 
Information Management System (eWRIMS) database, which contains information about water 
rights points of diversion with attributes that include priority date, owner, nature of use, and 
other information (SWRCB, 2018). Grantham and Viers (2014) presented a summary of 
California’s water rights system and utilized data from the eWRIMS database to give a 
comprehensive overview of water rights in the state. 

A spatial dataset of water rights PODs across the State of California, updated May 1, 2018, was 
downloaded from the eWRIMS Water Rights Web Mapping Application. Using geographic 
information system (GIS) software, PODs in the DSA were identified and assigned to the 
subarea where their diversion was located. Manual quality control of the dataset was done using 
aerial images to ensure that each POD was properly assigned to the subarea to which it actually 
diverts. A total of 3,121 unique water rights divert from 135 of the Delta’s 168 subareas, with 
130 of these rights diverting from multiple PODs that may be located in different subareas. The 
locations of PODs in the DSA are mapped in Figure 19 (this map shows individual PODs 
documented under each individual water right; many PODs may be used by multiple water rights 
but not precisely co-located in the dataset). 

Diversions made under the 3,121 water rights (as identified by unique Application Numbers) in 
the Delta were retrieved for comparison to remote ET estimates for the DSA’s subareas. The 
California Water Code requires, with some exceptions, users of surface waters to file annual 
water reports supporting beneficial water use and documenting monthly diversions. Depending 
on the type of water right, these reports are referred to as Supplemental Statements of Water 
Diversion and Use, Reports of Licensee, or Progress Reports by Permittee (SWRCB, 2017). 
Wilson (2011) described the history of diversion reporting in California and the program’s 
impacts and benefits in the Delta. 

During California’s historic 2012-2016 drought, reporting and diversion requirements were 
further expanded under Senate Bill 88 and a Board-adopted Emergency Regulation for 
Measuring and Reporting Water Diversions (SWRCB, 2017). The SWRCB (2015) also issued 
Order WR 2015-0002-DWR (“Informational Order”), requiring specific water rights holders in 
the Sacramento and San Joaquin watershed to provide information on the location, amount, and 
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nature of their diversions. The Informational Order impacted 1,061 riparian and senior (pre-
1914) water rights owned by 445 different parties, representing 90 percent of reported water use 
in the Delta and 90 percent of water use in the Sacramento and San Joaquin River watersheds; 
958 of the impacted water rights were in the DSA POD database developed for this study. 
Ekdahl and George (2018) summarized an initial review of responses to the Informational Order 
and provided a spreadsheet database which was used to obtain additional information on the 
affected water rights in the Delta. 

 

 

Figure 19. Delta subareas (Kadir and Liang, 2018) and points of diversion (after SWRCB, 
2018). 

Annual water use reports are filed by calendar year, so water use reports from 2014-2016 were 
required to match ET estimates for all months of water years 2015-2016. A Python program was 
developed (available at https://github.com/jessejanko/pyWRIMS) to query the eWRIMS Water 
Rights Records site based on the Water Right ID attribute of individual water rights, accessing 
annual water use reports for each. Monthly direct diversions, typically in acre-feet (AF), were 
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obtained for at least one year from 2,741 of the 3,121 water rights in the DSA; the status of all 
but 38 of the remaining rights was marked as Cancelled, Inactive, or Revoked. Manual quality 
control was done on water rights with annual diversions exceeding 1,000 to ensure the proper 
units were used, as some users occasionally reported diversions in gallons. Additional manual 
quality control of smaller diversions was not done, as it would take considerable time. 

Though water use reports are filed for individual water rights (as identified by Application 
Numbers), 130 of the water rights in the Delta have multiple PODs that may divert to multiple 
subareas. Since no supporting information was available to split these diversions to multiple 
PODs, each water right’s diversion was assigned to its first numbered POD and associated 
subarea. Not all water rights in the Delta divert water solely for agricultural irrigation; other 
beneficial uses identified in water rights attributes include stockwatering, domestic or municipal, 
fish and wildlife preservation and enhancement, recreational, power or industrial, fire protection, 
and other incidental uses. No water rights were excluded from the analysis, which would be 
expected to drive reported diversions greater than ET estimates if diversions were reported for 
non-agricultural uses. Available user-reported monthly diversions were summed for each of the 
DSA subareas to produce a dataset which could be compared to ET estimates over the same 
areas and times. 

