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Abstract 
 
Flooding often threatens riverine and coastal areas, particularly urbanized flood-prone areas 

that are densely populated and high-valued, which causes damages to life, property, society and 
the economy. Upstream flood reservoir operations and downstream levee construction are two 
common ways to protect from flooding. Most traditional risk-based analyses for optimal levee 
design focus primarily on overtopping failure, and few risk analysis studies explicitly include the 
more frequently observed intermediate geotechnical failures. This study first develops a risk-
based optimization model for single levee designs given two simplified levee failure modes: 
overtopping and overall intermediate geotechnical failures. The optimization minimizes the 
annual expected total cost, which sums the expected annual damage cost and annualized 
construction cost. This optimization model is then extended to examine a common simple levee 
system with levees on opposite riverbanks, allowing flood risk transfer across the river. The 
economic optimality of asymmetric levee system is demonstrated mathematically and 
analytically, for overtopping failure, overall intermediate geotechnical failure and a combination 
of failure modes. Where residual flood risk is completely transferred to the low-valued riverbank 
at economic optimality, individuals may be compensated for the transferred flood risk to 
guarantee and improve outcomes for all parties. Such collaborative designs of the two levee 
system are economically optimal for the whole system. However, rational and self-interested 
land owners that control levees on each river bank separately often tend to independently 
optimize their levees. By applying game theory to the simple levee system, the cooperative game 
with a system-wide economically optimal design and the single-shot non-cooperative Nash 
equilibrium are identified, and the successive repeated non-cooperative reversible and 
irreversible games are examined. Compensation for the transferred flood risk can be determined 
by comparing different types of games and implemented with land owners’ agreements on 
allocations of flood risk and benefits. The resulting optimized flood risks to a downstream leveed 
area would further affect the upstream reservoir’s operation in optimizing flood hedging pre-
releases, which would create a small flood downstream by pre-storm release to reduce the 
likelihood of a larger more damaging flood in the future. Overall damages from flood pre-release 
decisions must be convex for flood hedging to be optimal. Some theoretical conditions for 
optimal flood hedging are explored: the fundamental one is that the current marginal damages 
from pre-releases equals the future marginal expected damages from storm releases. Any 
additional economic water supply lost from pre-releases tends to reduce the use of hedging pre-
release for flood management. 
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Introduction 
 
Riverine areas are often threatened by flooding, particularly urbanized flood-prone areas 

that are densely populated and high-valued. Floods can cause loss of life and property, disrupt 
society and economy, and degrade the environment (Escuder-Bueno et al. 2010). In the United 
States, although flood-prone areas have received federal and local support to mitigate flood risks, 
flood damage is increasing (Pielke 2002; Smith and Katz 2013). California, with the complexity 
of its water system and the need for integrated approaches, in particular has to manage frequent 
and extreme floods (Hanak and Lund 2012).  

A variety of options are available for flood management. According to their implementation 
timing, these options are classified as preparatory (before floods), response (during floods) and 
recovery (after floods) actions. Flood risk is defined as the summed probability of flood events 
multiplied by the expected consequences of each event (the event’s vulnerability) (Escuder-
Bueno et al. 2010), over all events. Options in each category can be further classified as 
protection actions (protecting the area from the inundation) and vulnerability reduction actions 
(reducing the susceptibility of a community to flood damage from inundation) (Lund 2012). For 
example, levee and bypass construction are preparatory protection actions; flood warning and 
flood insurance are preparatory vulnerability reduction actions; sandbagging and levee 
monitoring are response protection actions; evacuation and emergency mobilization are response 
vulnerability reduction actions; reconstruction and repairing flood infrastructure are recovery 
protection actions; flood damage assessment and flood reinsurance are recovery vulnerability 
reduction actions. These options can be applied individually or as an integrated portfolio.  

To protect a floodplain, an optimal integrated flood management system will often combine 
a range of options. The foundation for developing such systems is that options are optimally 
designed and complement each other (Zhu, et al. 2007; Patterson and Doyle 2009; Castellarin et 
al. 2011). In addition to technical designs, economic considerations are needed for optimal 
design. Economically optimal flood management can be achieved with Risk-based Analysis and 
Benefit-cost Analysis (Howe 1971; Karlsson and Haimes 1988; Eijgenraam et al. 2014), 
particularly the probabilistic risk analysis (Lund 2012; Eijgenraam et al. 2014). 

This research is to optimally design individual flood management options for the 
development of optimal portfolios of options. Specifically, it is to optimally design single levees 
and levee systems downstream, and to optimize flood control reservoir operations upstream. 
Operations of upstream reservoirs could effectively reduce possible flood damages downstream 
and provide regulated flow information for downstream levee designs. Conversely, the 
downstream damage cost estimated with implementation of all optimal actions (levee designs) 
can help maximize the net benefit of flood control reservoir operations. Specific objectives and 
contributions of this proposed research to the literature include the following. 

1. Optimal design of a single levee considering overtopping and overall intermediate 
geotechnical failures with risk-based analysis. Differing from most previous studies that 
consider overtopping failure only, the more frequent intermediate geotechnical failure is 
included to improve optimal levee design or existing levee evaluation. Sensitivity 
analysis on some principle parameters provides the reliability of the conceptual levee 
fragility curves and this model. 

2. Optimal design of a simple system of levees with risk-based analysis and demonstration 
of the economic optimality of an asymmetric levee system. A common levee system 
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with two levees on opposite riverbanks on one river reach is optimally designed. Both 
symmetric and asymmetric levee systems are analyzed mathematically and 
theoretically, including overtopping and intermediate geotechnical failure modes, to 
demonstrate the economic optimality of better levee system designs. 

3. Game theory is applied to analyze the decision making in a simple levee system where 
self-interested land owners on each river bank independently develop levee design 
strategies using risk-based optimization. The cooperative design game, single-shot non-
cooperative Nash equilibrium, and the successive repeated reversible and irreversible 
non-cooperative games are examined. Comparing these different types of games can 
determine an appropriate level of compensation for the transferred flood risk to improve 
conditions for all parties. 

4. Developing optimal flood hedging rules for a single reservoir through trading off 
current pre-release risk with future storm release risk given a flood forecast. Flood 
hedging pre-release is one way to improve control future large floods by increasing the 
frequency of small floods currently. The fundamental theoretical optimal condition for 
flood hedging pre-release requires that the current marginal damage cost from pre-
releases equals the future expected damage cost from expected storms releases. 
Incorporating the economic water supply lost from pre-releases tends to reduce flood 
hedging pre-release, while blended hedging releases exist to include both water supply 
hedging and flood hedging. 

Each of these topics will correspond to one chapter each in the doctoral dissertation and are 
discussed in detail below. 
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Chapter 1: Risk-Based Analysis for Optimal Single Levee Design  

1.1 Summary 

Traditional risk-based analysis for optimal levee design focuses primarily on overtopping 
failure. Although most levees fail before overtopping, few studies explicitly include intermediate 
geotechnical failures in flood risk analysis. This study develops a risk-based optimization model 
for levee designs given two simplified levee failure modes: overtopping and overall intermediate 
geotechnical failures. Overtopping failure is determined only by water level and levee height, 
while intermediate failure depends on geotechnical factors as well, represented by levee crown 
width according to conceptual levee fragility curves developed from professional judgment or 
analysis. The optimization minimizes the annual expected total cost, which sums expected 
annual damage and annualized construction cost. Applications of this optimization model in 
designing new levees or evaluating existing levees are demonstrated preliminarily for a levee on 
a small river with a low mean annual peak flow protecting agricultural land, and a major levee on 
a large river with a high mean annual peak flow protecting costly urban land. Sensitivity analysis 
on levee fragility curves is presented for overall optima under range of intermediate failure 
conditions. 

1.2 Introduction 

Levees partially protect land from flood damage by restraining water from entering the 
protected area. Even the best levees cannot guarantee protection, given levee failures under 
various conditions. Flood risk is the probability of failure multiplied by the consequences of 
failure summed over all events (Van Dantzig 1956; Eijgenraam et al. 2014; Arrow and Lind 
1970). Levees can decrease, but not eliminate flood risk.  

Risk-based analysis has been used to evaluate flood consequences since the 20th century. In 
1960, the Netherlands, in its Delta Plan, first introduced return period (or exceedance frequency) 
for the optimal design water level to protect against flooding, based on a cost-benefit analysis to 
determine optimal return periods for dike rings in the Netherlands (Van Dantzig 1956; Van Der 
Most and Wehrung 2005; Eijgenraam et al. 2014; Kind 2014). The acceptable average return 
periods for the design of levees and dikes are stated in the Dutch Law, including four safety 
classes: 1250, 2000, 4000 and 10,000 years (Van Manen and Brinkhuis 2005). Flood risks 
considering probabilities and consequences have been established as a preferable basis for levee 
design and safety. Starting from 1992, the Technical Advisory Committee for Flood Defence 
initiated the development of a flood risk approach to more comprehensively calculate 
probabilities of flooding of dike ring areas. This method was applied to four illustrative case 
studies during its development (Technical Advisory Committee 2000) and has been widely 
accepted since then (Baan 2004; Klijn 2004; Jonkman 2008; Klijn 2008; Zhu and Lund 2009). 

Most traditional risk analysis studies of levees only account for levee failure from 
overtopping, but levees often fail before overtopping due to intermediate geotechnical failures 
modes (Wolff 1997). Wolff (1997) modeled multiple individual failure modes and created a 
combined failure probability, assuming individual modes are independent. It summarizes that 
under-seepage and through-seepage are the two most common intermediate failure modes and 
may also trigger other failure modes such as erosion and slope stability. Although a few studies 
have analyzed the probability of intermediate levee failure as a function of water level (Technical 
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Advisory Committee 2000; Meehan and Benjasupattananan 2012), they are too simplistic for 
identification of levee’s geotechnical characteristics. This study, instead, includes explicitly the 
intermediate geotechnical failure mode in levee risk analysis based on synthetic levee 
performance curves. Through-seepage is chosen to represent general intermediate failure since 
under-seepage is more likely only if a levee has less permeability than its foundation.  

As shorter levees are more likely to fail by overtopping and narrower levees are more likely 
to fail geotechnically (Wood 1977; Tung and Mays 1981a; Tung and Mays 1981b; Bogárdi and 
Máthé 1968), levee height and crown width are two significant parameters in levee design. Other 
design parameters include waterside slope angle and landside slope angle for a general levee 
with trapezoid cross section, as well as levee material, compaction and other factors. Levee 
design usually follows federal and local standards, such as the 100-year urban flood protection 
required by the Federal Emergency Management Agency (FEMA 2013), Bulletin 192-82 and PL 
84-99 developed by California Depart of Water Resources (DWR) in particular for agricultural 
levees, and the 200-year flood protection by the 2012 Urban Levee Design Criteria (2012).  

Section 1.3 of this chapter describes a risk-based optimization model for a single levee 
design, including model description, intermediate geotechnical levee failure and risk-based 
analysis incorporating both overtopping and intermediate geotechnical failure modes. Section 1.4 
presents and discusses the illustrative applications of this model for a small rural levee and a 
large urban levee. Section 1.5 presents a sensitivity analysis on levee fragility curves that 
represent the intermediate failure probabilities, and analyzes the impacts from major economic 
parameters. Section 1.6 concludes with key findings. 