5.2. Comparison of Diversions and Evapotranspiration 

For comparison to monthly user-reported diversions in water years 2015-2016, monthly average 
ET volumes from each of the seven models compared in this study were averaged to produce an 
ensemble mean; SIMS results included the DSA-wide average of the other six models for semi-
agricultural/ROW and wet herbaceous/sub-irrigated pasture lands (which covered about 11% of 
the DSA). Though some user-reported diversions were for non-agricultural land uses, managed 
natural vegetation (i.e. hunting clubs) is likely a small percentage of the total land area covered 
by riparian, floating or wetland vegetation in the Delta. Therefore, most non-agricultural ET is 
unlikely to originate from intentional diversions, so only ET estimates from the 26 agricultural 
classes identified in DWR’s land use survey (Table 1) were used. Monthly ensemble mean ET 
volumes from agricultural lands were summed by subarea for direct comparison to reported 
diversions. 

Available reported diversions from all 3,121 water rights in the DSA totaled 2,309,710 AF in 
2015 and 2,991,783 AF in 2016, while ensemble mean ET estimates for the DSA’s agricultural 
lands totaled 1,444,866 AF in 2015 and 1,379,316 AF in 2016 (Table 4). Monthly timeseries 
plots were developed for each of the DSA’s 168 subareas, its five major regions (see Figure 3), 
the lowland and upland zones specified in the subarea dataset, and the entire DSA. Figure 20 
presents eight sample plots for various areas, as well average elevation and other attributes for 
each. 
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16,909 acres, 95% agricultural in 2016 

148 water rights, avg. elevation -2.6 ft. (Lowland) 

 
8,941 acres, 92% agricultural in 2016 

59 water rights, avg. elevation -5.1 ft. (Lowland) 

 
13,836 acres, 62% agricultural in 2016 

38 water rights, avg. elevation 8.3 ft. (Upland) 

 
5,228 acres, 69% agricultural in 2016 

24 water rights, avg. elevation 10.7 ft. (Upland) 

 
175,172 acres, 78% agricultural in 2016 
1,018 water rights, avg. elevation 6.3 ft. 

 
122,247 acres, 49% agricultural in 2016 
238 water rights, avg. elevation 6.4 ft. 

 
209,927 acres, 60% agricultural in 2016 
464 water rights, avg. elevation 18.5 ft. 

 
679,594 acres, 68% agricultural in 2016 
3,121 water rights, avg. elevation 9.0 ft. 

Figure 20. Monthly reported diversions (SWRCB, 2018) and ensemble mean ET estimates 
for select Delta subareas, regions, zones, and the DSA, 2015-2016. 
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The timeseries comparison plots shown in Figure 20 represent large Delta islands and upland 
areas with sizable volumes of ET and diversions which matched well in both monthly timing and 
magnitude. These areas demonstrated very good agreement between diversion and ET in 
transitional seasons, with roughly equal discrepancies during the peak growing season (June-
August) and wintertime (November-February). However, neither ET nor diversions were 
consistently higher or lower for all areas; Grand Island and the Stone Lake Area had higher 
diversions in summer and higher ET in winter, Tyler Island had consistently higher diversions, 
and the subarea North of Lakeview Along I-5 had consistently higher ET. Some larger 
geographic (North and West) and topographic (Uplands) areas of the Delta also showed excellent 
agreement between diversions and ET for volumes exceeding 25,000 AF per month. 

Many other subareas not plotted in Figure 20 had less strong correlations between ET and 
diversions, often small in magnitude but more substantial for some subareas. Large discrepancies 
often depended on the nature of water right uses within a subarea and other local factors (these 
are discussed further below). In the DSA overall, reported diversions exceeded ET in every 
month; notably, diversions which spiked in March 2015 and increased overall in 2016 were not 
reflected in ET estimates. The comparison suggests some promise for ET estimates to accurately 
quantify diversion in some areas, and a more comprehensive evaluation of errors in the analysis 
can indicate the magnitude of major differences and suggest venues for improvement. 

5.3. Analysis of Differences Between Diversion and Evapotranspiration 

Annual total diversions and agricultural ET estimates were compared for all 168 subareas of the 
DSA to examine systematic differences. Several comparative statistics were used to quantify 
these differences: mean bias, root-mean-square error (RMSE), index of agreement, coefficient of 
efficiency, and relative bias. Relative bias, a quantification of the difference between diversions 
(DIV) and ET relative to the magnitude of ET, was computed for individual subareas as follows: 

𝑨𝒏𝒏𝒖𝒂𝒍 𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑩𝒊𝒂𝒔 =
∑ 𝑫𝑰𝑽ି∑ 𝑬𝑻

∑ 𝑬𝑻
              (5) 

The result of Equation (5) would be positive if DIV exceeded ET (which occurred in 85 subareas 
in 2016), negative if ET exceeded DIV (32 subareas in 2016), equal to -1 if there was zero 
reported DIV (21 subareas in 2016), or equal to zero if ET was equal to DIV (no subareas in 
either year). Since an ET value of zero would cause a mathematical error, annual mean bias 
values for subareas with zero agricultural ET (30 in 2016) were forced to a value of -10 for 
plotting purposes. Figure 21 contains exceedance plots of annual mean bias, RMSE (for all 
monthly values for a given subarea and year), and relative bias for all 168 subareas, separated by 
water year. RMSE and relative bias are plotted on log scales, so the RMSE plot does not show 
zero values and the negative relative bias values are plotted by absolute value in reverse order. 
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1RMSE = 0 for subareas where DIV=0 

 
 

2Value forced to –10 for subareas where ET=0 

Figure 21. Analysis of annual differences between reported diversions and ET for all 
subareas, 2015-2016. 

Mean bias values for all subareas show that absolute differences were small, with ET biased 
lower than diversions: -6 TAF on average in 2015 and -11 TAF in 2016 (Figure 21). Very good 
agreement was found for about 75% of subareas, where mean bias was less than ±10 TAF, and 
about a third of the subareas had a mean bias of less than ±1 TAF. The major outliers were three 
subareas with biases lower than -100 TAF (Clifton Court, Byron Tract, and Merritt Island in both 
years). RMSE values show that monthly relative differences between diversion and ET were 
even smaller, averaging about 1 TAF in 2015 and 2 TAF in 2016 with 23 subareas having a 
RMSE of less than 1 AF in both years. Relative bias values, averaging 2.3 in 2015 and 4.3 in 
2016 for areas with nonzero ET, indicate that subareas were roughly spilt between having greater 
ET and greater diversion. Higher diversions in 2016 were likely due to a wetter year with 
increased water availability, especially for water project transfers (discussed further below). 
Conversely, the estimated total agricultural ET in the Delta decreased by about 66,000 AF from 
2015-2016 due to land fallowing and other previously discussed trends. 

5.4. Further Work to Improve Analysis 

The hypothesis of Equation (4) appears accurate for islands surrounded by water with largely 
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agricultural water rights, even up to larger regions of the Delta; estimated ET was within about 
one magnitude of reported diversions for more than half of the Delta’s subareas (Figure 21), with 
many having excellent agreement in both timing and magnitude (Figure 20). However, the 
simplified assumption of an isolated agricultural island appears less accurate for certain areas 
with specific water uses. Further investigation of individual water rights will improve the results 
of this analysis and allow for similar comparisons on even finer spatial scales. 

Major differences between reported diversions and estimated ET are likely driven by the nature 
of beneficial water use associated with individual rights, and reported diversions for non-
agricultural uses would exceed ET estimates made from exclusively agricultural lands. Though 
ET estimates exist for non-agricultural lands, water use on managed lands such as hunting clubs 
is difficult to separate from consumptive use by entirely natural vegetation. More than 200 of the 
Delta’s water rights have beneficial uses for Recreation or Fish and Wildlife Enhancement, and 
diversions reported under these rights totaled more than 800 TAF in 2016; removing rights 
associated exclusively with these uses would improve the accuracy of this analysis, but several 
hundred additional water rights have multiple beneficial uses which include Irrigation, making 
them difficult to separate. Other specific agricultural practices may be included in reported 
diversions but not well-represented in ET estimates: pre-season field wetting, land subsidence 
reversal activities, or the flooding of rice paddies to aid in post-harvest decomposition. This 
knowledge of local practices and water use is crucial to understand the data gaps and limitations 
of this initial analysis. 

In upland areas not surrounded by water, the hypothesis of Equation (4) further breaks down as 
water may be sourced from or used in other subareas of the Delta. In areas around Tracy and 
Yolano, ET estimates exceeded diversions because irrigation water was sourced from outside the 
subarea where the water was consumptively used. Conversely, when water was transported 
outside a subarea its reported diversions exceeded ET by several magnitudes. Diversions by 
Reclamation Districts 150 and 999 did not match agricultural ET estimates on Merritt Island, and 
pumping by the State Water Project and the Central Valley Project were also much higher than 
the small amounts of ET in the Clifton Court Forebay and Byron Tract. Diversions under these 
large-scale projects are well-monitored, and their water rights could potentially be excluded 
entirely from the analysis; any deliveries within the Delta would require further investigation of 
their reported diversions, as they may include water uses upstream in the Trinity and Sacramento 
River basins. 