1.3 Risk-based Optimization for a Single Levee 

Typically, the optimization principle of levee risk analysis is to minimize all flood related 
costs, including costs of expected (residual) flood damages and those of flood protection (here 
levee construction) (Kind 2014). For this study, a model combining simple representations of 
hydraulic levee failure and economic cost is used to examine levee design parameters (height and 
width) by minimizing annual expected total costs, including expected annual damage cost and 
annualized construction cost. This examination shows the relative importance of considering 
intermediate geotechnical failure as part of studies on levee system risk analysis. 

1.3.1 Model Description 

This study uses an idealized channel with a single levee on one side of a river reach and a 
high bank on the other side (that never fails) (Figure 1.1). ܤ is channel width, ܹ is the total 
channel and floodplain width till the toe of the levee, ܦ is channel depth, ܻ is water level, ߬ is the 
slope of the floodplain, ߙ is the levee landside slope, ߚ is the levee waterside slope, ܪ is levee 
height and ܿܤ is levee crown width. To simplify optimization of the levee considering both 
overtopping and intermediate geotechnical failure modes, levee height and crown width are 
assumed to be the two dominant variables, as surrogates for overtopping and geotechnical failure 
modes. 
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Figure 1.1 Idealized cross-section of a channel with a single levee 

1.3.2 Intermediate Geotechnical Levee Failure 

Overtopping failure occurs simply when the water level exceeds the top of levee, with a 
probability estimated by an annual flood flow frequency distribution. Geotechnical failure modes 
are often represented by levee fragility curves that graphically summarize the relation of levee 
failure probability with the height of water level. Figure 1.2 illustrates three possible levee 
fragility curves according to conceptual estimation (Wolff 1997; USACE 2011). Water level at 
the toe and the top of levee is 3.5݂ݐ and 8.5݂ݐ respectively. So the levee failure probability for 
water level below 3.5݂ݐ is 0 and above 8.5݂ݐ is 1. Failure probability for a levee in “good” 
condition is a convex curve, remaining low when water level is low and increasing dramatically 
when water level approaches the levee height. In contrast, the levee in “poor” condition has a 
concave failure probability curve, with a high failure probability even at low water levels. Levees 
in “fair” condition tend to be in good condition at low water levels, but come to resemble poor 
quality levees at higher water levels. The exact failure probability between the toe and the crest 
of the levee is uncertain given these curves are typically based on professional judgment (Perlea 
and Ketchum 2011). One possible but not very practical way to provide a relatively precise 
fragility curve for a given levee is through geotechnical experiments. Intermediate failure 
probabilities can be tested for varying water levels to approximate the fragility curve. 
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Figure 1.2 Sample conceptual levee fragility curves for levees in various conditions 

Combined with the flow frequency curve where lower flows are more frequent, Figure 1.2 
implies a high likelihood of levee failure before overtopping. 

Levee fragility depends on levee geometry such as levee height, crown width, side slopes, 
and properties such as soil conductivity and compaction (Kashef 1965; USACE 2000). Here in 
addition to levee height H, levee crown width Bc is chosen as another decision variable because 
of its influence on intermediate failure performance curves and the wide range of acceptable 
values (USACE 2006).  

Crown width can be used to calculate seepage through an earthen dam using geotechnical 
relationships given in Schaffernak’s solution for through seepage (Das 2010). Independent 
variables in this method include water level, levee height, crown width, landside angle and 
waterside angle. This model has three main assumptions. First, the base of the levee is assumed 
to be impervious, disregarding underseepage failure. This assumption implies seepage as a 
primary cause of intermediate failure. Second, the waterside slope angle of the dam is less than 
30 degress,  otherwise the Casagrande correction factor needs to be applied (the 2:1 horizontal to 
vertical ratio selected does not require the Casagrande correction factor). The third assumption is 
that the hydraulic gradient is constant and equal to the slope of the free surface as water flows 
through the dam according to the Dupuit assumption (Das 2010).  It is also assumed that the 
flood has enough duration for through-seepage to fully develop. 

Schaffermak’s solution uses L, the sloped elevation of the discharging water, and the soil 
hydraulic conductivity to calculate the rate of seepage per unit length of the dam. The hydraulic 
conductivity is assumed to be constant for all possible levee heights and crown widths. Given 
this assumption, relative rates of seepage can be compared using the ratio of the sloped discharge 
elevations for two crown widths; therefore the rate of seepage can be calculated as in Eqn. 1.1. 

ݍ ൌ ݇ ∗ ௦ܮ ∗ ߙ݊ܽݐ ∗  (1.1) ߙ݊݅ݏ
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where ݍ is the rate of seepage per unit length of the levee, ݇ is the soil conductivity which is 
assumed constant in this study, ߙ is the angle of levee landside slope, and ܮ௦ is the sloped 
elevation of the discharging water defined in Eqn. 1.2. 

௦ܮ ൌ
ௗ

௦ఈ
െ ටቀ ௗ

௦ఈ
ቁ
ଶ
െ ቀ 

௦ఈ
ቁ
ଶ
 (1.2) 

where ܻ is the water level, and ݀ is the horizontal distance between the landside toe of the levee 
and the effective seepage entrance as defined in Eqn. 1.3. 

݀ ൌ 	0.3 ∗ 

௧ఉ
 ுି

௧ఉ
 ܤ 

ு

௧ఈ
 (1.3) 

where ߚ is the angle of levee waterside slope, ܪ is levee height and ܤ is crown width.  

The relative rates of seepage can be viewed as changes in the likelihood of levee through-
seepage failure. At any given levee height, a wider levee would have a smaller sloped elevation 
 therefore smaller exit velocity and through-seepage failure ,ݍ ௦ and a smaller seepage rateܮ
probability. So widening levee crown width decreases the likelihood of levee intermediate 
failure, which provides a basis for estimating the levee’s intermediate geotechnical failure. 

To represent the relative probability of levee intermediate geotechnical failure, the 
minimum standard crown width is selected as base. Levee failure probability curves under 
different conditions for the minimum standard crown width are given based on the levee fragility 
curves. For numerical computation rather than theoretical analysis, this study uses the following 
mathematical expressions to explicitly represent levee fragility curves under good, fair and poor 
conditions respectively. 

ܲሺܳሻ ൌ

ە
ۖ
۔

ۖ
ۓ ቂ

ሺିுሻ

ு
ቃ
ଷ
, ݏ݁݁ݒ݈݁	݀݃

ଵା௦ቄగ∗ቂ
ሺೊషಹሻ

ಹ
ቃିഏ

మ
ቅ

ଶ
, ݏ݁݁ݒ݈݁	ݎ݂݅ܽ

1  ቂ
ሺିுሻ

ு
െ 1ቃ

ଷ
, ݏ݁݁ݒ݈݁	ݎ

     (1.4) 

where ܲሺܳሻ = probability of levee intermediate geotechnical failure and ܪ௧ = height of the toe 
of levee. Mathematical formulas to represent levee fragility curves can be in other forms. For 
example, a simple linear function can approximate the intermediate failure of fair levees. This 
study is just illustrating an effective way to explicitly incorporate intermediate failure into levee 
risk-based analysis, not excluding alternative mathematical expressions options. 

Levee failure probability for all other selected crown widths are normalized using the 
sloped elevation of the discharging water relative to that of this standard crown width, as a 
coefficient to adjust intermediate failure probability (ܱܥ ܲ௧).  

ܱܥ ܲ௧ ൌ
ೞሺ,ሻ

ೞሺ,ሻ
                                                                                                                 (1.5) 

So a wider crown width with a smaller sloped elevation ܮ௦ will have a smaller ܱܥ ܲ௧ and 
corresponding failure probability. For example, given the base levee failure probability for a 
minimum standard crown width of ݊݅݉ܿܤ ൌ  the decrease in levee failure probability for a ,ݐ16݂
crown width of ݔܽ݉ܿܤ ൌ  can be calculated at different water levels. In Figure 1.3, water ݐ56݂
level at the toe and the top of levee is 3.5݂ݐ and 11.5݂ݐ respectively. Levee failure probability 
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curves have the same pattern for the same levee condition with either crown width. For the same 
water level and levee condition, failure probability for a crown width of ܿܤ ൌ  is less than ݐ56݂
at for the minimum standard crown width of ݊݅݉ܿܤ ൌ  The levee failure probability .ݐ16݂
curves for a larger crown widths shift down and to the right from the original standard. 

 

Figure 1.3 Levee failure probability curves for minimum and maximum levee crown widths 
in various levee conditions 

The new levee fragility curves depend on both crown width and levee height, but continue 
to represent the professional judgment in the original levee fragility curves. Sensitivity analysis 
on this representation of levee fragility is presented later using an example of a rural levee. 

1.3.3 Risk-based Optimization Model 

This model assumes independence of overtopping and intermediate geotechnical failures for 
a given water level. It also assumes no hydraulic uncertainty affecting the relationship between 
water level and flow. Ignoring hydraulic uncertainty can compromise the accuracy of estimating 
expected damages, and should be avoided when adequate knowledge of the channel is available 
(Tung and Mays 1981b). Considering hydrologic uncertainties only, Eqn. 1.6 calculates the 
expected annual damage cost of the system for combined intermediate geotechnical and 
overtopping failures. The first term represents the expected damage from intermediate 
geotechnical failure when flow is below channel capacity, while the second term represents the 
expected damage from overtopping failure when flow exceeds the channel capacity.  

ܦܣܧ ൌ 	 ሺܳሻܦൣ ∗ ܲሺܳሻ ∗ ܲሺܳሻ൧݀ܳ
ொ
   ሺܳሻܦൣ ∗ ܲሺܳሻ൧݀ܳ

ஶ
ொ

    (1.6) 

where ܦሺܳሻ = damage cost as a function of flow; ܳ = critical overtopping flow of the leveed 
channel; ܲሺܳሻ = probability density function of river flow; ܲሺܳሻ = probability of levee 
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intermediate geotechnical failure as a function of flow. The probability distribution of annual 
peak flood flow is assumed as a log-normal distribution. For a given channel geometry, 
Manning’s Equation is common for converting flow to water level (Wolff 1997). 

If the damage cost per failure occurrence is constant and independent of flow (as in many 
deeply leveed systems), Eqn. 1.6 can be simplified to Eqn. 1.7.  

ܦܣܧ ൌ ܦ	 ∗ ቄ ൣ ܲሺܳሻ ∗ ܲሺܳሻ൧݀ܳ
ொ
  ሾ1 െ  ொሺܳሻሿቅ    (1.7)ܨ

where ܦ = constant flood damage cost; ܨொሺܳሻ = cumulative density function of flow ܳ.  

Therefore, the single levee design can be optimized by minimizing the annual expected total 
cost (TC), which is the sum of the expected annual damage cost (EAD) and annualized 
construction cost (ACC).  

Min ܶܥ ൌ ܦܣܧ   (1.8)    ܥܥܣ

Annualized construction cost is based on levee volume and land area. 

ܥܥܣ ൌ ቂ∗
ሺଵାሻ

ሺଵାሻିଵ
ቃ ∗ ሺݏ ∗ ܿ ∗ ܸ   ሻ    (1.9)ܥܮ

where ݎ = real (inflation-adjusted) discount or interest rate; ݊  = number of useful years the levee 
will be repaid over;	ݏ = a cost multiplier to cover engineering and construction administrative 

costs; ܿ = unit construction cost per volume; ܸ ൌ ܮ ∗ ቂܿܤ ∗ ܪ  ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ is theܪ

total volume of the levee along the entire length (ܮ) of the reach; ܥܮ ൌ ܥܷ ∗  is the cost for ܣ
purchasing land to build the levee, with a unit land cost, ܷܥ, and the land area occupied by levee 

base, ܣ ൌ ܮ ∗ ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ -ቃ. Land cost is an additional cost to represent the siteܪ

specific expense of purchasing an acre land.  