The database of water rights and diversions in the Delta developed for this study allows for 
further evaluation of individual water rights in specific subareas where diversion and ET showed 
significant differences, and additional data would improve the accuracy and applicability of this 
information. The unaddressed elements of Equation (3), pumping, recharge, precipitation, and 
seepage, may not be negligible in comparison to the magnitude of ET and diversions. This may 
be particularly true on finer timescales than months, as diverted water may not yet have returned 
to surrounding channels due to moisture held in soil pores. Desktop estimates of runoff fractions 
and gridded precipitation datasets like PRISM could be used to improve this analysis, but it 
would be difficult to obtain comprehensive pumping data or precise recharge and seepage 
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numbers across the Delta. A pilot study in an area with available information, ideally for the 
same period of this study (water years 2015-2016), might reveal how ET estimates could better 
match reported diversions with additional water balance data. 

Additional data is also needed for the 380 water rights with no reported diversions in this study, 
though about 90% of them are marked as cancelled or currently inactive. The 130 rights in the 
Delta which divert to multiple PODs are also a concern, as their potential use of water in 
multiple subareas is not accounted for in this analysis. These rights represented about 42% of 
Delta diversions in 2016 and could impact water balances within certain subareas if reported 
diversions were split between several PODs. Information on water use by individual PODs is not 
available in the eWRIMS database, so this expansion would likely require coordination with 
individual water right holders. 

The value of this study would increase if ET estimates could be compared to diversions made 
under individual water rights, and differences between the two would be expected to decrease 
when made over the specific field(s) or other non-agricultural areas where diverted water was 
applied. This improvement would require significant data on place(s) of use for individual water 
rights and would be best paired with detailed land use data and information on water 
infrastructure (i.e. irrigation canal conditions) to help determine carriage and application 
efficiency. States such as Utah have mapped places of use for all water rights and posted the data 
online, along with other information on points of diversion and nature of use for independent 
analysis (UDWR, 2018). In California, recent documentation collected for senior water rights 
under the Informational Order (Ekdahl and George, 2018) may make this type of analysis 
possible if care is taken to develop sufficiently accurate, precise, and accessible datasets. 

6. Conclusions on Consumptive Water Use in the Delta 

Evapotranspiration is one of the largest and most important quantities in local and regional water 
balances. It is also one of the most uncertain water balance components, as it is invisible, hard to 
estimate, and subject to varying estimation methods and data. This study expands on previously-
reported efforts (Jankowski et al., 2018; Medellín-Azuara et al., 2018) to summarize and discuss 
information on evapotranspiration from lands in the Delta, with important method and field 
insights learned from detailed data comparisons. It highlights a broad range of ET estimates by 
multiple methods, from annual values totaled over large areas to daily results at the two-acre 
scale and half-hourly point field data. Despite discrepancies at small spatial and temporal scales, 
the study’s results show some convergence of long-term models estimates over large areas (i.e. 
Delta-wide over a water year). 

State agencies and other stakeholders currently support a wide range of methods for measuring 
and estimating ET from crops and other ecosystems, and crop ET measurement and estimation 
methods continue to evolve and improve. However, few efforts have been made to compare 
these methods, particularly for applied water management problems. Given the wide ranges of 
ET estimates and sometimes high economic values of water uses, systematic comparison and 
development of ET estimation methods is critical and should yield substantial value. On average, 
the seven models in this study estimated that total evapotranspiration in the Delta totaled about 
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2,057 thousand acre-feet (TAF) in 2015 and 2,033 TAF in 2016, about 70% of which came from 
agricultural lands in both years. These values were broadly consistent (though about 18% higher) 
with values published by state agencies (DWR, 2017b). For agricultural lands, all models were 
within ±12% of the ensemble mean in both years and averaged an absolute difference of 6% or 
about 91 TAF. These average differences were considerably lower than similar comparisons of 
consumptive use estimates published in the literature (Kite and Droogers, 2000; Medellín-Azuara 
and Howitt, 2013; Sörensson and Ruscica, 2018). 

Alfalfa, corn, and pasture covered 40-45% of the Delta and averaged about 60% of all 
agricultural consumptive water use in the Delta (654 TAF) across all models. Among these three, 
alfalfa had the highest average annual ET per unit area (3.7 AF/acre or ft.) and accounted for 
12% of all consumptive use in the Delta; pasture had similar unit ET (3.5 ft.) and corn had the 
lowest (2.9 ft.). Almonds, tomatoes, and vineyards covered an additional 10% of the Delta land 
area and consumed about 10% of its agricultural ET. Land use changes from 2015 to 2016 
included decreases in the three main crops and increased fallow land (nearly 29,000 acres, some 
of which was likely driven by land preparation for the planting of permanent crops), resulting in 
a 5% (66 TAF) decrease in total agricultural ET. Models estimated that non-agricultural riparian, 
upland, and floating vegetation may have larger per-area ET rates than many crops and consume 
considerable volumes of water across the Delta. However, not all methods are suited to estimate 
ET for these land uses, and no corroborating field data was available for this study. 

Different areas of the Delta often have varying major crops, drainage, and climate conditions 
(winds, temperatures, elevations, soils, etc.). Estimates for larger regions are useful for Delta 
water flow and quality management, particularly as inputs to models. The five remote sensing-
based methods captured some spatial variability in ET estimates which often corresponded with 
specific crop types, and certain Delta regions corresponding with water agency service areas had 
observable trends in ET and land use. The greatest relative differences between methods were 
from October to January, when only about 13% of annual agricultural ET occurs, and larger 
relative differences and early or late-season increases in absolute differences were seen in corn, 
tomatoes (which may not be grown outside the summer, indicating the differences likely occur 
for post-harvest fallow fields), almonds, and vineyards. 

Field measurements collected by UC Davis represent a coordinated effort to deploy multiple 
instrumentation to several land covers in the Delta and develop datasets for common comparison 
to ET models. Measurements and estimates from surface renewal, eddy covariance, and water 
vapor flux equipment generally agreed (Paw U et al., 2018), so trade-offs between equipment 
cost, apparent accuracy, and correlation of measurement deserve further investigation. Field-
based estimates of actual evapotranspiration (ETa) from upland fallow fields sampled in late 
summer 2015 were nearly zero, considerably lower than most modeled values which ranged 
from 1-2 mm/d for the same period and locations. Additional fallow field measurements, 
particularly over an entire year, are needed to better support the findings of this study. A pilot 
study comparing ET from fallow fields to adjacent cropped fields is underway for the 2018 
growing season. 

Field measurements in 2016 from alfalfa, corn, and pasture fields provided considerably more 



-59- 
 

data for analysis and comparison, including half-hourly ETa estimates and measurements along 
with individual energy balance component datasets (Medellín-Azuara et al., 2018; Paw U et al., 
2018). These data are critical in assessing the field-scale uncertainties and accuracy of ETa 
estimates made by larger-scale models, and expanding a field campaign to other major crops and 
natural lands during the entire water year could be useful to assess ETa values across the Delta 
and enhance model performance under a wider set of land uses. Daily average field estimates and 
measurements of ET were compared to model estimates on concurrent satellite overpass days 
which were used to make direct estimates. While remote sensing-based estimates were well-
correlated with field-based estimates, models generally estimated higher ET from all three crops 
(ensemble mean bias of +1.2 mm/d and RMSE of 2.1 mm/d). Differences were generally greatest 
for corn, with lower bias for alfalfa and lower RMSE for pasture. Remote ET estimation methods 
may be improved by increased temporal resolution, validation of interpolation methods, and 
error assessment of model assumptions in cooperation with field campaign teams. 

Detailed comparisons between ET estimation methods on small spatial and temporal scales 
yielded insights into methodological assumptions and input datasets which may cause 
differences between ET estimates. Models were compared over 14 two-acre areas around alfalfa, 
corn, and pasture field stations on common satellite overpass dates used for direct estimation. 
These comparisons generally indicate good agreement between models; mean biases ranged 
from zero to 2.4 mm/d, and RMSE values ranged from 0.7-4.2 mm/d and averaged 1.8 mm/d 
across all comparisons for all three crops. The greatest agreements were found between models 
with similar methods and inputs: CalSIMETAW and DETAW, DisALEXI and UCD-PT, ITRC-
METRIC and UCD-METRIC. Though standardization of input datasets was pursued in this 
study, major sources of discrepancy likely included types of ET estimates (actual, ETa, potential, 
ETc, or basal crop, ETcb), selected input data, assumptions, specific parameter calibration, hard-
coded internal estimation steps, and modeler judgment. Improved communication among 
modeling groups and standardization of input datasets such as land use, satellite overpass dates, 
and data sharpening and interpolation procedures should improve convergence in ET 
estimations, but unique approaches, assumptions, and parameterizations may always result in 
some disagreements. 

The initial comparison between reported diversions and modeled consumptive use in the Delta 
shows promise. Mean biases between diversions and ensemble mean agricultural ET in the 
DSA’s 168 subareas averaged -8.5 TAF, with about 75% of subareas less than ±10 TAF and a 
third less than ±1 TAF. RMSE values were even smaller, averaging about 1.5 TAF, and 23 
subareas had a RMSE of less than 1 AF. Average relative biases of 3.3 indicated that subareas 
were roughly spilt between having greater ET and greater diversion. Errors increased alongside 
diversions in the wetter 2016 water year, even as ET decreased due to land use changes. Major 
outliers occurred in subareas with large water transfers outside the Delta or upland regions 
sourcing water from elsewhere. Water rights in the Delta have a multitude of dedicated purposes 
that include agricultural, human, environmental, and recreational uses which all affect the 
amount of water they might consumptively use, so further examination of individual water rights 
and local practices is needed to improve the usability of this analysis. With information about 
points of diversion and places of use, remote consumptive use estimates would be expected to 
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more closely approximate direct diversions, potentially supplementing manual measurements 
and aiding in the administration of water rights. 