Physical constraints on this optimization model include upper and lower limits of crown 
width and levee height as well as non-negativity of all variables. 

1.4 Model Applications  

The developed risk-based optimization model is applied illustratively to a small rural 
Cosumnes River levee and a large urban Natomas levee in California. Hydraulic parameters and 
levee dimensions for model applications are formulated from previous studies (Tung and Mays 
1981b), following design standards developed by DWR and the federal government, Bulletin 
192-82 and PL 84-99 respectively. All the following economic values for annual expected total 
costs, annualized construction costs and expected annual damages costs are yearly costs. 

1.4.1 Model Applications in A Small Rural Levee on Cosumnes River 

The Cosumnes River has a median peak annual flow of 930݂ܿݏ, a mean annual peak flow 
of 1300݂ܿݏ, a land cost of $3000 per acre (0.066 $/ft2), and roughly $8 million damage cost if 
the area is flooded (USACE 2006).  

Channel geometry and levee related parameters include: channel width is ܤ ൌ  total ;ݐ200݂
channel width including the floodplain is ܹ ൌ ܦ channel depth is ;ݐ250݂ ൌ  longitudinal ;ݐ3݂
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slope of the channel and the floodplain section is ܵ ൌ 	ܵ ൌ 0.0005; Manning’s roughness for 
the channel section and floodplain is ܰ ൌ ܰ ൌ 0.05; floodplain slope is ݊ܽݐτ ൌ 0.01; levee 
landside slope and waterside slope are set as ߙ݊ܽݐ ൌ 1/4 and ߚ݊ܽݐ ൌ 1/2 respectively; total 
levee length is ܮ ൌ  Construction cost parameters are cost per unit levee material is .ݐ2640݂
ܿ௦ ൌ ݎ ଷ; real discount rate isݐ݂/$10 ൌ 0.05; useful life of the levee is ݊ ൌ  the cost ;ݏݎݕ100
multiplier for engineering and construction administrative costs is ݏ ൌ 1.3. 

Using these site specific values and assuming the Cosumnes levee is under fair condition, 
the annualized construction cost, expected annual damage cost, and annual expected total cost 
are compared for a minimum levee crown width of ݊݅݉ܿܤ ൌ ݔܽ݉ܿܤ and a maximum of ݐ16݂ ൌ
 increment in varying levee height. Generally, annual expected ݐin Figure 1.4, with 0.1݂ ݐ56݂
total cost is dominated by the expected annual damage cost for shorter levees, and by the 
annualized construction cost for taller levees. The minimum of each total cost curve defines an 
optimum levee height for that crown width. In Figure 1.4, the optimal levee height for a 
minimum crown width of ݊݅݉ܿܤ ൌ ∗ܪ is ݐ16݂ ൌ  while the optimal levee height for a ,ݐ6.7݂
maximum crown width of ݔܽ݉ܿܤ ൌ ∗ܪ is ݐ56݂ ൌ  The annual expected total cost for the .ݐ4.4݂
minimum crown width exceeds that of the maximum crown width by $0.26 million/yr, as a 
results of a small decrease in annualized construction cost by $0.11 million/yr but a big increase 
in the expected annual damage cost by $0.37 million/yr. 

 

Figure 1.4 Annual expected total costs, annualized construction costs and expected annual 
damage costs for different levee crown widths, assuming fair levee condition (rural levee) 

Costs of different levee heights with varying crown width also are compared. Figure 1.5 is 
the comparison for a levee height of ܪ ൌ ܪ and a levee height of ݐ4݂ ൌ  ݐwith 1݂ ,ݐ8݂
increments in levee crown width. Similarly, annual expected total cost is dominated by the 
expected annual damage cost for narrower levees, and by the annualized construction cost for 
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wider levees. With increases in levee height and/or crown width, the expected annual damage 
cost becomes extremely small due to the rapidly decreasing chance of overtopping and 
intermediate failure, and therefore total cost becomes dominated by construction cost. The 
minimum of each total cost curve defines an optimum levee crown width for that height. The 
optimal levee crown width for a levee height of ܪ ൌ ∗ܿܤ is ݐ4݂ ൌ  while the optimal levee ,ݐ46݂
crown width for a levee height of ܪ ൌ ∗ܿܤ is ݐ8݂ ൌ  The annual expected total cost for a .ݐ29݂
levee height of ܪ ൌ ܪ exceeds that of ݐ8݂ ൌ  by $0.14 million/yr, as a result of a big ݐ4݂
increase in annualized construction cost by $0.33 million/yr and a small decrease in the expected 
annual damage cost by $0.19 million/yr. Compared to the results from Figure 1.4, changes in 
levee height lead to greater changes in annualized construction cost than changes in levee crown 
width. 

 

Figure 1.5 Annual expected total costs, annualized construction costs and expected annual 
damage costs for different levee heights, assuming fair levee condition (rural levee) 

Because the annual expected total cost of the levee is a function of levee height and crown 
width, there are local cost minimums for each levee height and crown width increment. The 
overall lowest total cost of all the local cost minimums defines the global optimal levee height 
and crown width combination. Enumeration of the annual expected total cost for all possible 
levee geometries could find the overall optimal levee design for both design parameters. Figure 
1.6 shows how the annual expected total costs change for various levee geometries under good, 
fair and poor levee conditions respectively, given the above site-specific values. Levee height 
and levee crown width are both varying with 0.1݂ݐ increments. The annual expected total cost 
increases when levees become too short since the expected annual damage cost is relatively high, 
or when levees become too tall since the annualized construction cost is relatively high. For 
similar reasons, levees designed with too narrow or too wide crown width will greatly increase 
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the annual expected total cost. Minimum annual expected total cost occurs at a corresponding 
optimum combination of levee height and crown width. 

 

Figure 1.6 Annual expected total costs for various levee geometries under good, fair and 
poor levee conditions (rural levee) 

Another way to compare the optimum combination of levee height and crown width is by 
contour plots of all possible annual expected total costs (Figure 1.7). Contour intervals are $0.1 
million/yr across plots for different levee conditions in Figure 1.7. The red dots on each contour 
plot indicate the optimal levee height and crown width. The contour plots reveal the trend that 
the optimum levee height decreases with increasing crown width, for a comparable total cost.  As 
levee crown width increases, intermediate failure probability decreases and therefore decreases 
the first term of the expected annual damage equation.  As the levee height increases, the 
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capacity of the levee system increases and therefore decreases the probability of overtopping. On 
the other hand, increasing levee height and crown width increases construction cost. So this 
optimization model should balance the costs from possible damage and construction, while 
balancing the two design parameters as they have similar impacts on those costs. Fortunately, for 
these problems there is a fairly wide range of near-optimal solutions around the optimal solution. 
This is explored analytically later. 

 

Figure 1.7 Contour plots of annual expected total costs for various levee geometries under 
different levee conditions (rural levee) 



	

	 15

Table 1.1 shows the optimal results for the three levee conditions and the trends of these 
results from good to poor levee conditions.  

Table 1.1 Optimal results and comparison for different levee conditions (rural levee) 

Optimal Results GOOD FAIR POOR Good to Poor 
Annual Expected Total Cost ($ million/yr) 0.56 0.83 0.98 Increasing 
Expected Annual Damage Cost ($ million/yr) 0.24 0.36 0.44 Increasing 
Annualized Construction Cost ($ million/yr) 0.32 0.47 0.54 Increasing 
Levee Height H (ft.) 5.6 4.9 4.6 Decreasing 
Levee Crown Width Bc (ft.) 16 40.4 54.6 Increasing 
Prob. Of Overtopping Failure 0.0089 0.0135 0.0162 Increasing 
Prob. Of Intermediate Failure 0.0211 0.0316 0.0386 Increasing 
Prob. Of Overall Failure 0.0300 0.0451 0.0548 Increasing 
Return Period (yrs) 112 74 62 Decreasing 
Return Period (yrs) (2ft freeboard) 287 215 202 Decreasing 
Return Period (yrs) (3ft freeboard) 396 319 287 Decreasing 

 
Among the optimal values in Table 1.1, the optimal levee height and relevant return years 

of the designed peak flow decrease from good to poor levee conditions, differing from the trends 
of others. Compared to big differences in optimum levee crown widths (16݂ݐ ൏ ݐ40.4݂ ൏
 of good, fair and poor conditions, the optimum levee height remains fairly constant (ݐ54.6݂
around 5݂ݐ5.6݂) ݐ  ݐ4.9݂   For the optimal combination, a levee with much narrower .(ݐ4.6݂
crown width has a slightly higher levee height, or a slightly higher levee has a much narrower 
crown width, and vice verse. This results from the levee geometry of the side slopes, specifically 
waterside slope ߚ݊ܽݐ ൌ 1/2 and landside slope ߙ݊ܽݐ ൌ 1/4. The annualized construction cost, 
which is a function of levee volume, is more sensitive to levee height than crown width; when a 
levee height increases by 1݂ݐ, the base width increases by 6݂ݐ t (1/ߚ݊ܽݐ  ߙ݊ܽݐ/1 ൌ 6), which 
increases the horizontal distance of the seepage path and decreases seepage related failures. So 
under varying conditions, a bigger change in levee crown width can substitute for a smaller 
height change. 

From the above analysis, intermediate geotechnical failure occurs with a much higher 
probability than overtopping failure. A comparison between the risk-based analysis for 
overtopping failure only and for a combination of overtopping and intermediate geotechnical 
failure would also demonstrate the significance of geotechnical failure modes. Figure 1.8 is the 
annual expected total cost, expected annual damage cost and annualized construction cost for the 
rural Cosumes levee with varying levee height, given the above optimized 40.4݂ݐ crown width 
for fair levee condition (Table 1.1). Red lines are the costs for overtopping failure only. Green 
lines are costs for overtopping and intermediate geotechnical failure. The optimal levee height, 
failure probability, return year of the designed peak flow and annual expected total cost are 
 and $0.55 million/yr ($0.37 million/yr ACC and $0.18 million/yr EAD) ݏݎݕ45 ,0.0224 ,ݐ4.1݂
respectively for the overtopping failure only condition, while those values are 4.9݂0.0451 ,ݐ 
(with 0.0135 overtopping probability), 74ݏݎݕ and $0.83 million/yr ($0.47 million/yr ACC and  
$0.36 million/yr EAD) respectively for the combined condition. Besides, the expected annual 
damage cost due to overtopping failure in the combined condition is $0.11 million/yr, which is 
less than the $0.18 million/yr in the overtopping failure only. Ignoring intermediate geotechnical 
failure leads to a less expensive levee, but higher expected annual damage.  
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Figure 1.8 Annual expected total costs, annualized construction costs and expected annual 
damage costs for overtopping failure only and a combination of overtopping and 

intermediate geotechnical failure, assuming fair levee condition (rural levee) 

In this example, land use cost (ܥܮ) has little impact on the optimal results, but the 
availability of land may constrain a levee’s base area (ܣ). The bottom width of the levee cross-
section increases 6݂ݐ per foot of additional height and increases 1݂ݐ per foot of additional crown 
width. As the unit land cost (ܷܥ) increases by one increment, the optimal design will be a wider 
but slightly shorter levee since land use cost depends on the levee’s base area (ܥܮ ൌ ܥܷ ∗  .(ܣ
Where the optimum crown width is too large for a fixed land area, steeper landside slopes or a 
smaller crown width should be analyzed. In urban areas with high land prices, levees may be 
replaced with more expensive, but thinner flood walls. In contrast to the Cosumnes River 
surrounded primarily by agricultural land, next section looks at the Natomas levee on the 
Sacramento River that protects an urban area from a major river. 

1.4.2 Model Applications in A Large Urban Natomas Levee on Sacramento River 

The Natomas levee examined in this section protects a more densely populated urban area, 
along the Sacramento River, starting from the confluence with Natomas Cross Canal to the 
confluence with the American River (Figure 1.9). For this illustrative analysis, the river flow 
frequency data is from the Sacramento River with an estimated mean peak annual flow of 
roughly 30,000݂ܿݏ (USGS 2005). The coefficient of variation of the assumed lognormal-
distributed peak annual flow is 1.0. The cost of land adjacent to the river is valued at $200,000 
per acre. A damage cost of roughly $8.2 billion occurs if the protected urban area is flooded. The 
channel depth, channel width, levee length are roughly 10݂ݐ1000݂ ,ݐ, and 19݈݉݅݁(ݐ10,320݂) ݏ 
respectively. Channel roughness and longitudinal slope of the stage are assumed to be ܰ ൌ
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	0.05 and ܵ ൌ 	0.0005. This levee is assumed to be in fair condition and uses the levee fragility 
curve for intermediate failure probability. 

 

Figure 1.9 19 miles of levee on the Sacramento River protecting Natomas Basin to the East 

The levee on the Natomas Cross Canal is approximately 15݂ݐ tall, with a crown width of 
 Most levees on the north side of the American .(USACE 2009) ݐand a base width of 75݂ ݐ25݂
River have crown widths ranging from 30݂ݐ to 60݂ݐ with 2 െ  .lane roads on the crest ݐ4݂
Waterside slope is 3ܪ: 1ܸ and landside slope is 4ܪ: 1ܸ at the steepest. For the examined urban 
Natomas Levee between the two confluences, a higher maximum crown width standard of 
ݔܽ݉ܿܤ ൌ  is used to optimize levee designs. The minimum crown width standard is ݐ90݂
݊݅݉ܿܤ ൌ   .ݐ20݂

Table 1.2 shows the optimal results for the three levee conditions of the urban Natomas 
Levee on Sacramento River found by enumeration.  
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Table 1.2 Optimal results and comparison for different levee conditions (urban levee) 

Optimal Results GOOD FAIR POOR 
Annual Expected Total Cost ($ billion/yr) 0.27 0.41 0.55 
Expected Annual Damage Cost ($ billion/yr) 0.11 0.19 0.30 
Annualized Construction Cost ($ billion/yr) 0.16 0.22 0.25 
Levee Height H (ft.) 21.9 20.4 22 
Levee Crown Width Bc (ft.) 30 90 90 
Prob. Of Overtopping Failure 0.0036 0.0046 0.0035 
Prob. Of Intermediate Failure 0.0101 0.0187 0.0331 
Prob. Of Overall Failure 0.0137 0.0233 0.0366 
Return Period (yrs) 278 215 282 
Return Period (yrs) (2ft freeboard) 382 301 387 
Return Period (yrs) (3ft freeboard) 443 353 449 

 
The optimized results in Table 1.2 for the urban levee show similar conclusions as the rural 

levee. For all levee conditions, intermediate geotechnical failure is more likely than overtopping 
failure. Tradeoffs between the optimal design levee height and crown width simultaneously 
affect the overall probability of levee failure and eventually the expected annual damage cost and 
annual expected total cost, though at different rates. The optimum levee height remains fairly 
constant compared to the big changes in optimum crown widths. Again, the difference in 
variance of optimum values is largely because of the levee geometry of the side slopes, as 
described earlier. 

With a relaxation on the maximum crown width constraint, optimal crown widths for fair or 
poor levees increase further, while optimal levee heights decrease accordingly, along with the 
annual expected total costs (TC). The difference between the probability of overtopping failure 
and the probability of intermediate geotechnical failure also decreases under each condition. 

Similar to the contour plots in Figure 1.7, the annual expected total costs of the urban levee 
regarding levee height and crown width show the same trends. As the crown width increases, the 
intermediate failure probability decreases; as the levee height increases, the water capacity of the 
levee system increases and overtopping failure probability decreases. The optimum height and 
crown width balance the trade-off between the expected annual damage costs that are, and the 
annualized construction costs that are positive correlated. 

The current Natomas Levee is under improvement to increase flood protection and ensure it 
meets codes and standards set by FEMA, USACE and the State of California, to achieve a 100 
year flood protection while determining the costs of upgrading the levees to 200-year protection 
(SAFCA 2013). A wide and tall levee to ensure a 200-year flood protection needs very large 
footprint. In densely populated urban areas, land for levee construction may not be available or 
too expensive to purchase. So structures requiring less land, using slurry or flood walls, might 
needed to reduce seepage and related failures. 

Most levees in California were built in the early 1900’s to protect agricultural land. These 
levees are much more likely to fail. Analyses of through seepage, under seepage, stability, and 
erosion were performed to classify areas into risk categories to identify priority reach locations 
for future improvements. Proposed construction for new levees include slurry walls to mitigate 
seepage, and increasing channel capacity to decrease loads on levees (USACE 2013). 



	

	 19

1.5 Sensitivity Analysis 

Several factors could affect this optimization model, including the conceptual levee fragility 
curves and values of various economic parameters. Sensitivity analysis is applied to these major 
factors to understand their impacts. 

1.5.1 Impacts from Levee Fragility Curves 

The levee fragility curves serve as the foundation to include intermediate geotechnical 
failure in optimal levee design for this study. Derivation and representation of the levee fragility 
curves are important in this risk-based optimization model. The proposed method of addressing 
intermediate geotechnical failure probability combines professional judgment in the original 
levee fragility curves with a more physics-based way of representing effectiveness of wider 
crown widths. Sensitivity analysis on the derived levee fragility curves, and their mathematical 
expressions, is discussed with examples of the rural Cosumnes levee. 

Increasing the levee failure probability for any given levee height and crown width raises the 
levee fragility curve, while decreasing the levee failure probability lowers the levee fragility curve. 
Figure 1.10 shows examples of changing levee fragility curves upward or downward by 20% for 
levee in good and poor conditions with a maximum crown width of ݔܽ݉ܿܤ ൌ  Solid lines .ݐ56݂
are the levee fragility curves used in early discussion, dash lines are levee fragility curves with a 
20% decrease in failure probability, and dash-dot lines are levee fragility curves with a 20% 
increase in failure probability. 

 

Figure 1.10 Levee fragility curves with different curvatures 

With this way of representing changes in levee fragility curves, we calculate the optimal 
designs for the rural Cosumnes levee with a 1%, 5%, 20% increase and decrease in intermediate 
geotechnical failure probability. Table 1.3 and Table 1.4 are the optimized results assuming a levee 
in good condition and poor condition respectively. Levee height and crown width are varying with 
 .increments ݐ0.1݂
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Table 1.3 Sensitivity Analysis on Levee Fragility Curves for good levee conditions (rural 
levee) 

Optimal Results 
Changes in Levee Fragility Curves 

0 +1% +5% +20% -1% -5% -20% 
Annual Expected Total 
Cost ($ million/yr) 

0.56 0.56 0.58 0.64 0.56 0.54 0.49 

Expected Annual Damage 
Cost ($ million/yr) 

0.24 0.24 0.25 0.28 0.24 0.23 0.18 

Annualized Construction 
Cost ($ million/yr) 

0.32 0.32 0.33 0.37 0.32 0.31 0.31 

Levee Height H (ft.) 5.6 5.6 5.6 5.3 5.6 5.5 5.5 
Levee Crown Width Bc (ft.) 16 16 16.4 18.2 16 16 16 
Prob. Of Overtopping 
Failure 

0.0089 0.0089 0.0089 0.0106 0.0089 0.0095 0.0095 

Prob. Of Intermediate 
Failure 

0.0211 0.0216 0.0221 0.0238 0.0206 0.0193 0.0133 

Prob. Of Overall Failure 0.0300 0.0305 0.0310 0.0344 0.0295 0.0288 0.0228 
Return Period (yrs) 112 112 112 94 112 106 106 
Return Period (yrs) (2ft 
freeboard) 

287 287 287 256 287 277 277 

Return Period (yrs) (3ft 
freeboard) 

396 396 396 363 396 385 385 

 
From Table 1.3, increasing intermediate failure probabilities or moving upward the levee 

fragility curves increases the optimal annual expected total cost, expected annual damage cost 
and annualized construction cost, and vice verse. Percentage changes in levee fragility curves or 
intermediate failure probabilities cause smaller percentage changes in optimal annual expected 
total cost, if not reaching the minimum design crown width. For example, the optimal TC 
increase by less than 5% with a 5% increase in intermediate failure probabilities, and the optimal 
TC increase by less than 20% with a 20% increase in intermediate failure probabilities. Optimal 
expected annual damage cost, annualized construction cost, design levee height and levee crown 
width change at relatively smaller rates than changes in intermediate failure probabilities as well. 
In this case assuming a good levee condition, optimal levee crown width remains the same with 
decreasing intermediate failure probabilities. Optimal levee height remains fairly constant with 
changes in intermediate levee failure compared to the optimal levee crown width, which can be 
easily seen in the increasing direction. 
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Table 1.4 Sensitivity Analysis on Levee Fragility Curves for poor levee conditions (rural 
levee) 

Optimal Results 
Changes in Levee Fragility Curves 

0 +1% +5% +20% -1% -5% -20% 
Annual Expected Total 
Cost ($ million/yr) 

0.98 0.99 1.02 1.12 0.98 0.95 0.85 

Expected Annual Damage 
Cost ($ million/yr) 

0.44 0.44 0.47 0.56 0.36 0.43 0.37 

Annualized Construction 
Cost ($ million/yr) 

0.54 0.55 0.55 0.56 0.47 0.52 0.48 

Levee Height H (ft.) 4.6 4.6 4.6 4.6 4.6 4.6 5.1 
Levee Crown Width Bc (ft.) 54.6 54.7 54.9 56 54.1 52.6 48.3 
Prob. Of Overtopping 
Failure 

0.0162 0.0162 0.0162 0.0162 0.0162 0.0162 0.0119 

Prob. Of Intermediate 
Failure 

0.0386 0.0393 0.0423 0.0548 0.0383 0.0377 0.0338 

Prob. Of Overall Failure 0.0548 0.0555 0.0585 0.0710 0.0545 0.0539 0.0457 
Return Period (yrs) 62 62 62 62 62 62 84 
Return Period (yrs) (2ft 
freeboard) 

188 188 188 188 188 188 235 

Return Period (yrs) (3ft 
freeboard) 

287 287 287 287 287 287 341 

 
Optimal results in Table 1.4 have the same trends and conclusions as Table 1.3. From the 

previous discussions in the rural Cosumnes levee example and urban Natomas levee example, 
optimal levee height changes slightly with different levee conditions. Comparatively, optimal 
levee crown width greatly differs. The fact that optimal levee heights have less dependence than 
crown widths on different levee conditions is also shown here by comparing Table 1.3 (good 
condition) and Table 1.4 (poor condition) accordingly. These outcomes are also seen in Figure. 
1.7 with a fairly wide range of near-optimal solutions.  