This study demonstrates how to improve the quality, transparency, and accessibility of remote 
evapotranspiration data for large agricultural regions. The approach employed for this study was 
inclusive and collaborative, involving major research groups and agencies estimating ET across 
California and globally. The collection of data by an independent research team allowed for the 
unbiased analysis and presentation of results, the cooperation of modeling teams helped advance 
knowledge of how unique methods impact ET estimates, and iterative improvements over two 
years encouraged collaborative development to better represent local conditions. In-depth model 
and field comparisons and related discussions helped identify method gaps, demonstrate the 
uncertainties and challenges involved in modeling and measuring ET, and improve collaboration 
on technical efforts to quantify consumptive water use in California. 

7. Policy Recommendations for Broader Use 

Remote estimates of evapotranspiration (ET) from agricultural crops, natural vegetation, and 
developed lands have a range of potential uses by state agencies, stakeholders, researchers, and 
other water professionals. In the Sacramento-San Joaquin Delta, ET estimates may impact water 
management models and practices affecting agricultural uses, urban diversions, pump operations 
to transfer water outside the basin, and environmental water uses for aquatic, riparian, and 
upland wildlife habitat. Water professionals and practitioners statewide may benefit from the 
accurate estimation of ET to improve water accounting, inform groundwater modeling, monitor 
land uses, and manage irrigation practices on fine scales. Learning from this study and practices 
in other places, the State of California can pursue innovative applications of remote ET estimates 
and advance technical capabilities to use them for water management. 

Governments, agencies, and districts may put consumptive water use information to use in the 
management and planning of water resources and the administration of laws and regulations. In 
California, agencies like the State Water Resources Control Board and the Department of Water 
Resources may use ET estimates to advance basin water budgets, quantify idle land water 
transfers, permit and administer water rights, supplement regional water accounting, monitor and 
assess the impacts of drought, estimate the impacts of land use changes on streamflows, develop 
water conservation targets, manage Delta inflows and exterior transfers, and improve water 
balances which inform water quantity and quality estimates. The State of Idaho’s Department of 
Water Resources (IDWR) uses remote sensing-based estimates of ET for a variety of water 
management, accounting, and water right purposes. An online platform deployed by IDWR 
(2018) allows users to interactively obtain crop irrigation requirements and other information, 
improving transparency and reducing conflict. Allen et al. (2015) documented more than 20 
additional applications of the METRIC model and Landsat data to ET estimation across the U.S. 

The ensemble average of seven models demonstrated in this study provides a reasonable 
assessment of ET over large spatial and temporal scales (i.e. annual ET volumes for the Delta 
Service Area). Water managers and regulatory agencies may place value on having a single ET 
value, but it is important to understand the scientific uncertainties associated with ET estimation. 
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While a multi-model approach is an avenue to explore in a long-term ET estimation program for 
California, additional effort will be required to integrate multiple estimation approaches (i.e. 
weighted averaging of methods for select crops or data applications). The trade-offs of cost and 
practicality versus accuracy and comprehensiveness incurred in a multi-model approach merit 
further examination. 

Given the diversity in expert participation and the broad technical scope of the study, unresolved 
issues are expected. This thesis and Medellín-Azuara et al. (2018) present some clear 
discrepancies between the field campaign ET and the modeled ET estimates in the Delta, though 
many models have cited greater agreement with field data from other locations in their respective 
literature. The long-term value and credibility of ET estimation for California water management 
and policy will eventually require a better understanding of these differences, and some 
strategies may help reduce these unresolved differences. Field measurement campaigns could 
focus on detailed paired comparisons with a few modeled estimates, with uncertainty analyses of 
both measurements and estimates. Multiple water experts, such as independent field networks 
(i.e. FLUXNET-AmeriFlux), DWR, and other expert groups should be involved. The potential 
benefits of model calibration and validation with additional field-obtained data should be 
examined, and an ET measurement and estimation program with some base funding would be 
best-suited to maintain collaboration and advancement of ET quantification statewide. 