In conclusion, levee fragility curves will affect the optimal levee design. However, if the 
deviations of estimated curves are within a modest range, for example േ5%, the changes in 
optimal levee design are small, especially when the design increment of levee height is greater 
than 0.1݂ݐ and the design increment of levee crown width is greater than 1݂ݐ. Between the two 
independent levee design variables, the optimal levee crown width is more sensitive to the 
changes in levee fragility curves in this risk-based optimization model. Whereas, optimal levee 
height and crown width both change at smaller ratios than the changes in intermediate failure 
probabilities. The bigger percentage changes in optimal levee crown width compared to optimal 
levee height in response to percentage changes in levee fragility curves also indicate the 
effectiveness of raising, rather than widening a levee. 

1.5.2 Analytical View of Trader-off in Design Parameter 

The first-order condition for minimizing the annual expected total cost of flood control 
requires the first partial derivatives of ܶܥሺܪ,  and levee crown ܪ ሻ with respect to levee heightܿܤ
width ܿܤ equal zero 
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Assuming uniform flow in the river channel, the overtopping capacity ܳ is determined 
solely by river cross-section geometry, which is levee height ܪ in this case. Energy slope and 
channel roughness are not supposed to be affected by levee modification. Therefore, from Eqn. 
1.10 and 1.11, 
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(1.12) 

The above equation holds for the optimal levee height and optimal levee crown width. 
Other than the enumeration method discussed previously for solving this optimization model, the 
optimal levee height and crown width can also be found by numerically solving the two first-
order conditions simultaneously and verifying that a global minimum is attained. 

In the above equation, value of flood damage cost ܦ, unit construction cost ܿ, economic 
discount rate ݎ, and land use cost ܥܮ do not affect the optimal trade-off between levee height and 
crown width. Thus, changes in these economic values do not affect the economic optimal ratio of 
substitution between levee height and crown width, though may affect the values of the optimal 
design. 

1.6 Conclusion 

This study presents a quantitative risk-based analysis for optimal single levee design 
including overtopping and intermediate geotechnical failure modes to estimate the optimal levee 
height and crown width. By using the geotechnical relationships given in Schaffernak’s solution 
for through seepage, levee crown width is added as an independent decision variable that 
primarily determines the intermediate geotechnical failure probability. In this way, the 
conceptual levee fragility curves, which largely represent professional judgment, are 
quantitatively adjusted to include both levee height and levee crown width and represent both 
overtopping and intermediate geotechnical failure modes. 

In this risk-based optimal levee design, levee height determines overtopping probability 
while levee height and crown width together determine the likelihood of intermediate 
geotechnical failure. The optimal levee height and crown width are found by minimizing the 
annual expected total cost, which is the sum of expected annual damage and annualized 
construction cost. Other than optimal design of a levee, this approach could also help evaluate 
the current condition of existing levees. 

This risk-based optimization model is demonstrated for a rural levee on a small river and an 
unban levee on a major river in California. Increasing levee height reduces overtopping failure, 
while increasing crown width decreases intermediate geotechnical failure in both large and more 
frequent smaller floods. As the probability of intermediate geotechnical failure can be much 
larger than that of overtopping failure, intermediate failure should be included in analyses. 
Furthermore, the optimal crown width of a levee in good condition can be significantly smaller 
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than the optimum crown width of a levee in poor condition, while the optimal levee height 
remains fairly constant for all levee conditions.  

Sensitivity analysis shows the impact of levee fragility curves. Changes to other levee 
design parameters cause fewer design and cost changes than changing the overall levee fragility 
curves representing intermediate failure probabilities. The optimal levee crown width is more 
sensitive than the optimal levee height in response to the changes in levee fragility curves. The 
optimal levee height remains fairly constant with different levee fragility curves shapes. These 
indicate the effectiveness of levee height in determining the optimal levee design or resisting 
changes in other parameters. 

With the assumptions and simplifications used in this risk-based analysis, further study 
should address limitations, such as by including more realistic descriptions of channel geometry, 
damage cost function, levee fragility curves and failure modes. The effect of levee length also 
should be analyzed in future work since a longer levee should be more likely to fail. 
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Chapter 2: Risk-Based Analysis for Optimal Simple Levee System Design  

2.1 Summary 

Risk-based analysis has been applied to optimal levee design for purpose of economic 
efficiency, including the previous study of single levee design considering both overtopping and 
the more frequent intermediate geotechnical failures. Normally along a river, each river side has 
a levee that together acting as a levee system. The levee failure risk of levee systems should be 
analyzed to minimize overall economic costs. This study examines a common simple levee 
system with two levees on opposite riverbanks, with either symmetric or asymmetric levee 
geometry, allowing flood risk transfer across the river. Risk-based analysis is used to 
demonstrate the economic optimality of an asymmetric levee system mathematically and 
analytically, for overtopping failure and overall intermediate geotechnical failure. As individual 
costs generally increase, compensation for transferred flood risk should be negotiated and 
guaranteed to improve conditions for all parties. This one reach levee system could be further 
extended to include upstream and downstream reaches. 

2.2 Introduction 

Levees can protect flood prone areas by increasing channel capacity for retaining flood flow 
within the leveed channel rather than entering the protected area. However, levees could fail by 
the well-known overtopping failure and the more frequently observed intermediate geotechnical 
failure, even at a low probability. As risk is defined as the failure probability multiplied by the 
consequences of failure, levees can decrease but cannot eliminate the likelihood of flooding 
(Hashimoto et al. 1982).  

Risk-based analysis has long been applied to optimal levee design, for example the basic 
risk models for flood levee design which systematically analyzed the various hydrologic and 
hydraulic uncertainties (Tung and Mays1981), and previous study of single levee design 
considering both overtopping and intermediate geotechnical failures (Chapter 1). A taller and 
wider levee can decrease the failure probability thus to reduce the expected damage cost, but it 
also increases the construction cost. The optimal design should be the one minimizing total cost 
including both damage and construction costs. For a levee system along a river with two levees 
on opposite riverbanks, which is a usual case, the overall cost on two sides from expected 
damage and construction should be optimized with risk-based analysis.  

Different levee system design can change how flood risk is distributed, either symmetric 
levee system that two levees are exactly the same, or asymmetric levee system that one levee is 
more likely to fail. Croghan (2013) discussed in her thesis the concepts of economic flood risk 
transformation and transference among floodplain users. She found that total flood risk can be 
reduced from transferring risk from the high cost urban floodplain to the low-valued rural 
floodplain of a river. One may predict that such asymmetric levee system allowing flood risk 
transfer across the river can also reduce the total cost containing construction as well. To provide 
a foundation for this prediction, the overall economic optimality of such asymmetric levee 
system should be proved mathematically and analytically 

This chapter proceeds as follows. Section 2.3 describes the Risk-based optimization model 
for a simple levee system design, including model description, risk-based analysis for 
overtopping failure, intermediate geotechnical levee failure and a combination of both failure 
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modes. Demonstration of the economic optimality of the asymmetric levee system is briefly 
discussed for each failure mode. Section 2.4 illustrates the economic optimality of the 
asymmetric levee system with examples of both a small levee on Cosumnes River and a large 
Natomas Levee on Sacramento River. Section 2.5 concludes with key findings. 

2.3 Risk-based Optimization Model for a Simple Levee System 

Risk is defined as the failure probability multiplied by the consequences of failure, while 
reliability is one minus the probability of failure (Hashimoto et al. 1982). Similar to the optimal 
single levee design, risk-based analysis for optimal design of a simple levee system is to 
minimize annual expected total cost including expected annual damage cost and annualized 
construction cost. The log-normal distributed annual flood flow and Manning’s Equation are still 
used in this study. 

2.3.1 Model Description 

An idealized cross-section of a leveed river channel system is in Figure 2.1, with two levees 
on opposite riverbanks (Tung and Mays 1981b). ܤ is the channel width,  ܦ is the channel depth, 
߬ is the slope of the floodplain section assumed to be the same for two sides, ܹ is the total 
floodplain width including river channel, ܻ is water elevation, ܼ is the water side slope of levee, 
 is levee water side ߚ	,(on each side are assumed the same 2ߙ and 1ߙ) is levee land side slope ߙ
slope (1ߚ and 2ߚ on each side are assumed the same), ܪ is levee height (1ܪ and 2ܪ representing 
levee height on each side) and ܿܤ is levee crown width (1ܿܤ and 2ܿܤ representing levee crown 
width on each side).  

 

Figure 2.1 Idealized cross-section of leveed river channel system with two levees on 
opposite riverbanks 

Suppose the floodplain conditions on opposite sides of a river are different. One side of the 
river is urban area with much larger flood damage potential. The other side of the river is a rural 
area with comparatively small damage potential.  
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2.3.2 Risk-based Optimization for Overtopping Levee Failure Only 

In this section, all the discussions are only for overtopping levee failure when water level is 
above the top of the levee, ignoring the intermediate geotechnical failure. Under this condition, 
levee heights on two sides of the river are the decision variables. 

There are four potential consequences if a flood event occurs: 
(1) Urban and rural levees fail simultaneously when levees are symmetric (of the same 

levee height); 
(2) Urban and rural levees fail each at a 50% chance when levees are symmetric (of the 

same levee height), relieving pressure on the opposite levee; 
(3) Urban levee fails if urban levee is short; 
(4) Rural levee fails if rural levee is short.  

Figure 2.2 depicts the varying relationship between the urban and rural levees to illustrate 
where damages possibly occur, considering overtopping failure only. Figure 2.2(a) shows the 
symmetric levee system, either levees fail simultaneously or levees fail each at a 50% chance. 
Figure 2.2(b)  illustrates where the urban levee is short and urban levee possibily fails first. And 
Figure 2.2(c) shows where the rural levee is short and rural levee possibily fails first. 

Figure 2.2 Profile view of varying levee height relationships 
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The symmetric levee system with identical levees on opposite riverbanks can be considered 
as one single levee with doubled annualized construction cost and summed expected damage 
cost. Channel geometry needs to be adjusted for Manning’s Equation. The asymmetric levee 
system has different levee heights on two riversides. And the other parameters for two levees are 
assumed the same with a standard levee shape. So the risk-based analysis here only focuses on 
levee height, given channel geometry and flow frequency distribution. 

The objective of minimizing annual expected total cost ܶܥሺܪሻ including expected annual 
damage cost ܦܣܧሺܪሻ and annualized construction cost ܥܥܣሺܪሻ is 

Min ܶܥሺܪሻ ൌ ሻܪሺܦܣܧ   ሻ      (2.1)ܪሺܥܥܣ

The expected annual damage cost is: 

ܦܣܧ ൌ 	 ሺܳሻܦ ∗ ܲሺܳሻ ∗ ݀ܳ
ஶ
ொሺுೠ,	ுೝሻ

ൌ ܦ ∗ ൣ1 െ ,௨ܪொ൫ܳሺܨ  ሻ൯൧      (2.2)ܪ	

where ܦ = damage cost depending on the urban potential damage cost ܦ௨ and the rural potential 
damage cost ܦ, assuming constant potential damage ܦ௨ and ܦ for any levee failure, ܦଵ ൌ ௨ܦ 
ଶܦ ,ܦ ൌ

ଵ

ଶ
ሺܦ௨  ଷܦ ,ሻܦ ൌ ସܦ ,௨ܦ ൌ   are damages for the four potential consequencesܦ

respectivley;	ܳሺܪ௨,  ሻ = flow capacity of the leveed channel calculated by Manning’sܪ	
Equation, which depends on the lower levee height between urban side (ܪ௨) and rural side (	ܪ); 
ܲሺܳሻ = probability density function of a given flood flow ܳ, assuming log-normal distributed; 
  .ொሺܳሻ = the cumulative distribution function of flowܨ

The annualized construction cost can be explicitly expressed as 

ܥܥܣ ൌ ሺݏ ∗ ܸ ∗ ܿሻ ∗ ቂ∗
ሺଵାሻ

ሺଵାሻିଵ
ቃ      (2.3) 

where	ݏ = a cost multiplier to cover engineering and construction administrative costs; ܿ = unit 
construction cost per volume;  ݎ = real (inflation-adjusted) discount or interest rate; ݊  = number 
of useful years the levee will be repaid over. The total volume of the two levees along the entire 
length (ܮ) of the reach ܸ is 

ܸ ൌ ܮ	 ∗ ቂܿܤ ∗ ሺܪ௨  ሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ
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We assume no additional land cost in this study.  

A coefficient of ܥ ൌ ݏ	 ∗ ܿ ∗ ܮ ∗ ቂ ∗ݎ
ሺ1ݎሻ݊

ሺ1ݎሻ݊െ1
ቃ is defined and the annualized construction cost 

can be rewritten as 

ܥܥܣ ൌ ܥ ∗ ቂܿܤ ∗ ሺܪ௨  ሻܪ 
ଵ

ଶ
∗ ቀ ଵ
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ቁ ∗ ሺܪ௨ଶ   ଶሻቃ      (2.5)ܪ

Given the risk-based optimization model for overtopping levee failure only, the optimal 
results can be solved with calculus by substituting the expected annual damage cost and the 
annualized construction cost into the cost-minimizing function. In addition to satisfying all the 
physical constraints, the optimal conditions include the First-order Necessary Condition that the 
first-order derivative of the objective is zero, and the Second-order Sufficient Condition that the 
Second-order derivative should be non-negative to ensure minimization. 
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Table 2.1 below summarizes the objective function and optimal results for the four potential 
consequences. Comparisons of these optimal results demonstrate the economic optimality of the 
asymmetric levee system with the low-valued rural levee failing first. The detailed calculations 
are in Appendix (Section 2.7.A). Additional detailed analyses on optimal levee heights are also 
in Appendix (Section 2.7.B). 

From a system-wide perspective, the river system has a minimized total cost with the 
economically optimal asymmetric levee system. Since all the flood risk is transferred to the low-
valued rural riverside, individual cost of the urban floodplain largely decreases while individual 
cost of the rural floodplain increases compared to the symmetric levee system. Therefore, to 
improve the economic condition of all stakeholders and guarantee an asymmetric levee system, 
urban floodplain should compensate rural floodplain for the transferred flood risk. Such 
compensation should be between the increased cost of rural floodplain and the reduced cost of 
urban floodplain, where two floodplains are likely to agree on the allocation of flood risk and 
costs. The compensation for transferred flood risk is similar in the later discussion with only 
intermediate geotechnical failure and combined failures. 

Table 2.1 Comparison of Four Potential Consequences for A Simple Levee System with 
Overtopping Failure Only 

Potential Consequence Minimization Objective 
Optimal 
Results 

Comparison

Symmetric levee 
system with 

simultaneous levee 
failures on both sides 

ሻܪ௦ሺܥܶ ൌ ሻܪ௦ሺܦܣܧ   ሻܪ௦ሺܥܥܣ
ൌ ሺܦ௨  ሻܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  

ܥ ∗ 2 ∗ ܪ ∗ ܿܤ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗  ଶ൨ܪ

 ∗ܪ
௦ܥܶ

∗ሺܪ∗ሻ 
௦ܥܶ

∗ሺܪ∗ሻ 
 

௦ܥܶ
∗ሺܪହ

∗ ሻ 
 

Symmetric levee 
system or two 

identical single levees 
with each levee fails 

at a 50% chance 

ହሻܪ௦ሺܥܶ ൌ ହሻܪ௦ሺܦܣܧ   ହሻܪ௦ሺܥܥܣ
ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗ ൣ1 െ ହሻ൯൧ܪொ൫ܳሺܨ  

ܥ ∗ 2 ∗ ହܪ ∗ ܿܤ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗ ହܪ
ଶ൨ 

ହܪ
∗  

௦ܥܶ
∗ሺܪହ

∗ ሻ 

Asymmetric levee 
system with the short 

urban levee fails 

௨ሻܪ௦ሺܥܶ ൌ ௨ሻܪ௦ሺܦܣܧ   ௨ሻܪ௦ሺܥܥܣ
ൌ ௨ܦ ∗ ൣ1 െ ௨ሻ൯൧ܪொ൫ܳሺܨ  

ܥ ∗ ܿܤ ∗ ሺܪ௨  ሻܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰

∗ ሺܪ௨ଶ   ଶሻ൨ܪ

ൌ ௨ܦ ∗ ൣ1 െ ௨ሻ൯൧ܪொ൫ܳሺܨ  

ܥ ∗ 2 ∗ ܿܤ ∗ ௨ܪ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗ ௨ଶ൨ܪ   ுߝ

∗௨ܪ  
௦ܥܶ

∗ሺܪ௨∗ሻ 

௦ܥܶ
∗ሺܪ௨∗ሻ 
 

௦ܥܶ
∗ሺܪ∗ሻ 

Asymmetric levee 
system with the short 

rural levee fails 

ሻܪ௦ሺܥܶ ൌ ሻܪ௦ሺܦܣܧ   ሻܪ௦ሺܥܥܣ
ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  

ܥ ∗ ܿܤ ∗ ሺܪ௨  ሻܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰

∗ ሺܪ௨ଶ   ଶሻ൨ܪ

ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  

ܥ ∗ 2 ∗ ܿܤ ∗ ܪ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗ ଶ൨ܪ   ுߝ

 ∗ܪ
௦ܥܶ

∗ሺܪ∗ሻ 
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From Table 2.1, ܶܥ௦

∗ሺܪ∗ሻ is sub-optimal compared to ܶܥ௦
∗ሺܪହ

∗ ሻ, and ܶܥ௦
∗ሺܪ௨∗ሻ is sub-

optimal compared to ܶܥ௦
∗ሺܪ∗ሻ. With the assumption that the difference of construction cost 

between a high urban levee and a short rural levee defined as ߝ can be ignored, ߝு ൌ

	

ܥ ∗

ቂܿܤ ∗ ܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ܪ

ଶቃ െ ܥ ∗ ቂܿܤ ∗ ௦ܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ௦ଶቃܪ ൌ ܥ ∗

ቂܿܤ ∗ ሺܪ െ ௦ሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ

ଶ െ ௦ܥܶ ,௦ଶሻቃܪ
∗ሺܪହ

∗ ሻ is sub-optimal compared to 

௦ܥܶ
∗ሺܪ∗ሻ. 

2.3.3 Risk-based Optimization for Intermediate Geotechnical Levee Failure Only 

According to the discussion in section 2.3.2, for an asymmetric levee system considering 
overtopping failure only, a little difference between the two levee heights can ensure the overall 
flood risk being taken by the low-valued rural riverside. As intermediate geotechnical failure is 
more likely to occur before water level reaches the top of the short levee, it should be included in 
risk-based analysis for optimal levee system design. From Chapter 1, intermediate geotechnical 
failures basically depend on levee crown width, given good, fair and poor levee conditions. And 
for the same geometry, a levee in worse condition is more likely to fail than a levee in better 
condition.  

As levees on opposite riverbanks are generally of the similar condition if constructed 
contemporaneously with similar material, crown width is simply used to distinguish the levee’s 
resistance to intermediate geotechnical failure to illustrate this concept. Given the same levee 
condition represented by the same fragility curve and the same design standards, if ignoring the 
little difference in levee heights (assuming levees are of the same height ܪ), the intermediate 
geotechnical failure probabilities of levees on two opposite riverbanks can be represented by the 
crown width. So a levee with narrower crown width is more likely to fail at any water level 
compared to a levee with wider crown width.  

In this section, all the discussions are only for intermediate geotechnical failure when water 
level is between the toe and the top of a levee, ignoring the overtopping failure. Under this 
condition, levee crown widths on two sides of the river are the decision variables. The levees in a 
symmetric levee system considering intermediate geotechnical failures are with the same crown 
widths and same fragility curves, while the levees in an asymmetric levee system are with 
different crown widths and different fragility curves.  

Similarly, there are four potential consequences if a flood event occurs: 

(1) Urban and rural levees fail simultaneously when levees are symmetric (of the same 
crown width); 

(2) Urban and rural levees fail each at a 50% chance when levees are symmetric (of the 
same crown width), relieving pressure on the opposite levee; 

(3) Urban levee fails if the urban levee is narrow; 

(4) Rural levee fails if the rural levee is narrow.  

Figure 2.3 depicts the varying relationship between the urban and rural levees to illustrate 
where damages possibly occur, considering intermediate geotechnical failure only and assuming 
two levees are of the same height. Figure 2.3(a) shows the symmetric levee system with two 
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levees of the same crown width, either levees fail simultaneously or levees fail each at a 50% 
chance. Figure 2.3(b)  illustrates where the urban levee is narrow and urban levee possibily fails 
first. And Figure 2.3(c) shows where the rural levee is narrow and rural levee possibily fails first.  

Figure 2.3 Profile view of varying levee condition relationships 

The objective of minimizing annual expected total cost ܶܥሺܿܤሻ including expected annual 
damage cost ܦܣܧሺܿܤሻ and annualized construction cost ܥܥܣሺܿܤሻ is 

Min ܶܥሺܿܤሻ ൌ ሻܿܤሺܦܣܧ   ሻ      (2.6)ܿܤሺܥܥܣ

The expected annual damage cost is: 

ܦܣܧ ൌ ܦ	 ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
                                                                              (2.7) 

where ܦ = damage cost depending on the urban potential damage cost ܦ௨ and the rural potential 
damage cost ܦ, assuming constant potential damage ܦ௨ and ܦ for any levee failure, ܦଵ ൌ ௨ܦ 
ଶܦ ,ܦ ൌ

ଵ

ଶ
ሺܦ௨  ଷܦ ,ሻܦ ൌ ସܦ ,௨ܦ ൌ   are damages for the four potential consequencesܦ

respectively;	ܳሺܪሻ = flow capacity of the leveed channel calculated by Manning’s Equation, 
which depends on levee height; ܲሺܳሻ = probability density function of a given flood flow ܳ, 
assuming log-normal distributed; ܲሺܳ,  ሻ = probability of the intermediate geotechnical leveeܿܤ
failure for the given flow depending on design crown width.  