This study’s sample comparison of ET estimates to user-reported diversions in the Delta 
demonstrates the potential value of remotely-sensed consumptive use estimates in water rights 
administration. Estimates of ET may supplement self-reported data and help water users meet 
regulatory requirements. Recent increases in reporting requirements have imposed significant 
costs and labor requirements on water users and present questions of consistency and accuracy 
across many different diversions. Remote sensing-based ET estimation methods could provide a 
cost-effective approximation of water use, increasing transparency, accuracy, and consistency 
across the state; such methods have been used successfully in other states such as Idaho (IDWR, 
2018). Most water rights in the Delta have senior priority and are overseen by a variety of 
reclamation districts, water agencies, and other legislative groups created to address local water 
issues (Wilson, 2014). Collaborative consumptive use estimation groups may help establish trust 
in estimates and innovative approaches to administration. A similar approach is currently being 
sponsored among Delta water users by the Office of the Delta Watermaster, although results 
have not yet been reported. 

The extrapolation of ET estimates to quantify diversions requires, at minimum, information on 
the places of water diversion and use. Additional data on the nature of water uses (i.e. 
agricultural, human, or environmental beneficial uses) and localized conditions such as irrigation 
infrastructure, soil, and drainage will aid analysis efforts considerably. Additional work is 
needed to maintain comprehensive water right records, ensure the accuracy of point of diversion 
datasets, make diversion report data more accessible for interested parties, and ascertain how 
water is diverted under rights with multiple points of diversion. More information on the places 
of use for individual water rights and quantifications of seepage, pumping, recharge, and 
precipitation on Delta islands would further improve this work. Similar datasets have been made 
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available by other states for independent analysis (UDWR, 2018). 

Remote ET estimates may aid in on-farm water management and precision irrigation practices 
when presented in a usable format with sufficient resolution and timeliness. The present 
resolution of Landsat satellite data, passing over a region every eight days and outputting 
estimates at 30-meter resolution, can provide farmers with estimates of consumptive water use 
by entire fields in the past. This retrospective data might inform upcoming irrigation if schedules 
are designed to meet plant ET requirements and can also help farmers manage for variable soils, 
meet leaching requirements, ground-truth crop coefficients, and enhance ditch banks for off-
season habitat. Improved irrigation practices may lead to increased crop yields and economic 
benefits. Higher-resolution estimates of ET using data from unmanned aerial vehicles (UAVs) 
shows promise to provide ET estimates at the centimeter and minute-level, potentially improving 
irrigation uniformity across fields or allowing time to adjust irrigation practices in real-time to 
meet crop water requirements (Morandé et al., 2018). 

Groundwater management is informed by water balance models that require the quantification of 
water entering and exiting a system. Consumptive use of water is a substantial and often 
uncertain part of this equation, so accurate estimates of ET may increase the overall accuracy of 
groundwater balance calculations. The determination of groundwater recharge by irrigation or 
banking practices is valuable to water users and managers alike. Managers may also use remote 
ET estimates to monitor groundwater uses, predict pumping in the absence of data, or to 
compliment and verify meter readings. Spatial ET estimates across large regions may further aid 
in management of entire groundwater basins. Additional information on local soil and 
groundwater conditions may help refine the estimates of other components in the water balance, 
such as recharge fractions and runoff, but ET from irrigated crops is the largest water balance 
component in agricultural areas. 

California’s Sustainable Groundwater Management Act (SGMA) requires basins across the state 
to take steps towards long-term sustainability. This includes the formation of Groundwater 
Sustainability Agencies (GSAs) and the drafting of Groundwater Sustainability Plans (GSPs). 
Remote ET estimates may facilitate groundwater management at multiple scales and ease the 
amount of technical work required model, monitor, and maintain groundwater balances across 
the state as part of these efforts. Uncertainties in ET estimates may affect long-term groundwater 
planning, however: underestimation of ET could overstate sustainability, while overestimation 
may risk the integrity of water balances used in transfers, exchanges, and net accounting.  

This study reveals the need for more information on consumptive use from non-irrigated but 
actively managed lands. This includes fallow fields, which were estimated to represent nearly 
10% of total ET in the Delta in 2016. However, preliminary field-based estimates from a 
selection of areas above sea level in late summer 2015 were considerably lower than most 
models. The quantification of bare soil ET from specific areas is critical because it is the amount 
of water potentially saved in comparison to a fully-irrigated crop during the growing season, 
establishing the net consumptive water use of crops. Depending on regulations, this net water use 
may be available for transfer to other uses, banking to groundwater, environmental flow benefits, 
or compensation through voluntary fallowing programs. Current data presents high uncertainties 
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for the quantification of potential fallowing water savings. A more rigorous field-based study 
comparing similarly cropped and fallowed areas is needed, particularly on subsided land affected 
by subsurface seepage, and such a study is underway for the 2018 growing season. 