Rural Floodplain Urban Floodplain H H 

Bcr Bcu 

Rural Floodplain Urban Floodplain H H 

Bcr Bcu 

Rural Floodplain Urban Floodplain H H 

Bcr Bcu 

(a)	

(b)	

(c)	



	

	 32

With the simplifying assumptions above, the intermediate geotechnical levee failure 
probability of a narrower levee ܲሺܳ,  ሻ should always be greater than that of a wider leveeܿܤ
ܲሺܳ,  ௪ isܿܤ , is the crown width of a narrower leveeܿܤ .௪ሻ for any water level (any flow ܳ)ܿܤ

the crown width of a wider levee and ܿܤ ൏  .௪ܿܤ

The annualized construction cost can be explicitly expressed as 

ܥܥܣ ൌ ሺݏ ∗ ܸ ∗ ܿሻ ∗ ቂ∗
ሺଵାሻ

ሺଵାሻିଵ
ቃ      (2.8) 

ܸ ൌ ܮ	 ∗ ቂሺܿܤ௨  ሻܿܤ ∗ ܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ                                                                 (2.9)ܪ

With the defined coefficient ܥ ൌ ݏ	 ∗ ܿ ∗ ܮ ∗ ቂ ∗ݎ
ሺ1ݎሻ݊

ሺ1ݎሻ݊െ1
ቃ, the annualized construction cost can 

be rewritten as 

ܥܥܣ ൌ ܥ ∗ ቂሺܿܤ௨  ሻܿܤ ∗ ܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ      (2.10)ܪ

Similarly, given the risk-based optimization model for intermediate geotechnical levee 
failure only, the optimal results can be solved with calculus by substituting the expected annual 
damage cost and the annualized construction cost into the cost-minimizing function. The optimal 
conditions would include the First-order Necessary Condition and the Second-order Sufficient 
Condition except for satisfying all the physical constraints, 

Table 2.2 below summarizes the objective function and optimal results for the four potential 
consequences. Comparisons of these optimal results demonstrate the economic optimality of the 
asymmetric levee system with the low-valued rural levee failing first. The detailed calculations 
are in Appendix (Section 2.7.C). 
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Table 2.2 Comparison of Four Potential Consequences for A Simple Levee System with 
Intermediate Geotechnical Failure Only 

Potential 
Consequence 

Minimization Objective 
Optimal 
Results 

Comparison 

Symmetric levee 
system or two 
identical single 

levees with 
simultaneous 

levee failures on 
both sides 

ሻܿܤ௦ሺܥܶ ൌ ሻܿܤ௦ሺܦܣܧ   ሻܿܤ௦ሺܥܥܣ

=ሺܦ௨  ሻܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ

  

ܥ ∗ 2 ∗ ܿܤ ∗ ܪ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗  ଶ൨ܪ

 

 ∗ܿܤ
௦ܥܶ

∗ሺܿܤ∗ሻ 
௦ܥܶ

∗ሺܿܤ∗ሻ 
 

௦ܥܶ
∗ሺܿܤହ

∗ ሻ 
 Symmetric levee 

system or two 
identical single 

levees with each 
levee fails at a 
50% chance 

ହሻܿܤ௦ሺܥܶ ൌ ହሻܿܤ௦ሺܦܣܧ   ହሻܿܤ௦ሺܥܥܣ

ൌ 0.5 ∗ ሺݑܦ  ሻݎܦ ∗ න ሺܳሻݍܲൣ ∗ ,ሺܳܮܲ 50ሻ൧݀ܳܿܤ
ܳܿሺܪሻ

0

 

ܥ ∗ 2 ∗ ܿܤ ∗ ܪ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗  ଶ൨ܪ

ହܿܤ
∗  

௦ܥܶ
∗ሺܿܤହ

∗ ሻ

Asymmetric 
levee system 

with the narrow 
urban levee fails 

௨ሻܿܤ௦ሺܥܶ ൌ ௨ሻܿܤ௦ሺܦܣܧ   ௨ሻܿܤ௦ሺܥܥܣ

ൌ ܦ ∗ න ൣ ܲሺܳሻ ∗ ܲሺܳ, ௨ሻ൧݀ܳܿܤ
ொሺுሻ


 

ܥ ∗ ሺܿܤ௨  ሻܿܤ ∗ ܪ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗  ଶ൨ܪ

ൌ ܦ ∗ න ൣ ܲሺܳሻ ∗ ܲሺܳ, ௨ሻ൧݀ܳܿܤ
ொሺுሻ


 

ܥ ∗ 2 ∗ ௨ܿܤ ∗ ܪ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗ ଶ൨ܪ   ߝ

∗௨ܿܤ  
௦ܥܶ

∗ሺܿܤ௨∗ሻ

௦ܥܶ
∗ሺܿܤ௨∗ሻ 
 

௦ܥܶ
∗ሺܿܤ∗ሻ 

Asymmetric 
levee system 

with the narrow 
rural levee fails 

ሻܿܤ௦ሺܥܶ ൌ ሻܿܤ௦ሺܦܣܧ   ሻܿܤ௦ሺܥܥܣ

ൌ ܦ ∗ න ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ


 

ܥ ∗ ሺܿܤ௨  ሻܿܤ ∗ ܪ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗  ଶ൨ܪ

ൌ ܦ ∗ න ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ


 

ܥ ∗ 2 ∗ ܿܤ ∗ ܪ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗ ଶ൨ܪ   ߝ

 ∗ܿܤ
௦ܥܶ

∗ሺܿܤ∗ሻ

	
From Table 2.2, ܶܥ௦

∗ሺܿܤ∗ሻ is sub-optimal compared to ܶܥ௦
∗ሺܿܤହ

∗ ሻ, and  ܶܥ௦
∗ሺܿܤ௨∗ሻ is 

sub-optimal compared to ܶܥ௦
∗ሺܿܤ∗ሻ. With the assumption that the difference of construction 

cost between a wide urban levee and a narrow rural levee defined as ߝ can be ignored, ߝ ൌ

	

ܥ ∗

ቂܿܤ௪ ∗ ܪ  ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଶቃܪ െ

	

ܥ ∗ ቂܿܤ ∗ ܪ  ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଶቃܪ ൌ ܥ ∗ ܪ ∗

ሺܿܤ௪ െ ௦ܥܶ ,ሻܿܤ
∗ሺܿܤହ

∗ ሻ is sub-optimal compared to ܶܥ௦
∗ሺܿܤ∗ሻ. 

2.3.4 Risk-based Optimization for Overtopping and Intermediate Geotechnical Failures 

In this section, discussions are for the combination of overtopping failure and intermediate 
geotechnical failure. Under this condition, levee height ܪ identifies the failure mode of whether 
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overtopping failure or intermediate geotechnical failure, and crown width ܿܤ determines the 
probability or magnitude of intermediate geotechnical failure. For different levee heights (high or 
short) and different levee crown widths (wide or narrow), there are totally five levee system 
geometries including one symmetric levee system and four asymmetric levee systems.  

(1) Symmetric levee height and Symmetric levee crown width; 

(2) Asymmetric levee height and Symmetric levee crown width; 

(3) Symmetric levee height and Asymmetric levee crown width; 

(4) Asymmetric levee height and Asymmetric levee crown width, high and wide levee on 
one side, short and narrow levee on the other side; 

(5) Asymmetric levee height and Asymmetric levee crown width, high and narrow levee on 
one side, short and wide levee on the other side. 

The first symmetric levee system geometry is the same as the symmetric levee system in 
section 2.3.2 considering overtopping failure only (Figure 2.3(a)) and in section 2.3.3 
considering intermediate geotechnical failure only (Figure 3.3(a)). The two levees would 
probabily fail simultaneously or each at a 50% chance. The second asymmetric levee system 
geometry is the same as the asymmetric levee system in section 2.3.2 with the same levee corwn 
width but different levee height (Figure 2.2(b) or Figure 2.2(c)). The third asymmetric levee 
system geometry is the same as the asymmetric levee system in section 2.3.3 with the same levee 
height but different levee corwn width (Figure 2.3(b) or Figure 2.3(c)). In the fourth asymmetric 
levee system geometry, the short and narrow levee would always fail first compared to the high 
and wide levee. And for the last asymmetric levee system geometry, the high and narrow levee is 
prone to overtopping failure while the short and wide levee is prone to intermediate failure. With 
the same construction cost but increased overall expected damage cost, the last asymmetric levee 
system geometry is sub-optimal compared to the fourth levee system. 

Figure 2.4 depicts the varying relationship between the two levees on opposite riverbanks to 
illustrate where damages possibly occur, considering both overtopping failure depending on 
levee height and intermediate geotechnical failure depending on levee crown width. Figure 2.4(a) 
shows the symmetric levee system with two levees of the same height and crown width, either 
levees fail simultaneously or levees fail each at a 50% chance. Figure 2.4(b)  illustrates where 
two levees are of the same crown width, but one levee is short that possibily fails first. Figure 
2.4(c)  shows where two levees are of the same height, but one levee is narrow that possibily 
fails first. Figure 2.4(d)  illustrates where one levee is short and narrow that possibly fails first. 
And Figure 2.4(e) shows where one levee is high and narrow that possibly fails by intermediate 
geotechnical failure while the other levee is short and wide that possibly fails by overtopping 
failure. As the asymmetric levee system geometry illustrated in Figure 2.4(e) is sub-optimal to 
the one in Figure 2.4(d), the discussion below are only for the levee system geometries depicted 
in Figure 2.4(a) , (b), (c) and (d). 
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Figure 2.4 Profile view of varying levee geometries relationships 

Floodplain 1 Floodplain 2 
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With different levee locations (rural floodplain and urban floodplain), the number of 
asymmetric levee system geometries doubles by exchanging two floodplains. According to 
previous discussions and conclusions for overtopping failure only and intermediate geotechnical 
failure only, asymmetric levee system at economic optimality would always let the low-valued 
rural riverside has a more likely failed levee, either short and/or narrow. So we only compare 
four potential consequences for the designed levee system geometry. 

(1) Urban and rural levees fail each at a 50% chance when levees are symmetric, relieving 
pressure on the opposite levee (Figure 2.2(a) or Figure 2.3(a)); 

(2) Asymmetric levee height and symmetric levee crown width, overtopping failure would 
occur on rural levee side if the rural levee is short and geotechnical failure would occur on each 
side at a 50% chance (Figure 2.2(c));  

(3) Symmetric levee height and Asymmetric levee crown width, overtopping failure would 
occur on each side at a 50% chance and intermediate geotechnical failure would occur on rural 
levee side if the rural levee is narrow (Figure 2.3(c));  

(4) Asymmetric levee height and Asymmetric levee crown width, overtopping failure and 
intermediate geotechnical failure would occur on rural levee side if the rural levee is short and 
narrow. 