The quantification of water consumptively used by non-agricultural lands, especially from non-
crop vegetation, is also valuable for water managers. This study’s ET estimates from natural 
vegetation, including floating, riparian, and native classes, indicate their consumptive use rates 
per-unit area might be higher than those of irrigated crops in the Delta. However, because most 
estimation methods are primarily developed for agricultural land uses, these estimates need 
further examination. Additional model refinements may also be needed to account for unique 
growth characteristics and land cover variation in non-managed vegetation. There is considerable 
interest in the remote identification and mapping of different vegetation types, especially native 
versus non-native species. Lands use classifications could be improved through collaboration 
with other agencies and research groups with specialized experience. In tandem with increased 
model applications to non-cropped areas, additional field work to measure ET and other 
meteorological fluctuations should also be done to obtain calibration and validation data. A 
comprehensive review of previous field studies in these land use classes may improve accuracy 
for estimating this potentially large consumptive use in the Delta. Improved data on ET from 
vegetation may help quantify habitat water needs, evaluate the impacts of restoration on local 
water uses, and better incorporate natural landscapes into regional water balances. 

The full-coverage Delta land use survey program completed by DWR for this study aided ET 
estimation efforts by individual models and made comparisons for specific crops possible. 
Multiple years of data also allowed for the evaluation of crop planting and land use trends for the 
Delta, though some inaccuracies in classifications were possible due to the inherent difficulty of 
distinguishing very similar vegetation types in satellite images. Delta land use surveys for 2015-
2016 and other statewide data are planned to be made available online by DWR (2018d). An 
accurate, consistent, and long-term land use and crop type mapping survey program for the Delta 
and the state of California would substantially improve the basis for ET estimation and general 
water accounting and management at all scales. Such a program will benefit from including 
winter crop data (multi-cropping) and irrigation method and frequency information, potentially 
extending the quantification of elements in the water balance beyond consumptive use. Further 
refinement of non-agricultural land classes, including the separation of managed habitat areas 
(i.e. hunting clubs) and distinguishing between native versus invasive vegetation would inform 
both ET estimation efforts and broader land use, ecosystem, and watershed planning. 

Expansions to the California Irrigation Management Information System (CIMIS) network made 
in this study will continue to provide benefits. Five new CIMIS stations were deployed in the 
Delta to gather field meteorological data and provided point ETo values. The increased station 
density decreased the interpolation distances for making the Spatial CIMIS ETo maps used by 
most remote sensing methods. Though any increased accuracy due to the new stations remains to 
be assessed, the additional data to be collected at these stations in the future is still valuable to 
the CIMIS program. Field measurement sensors are becoming simpler to use and more 
affordable, which could translate to the ability to make direct ETa measurements over multiple 
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crops in standardized stations similar to the CIMIS network. 

Though extensive, this study does exhaustively investigate ET results for the Delta. Further 
analysis of model estimates, field measurements, land use information, and other data may yield 
additional valuable findings. All results analyzed in this study, presented as monthly geospatial 
rasters of ET estimates from each model and spreadsheets of field data, have been released 
publicly by Medellín-Azuara et al. (2018). This transparency encourages scrutiny and broader 
use of this valuable information, but more work can be done to present data in a format 
understandable to a broader audience. This may include interactive mapping and plotting tools, 
options to import additional data, and supportive documentation. Ideally such work could be 
accessible from a web browser or mobile device using a guided user interface (GUI). Hall et al. 
(2018) have begun the development of such an effort, called OpenET, which plans to present 
near-real-time ET estimates from multiple remote sensing models across the entire Western 
United States in an online tool. Several use cases of OpenET are proposed to demonstrate the 
tool’s capability for water trading, groundwater modeling, and irrigation management. Similar 
efforts to increase access to ET and promote the understanding of estimation methods are 
expected to increase trust in the data and promote the broader use of consumptive use 
information worldwide. However, care should be taken to explain the limitations of ET estimates 
and their appropriate applications in water management. 

This study helped advance the understanding of several models and field methods for 
consumptive use estimation and measurement with an application to a particular area of concern. 
The State of California should continue to pursue efforts to accurately quantify consumptive 
water use and promote related collaboration between scientists, water managers, practitioners, 
policymakers, and the public. A consortium including agencies, educational institutions, research 
centers, consultants, and stakeholders would greatly improve prospects for estimating ET in the 
Delta and elsewhere in California. Creating venues for collaborative exchange of common 
datasets and methodological standards for estimating ET promotes trust, enhances transparency, 
improves accuracy, and encourages further innovation. This type of program may require some 
pooled minimum funding to maintain ET estimation program elements, including accurate 
annual land use surveys, data curation and storage, documentation, and organization of data to 
serve various uses and facilitate research and synthesis.  
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