Similarly, the optimal results can be solved with calculus from the risk-based optimization 
model for a combination of overtopping and intermediate geotechnical levee failures. The 
optimal conditions would include the First-order Necessary Condition and the Second-order 
Sufficient Condition except for satisfying all the physical constraints, 

Table 2.3 below summarizes the objective function and optimal results for the four potential 
consequences. Comparisons of these optimal results demonstrate the economic optimality of the 
asymmetric levee system geometry with asymmetric levee height and asymmetric crown width. 
Specifically, the low-valued rural side would have a comparatively short and narrow levee that 
will possibly fail. The detailed calculations are in Appendix (Section 2.7.D). 
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Table 2.3 Comparison for A Simple Levee System with Both Overtopping and 
Intermediate Geotechnical Failure 

Potential 
Consequence 

Minimization Objective 
Optimal 
Results 

Symmetric levee 
system both 

overtopping and 
intermediate 

failures at each 
side by 50% 

chance 

,ହܪ௦ሺܥܶ ହሻܿܤ ൌ ,ହܪ௦ሺܦܣܧ ହሻܿܤ  ,ହܪ௦ሺܥܥܣ  ହሻܿܤ
ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗ ൣ1 െ ହሻ൯൧ܪொ൫ܳሺܨ  

0.5 ∗ ሺܦ௨  ሻܦ ∗ න ൣ ܲሺܳሻ ∗ ܲሺܳ, ହሻ൧݀ܳܿܤ
ொሺுሻ


 

ܥ ∗ 2 ∗ ହܪ ∗ ହܿܤ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗ ହܪ
ଶ൨ 

ହܪ
∗ , ହܿܤ

∗  
௦ܥܶ

∗ሺܪହ
∗ , ହܿܤ

∗ ሻ

Asymmetric levee 
height, 

overtopping 
failure on rural 

side, intermediate 
failure at each side 

by 50% chance 

,ܪ௦ሺܥܶ ହሻܿܤ ൌ ,ܪ௦ሺܦܣܧ ହሻܿܤ  ,ܪ௦ሺܥܥܣ  ହሻܿܤ
ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  

0.5 ∗ ሺܦ௨  ሻܦ ∗ න ൣ ܲሺܳሻ ∗ ܲሺܳ, ହሻ൧݀ܳܿܤ
ொሺுೝሻ


 

ܥ ∗ ܿܤହ ∗ ሺܪ௨  ሻܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰ ∗ ሺܪ௨ଶ   ଶሻ൨ܪ

,∗ܪ ହܿܤ
∗  

௦ܥܶ
∗ሺܪ∗, ହܿܤ

∗ ሻ

Asymmetric levee 
crown width, 
intermediate 

failure on rural 
side, overtopping 

failure at each side 
by 50% chance 

,ହܪ௦ሺܥܶ ሻܿܤ ൌ ,ହܪ௦ሺܦܣܧ ሻܿܤ  ,ହܪ௦ሺܥܥܣ  ሻܿܤ
ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗ ൣ1 െ ହሻ൯൧ܪொ൫ܳሺܨ  

ܦ ∗ න ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுఱబሻ


 

ܥ ∗ ሺܿܤ௨  ሻܿܤ ∗ ହܪ  ൬
1

ߙ݊ܽݐ


1
ߚ݊ܽݐ

൰ ∗ ହܪ
ଶ൨ 

ହܪ
∗ ,  ∗ܿܤ

௦ܥܶ
∗ሺܪହ

∗ , ∗ሻܿܤ

Asymmetric levee 
height and 

asymmetric crown 
width, overtopping 
and intermediate 
failures both on 

rural side 

,ܪ௦ሺܥܶ ሻܿܤ ൌ ,ܪ௦ሺܦܣܧ ሻܿܤ  ,ܪ௦ሺܥܥܣ  ሻܿܤ
ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  

ܦ ∗ න ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுೝሻ


 

ܥ ∗ ܿܤ௨ ∗ ௨ܪ  ܿܤ ∗ ܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰

∗ ሺܪ௨ଶ   ଶሻ൨ܪ

,∗ܪ  ∗ܿܤ
௦ܥܶ

∗ሺܪ∗,  ∗ሻܿܤ

 
In Table 2.3, assuming the difference of construction cost between potential consequence 

(2) and (4) defined as ߝு,
  can be ignored, , ܶܥ௦

∗ሺܪ∗, ହܿܤ
∗ ሻ is sub-optimal compared to 

௦ܥܶ
∗ሺܪ∗,  ∗ሻ. Assuming the difference of construction cost between potential consequence (3)ܿܤ

and (4) defined as ߝு,
ு  can be ignored, , ܶܥ௦

∗ሺܪହ
∗ ,  ∗ሻ is sub-optimal compared toܿܤ

௦ܥܶ
∗ሺܪ∗,  ∗ሻ. The asymmetric levee system with asymmetric levee height and crown width isܿܤ

the overall economic optimality with ܶܥ௦
∗ሺܪ∗, ு,ߝ ∗ሻ, whereܿܤ

 ൌ ܥ ∗ ቂܿܤ௪ ∗ ܪ  ܿܤ ∗

௦ܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ

ଶ  ௦ଶሻቃܪ െ ܥ ∗ ቂܿܤ ∗ ሺܪ  ௦ሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗

ሺܪ
ଶ  ௦ଶሻቃܪ ൌ ܥ ∗ ሺܿܤ௪ െ ሻܿܤ ∗ ு,ߝ ;ܪ

ு ൌ ܥ ∗ ቂܿܤ௪ ∗ ܪ  ܿܤ ∗ ௦ܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗
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ሺܪ
ଶ  ௦ଶሻቃܪ െ ܥ ∗ ቂሺܿܤ௪  ሻܿܤ ∗ ܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଶቃܪ ൌ ܥ ∗ ቂሺܿܤ௪ െ ሻܿܤ ∗ ܪ 

ଵ

ଶ
∗

ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ

ଶ െ  .௦ଶሻቃܪ

2.4 Illustrative Examples 

The levee systems on the small Cosumnes River and the comparatively large Sacramento 
River in California are used to illustrate the application of the above analyses and to demonstrate 
the economic optimality of the asymmetric levee system. Specifically, the four potential 
consequences for the designed levee system geometry with both overtopping and intermediate 
geotechnical failure listed in Table 2.3. 

2.4.1 Applications in A Small Levee on Cosumnes River 

Cosumnes River has a mean annual peak flow of 1300 cfs (USACE 2006). Assuming one 
side of the Cosumnes River has a higher land cost of $3,000 per acre and damage cost of $20 
million as urban side, and the other side has a lower land cost of $1,000 per acre and damage 
cost of $10 million as rural side. 

Except for levee height and levee crown width that differ on two river sides, channel 
geometry and other levee related parameters are the same for two river sides. These include: 
channel width is ܤ ൌ ܹ total channel width including the floodplain is ;ݐ200݂ ൌ  ;ݐ300݂
channel depth is ܦ ൌ longitudinal slope of the channel and the floodplain section is ܵ ;ݐ3݂ ൌ
	ܵ ൌ 0.0005; roughness factor of the channel section and the floodplain section is ܰ ൌ ܰ ൌ
0.05; floodplain slope is ݊ܽݐτ ൌ 0.01; levee landside slope and waterside slope are set as 
ߙ݊ܽݐ ൌ 1/4 and ߚ݊ܽݐ ൌ 1/2 respectively; total levee length is ܮ ൌ  Construction cost .ݐ1000݂
related parameters include: cost per unit levee material is ܿ௦ ൌ 10ሺ$/݂ݐଷሻ; real (inflation-
adjusted) discount or interest rate is ݎ ൌ 0.05; useful life of the levee is ݊ ൌ 100ሺݏݎݕሻ; the cost 
multiplier to cover engineering and construction administrative costs is ݏ ൌ 1.3. Using these site-
specific data and assuming the Cosumnes levee is under fair condition, the optimal results from 
enumeration with an 0.1ft increment designed levee height and an 0.1ft increment designed levee 
crown width for the four potential consequences are in Table 2.4.  

Table 2.4 Optimal Levee System Design for Cosumnes River 

Parameters 

Symmetric 
levee system 

50% failure on 
each side 

Asymmetric 
levee height, 

short rural 
levee 

Asymmetric 
levee crown 

width, narrow 
rural levee 

Asymmetric levee 
height and crown 
width, short and 

narrow rural levee 
TC (million $) 0.95 0.91 0.85 0.81 

EAD (million $) 0.40 0.38 0.36 0.34 
ACC (million $) 0.55 0.53 0.49 0.46 

H (ft) 6.1 5.9 6.1 5.6 
Bc (ft) 49.8 49.7 42.5 45.0 

Prob. Of Intermediate 
Failure 

0.0176 0.0185 0.0224 0.0231 

Prob. Of Overtopping 
Failure 

0.0093 0.0101 0.0093 0.0114 

RETURN (yrs) 107 99 107 87 
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From Table 2.4, the asymmetric levee system with a short and narrow rural levee and a high 
and wide urban levee is the most economically optimal design with the lowest annual expected 
total cost, as well as a lowest expected annual damage cost and a lowest annualized construction 
cost. And the asymmetric levee systems with either asymmetric levee height or asymmetric levee 
crown width or both are more cost-effective than the symmetric levee system in terms of annual 
expected total cost. Expected annual damage costs of the asymmetric levee systems are lower 
because the potential flood risks are transferred to the low-valued rural side. Annualized 
construction costs of the asymmetric levee systems are lower because the optimal levee heights 
are short and the optimal levee crown widths are narrow. Among the three asymmetric levee 
systems, optimal levee height remains fairly constant compared to the changes of optimal levee 
crown width, which leads to the bigger changes in the probability of intermediate geotechnical 
failure than in the probability of overtopping failure. The reason is that the change of levee 
crown width needs to be relatively big to offset the change of levee height, as intermediate 
geotechnical failure occurs more frequently than overtopping failure. And the intermediate 
geotechnical failure in this study mainly depends on levee crown width. Additionally, the 
intermediate geotechnical failure is about twice likely to occur compared to the overtopping 
failure for each of the four optimized design levee system, which again demonstrate the 
importance of including the intermediate geotechnical failure in the risk-based analysis for 
optimal levee design. 

Also, we can calculate the difference of the annualized construction cost between two 
levees in the asymmetric levee system. In this case, the construction cost difference of the 
asymmetric levee system with only asymmetric levee height is	ߝு ൌ $5594, with only 
asymmetric levee crown width is	ߝ ൌ $400, with asymmetric levee height and asymmetric 
levee crown width is ߝு,

 ൌ $373 for the crown width difference and ߝு,
ு ൌ $2594 for the 

height difference. Compared to the annual expected total cost, expected annual damage cost and 
annualized construction cost, it is reasonable to ignore these slight construction cost differences 
of the asymmetric levee system, especially the difference between a narrow and a wide levee. 

As annualized construction cost depends mostly on length of levee, we could analyze the 
length impact by comparing the optimal results with varying levee length. Table 2.5 below 
shows the optimal results for a longer levee system with a levee length of ܮ ൌ  .ݐ݂	2640

Table 2.5 Optimal Levee System Design for Cosumnes River with Longer Levee Length 

Parameters 

Symmetric 
levee system 

50% failure on 
each side 

Asymmetric 
levee height, 

short rural 
levee 

Asymmetric 
levee crown 

width, narrow 
rural levee 

Asymmetric levee 
height and crown 
width, short and 

narrow rural levee 
TC (million $) 1.65 1.57 1.47 1.38 

EAD (million $) 0.74 0.75 0.67 0.67 
ACC (million $) 0.91 0.82 0.80 0.71 

H (ft) 4.8 4.4 4.8 4.1 
Bc (ft) 39.8 39.7 33.4 36.7 

Prob. Of Intermediate 
Failure 

0.0328 0.0359 0.0416 0.0420 

Prob. Of Overtopping 
Failure 

0.0168 0.0209 0.0168 0.0248 

RETURN (yrs) 60 48 60 40 
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Except the similar conclusions as in Table 2.4, the longer levee system would lead to higher 
annual expected total costs, higher expected annual damage costs and higher annualized 
construction costs, although the optimal levee heights are shorter and optimal crown widths are 
narrower. Also, failure probabilities of both failure modes are higher with lower return years. 
These results are all due to the increase in the construction cost. For a longer levee system, the 
annualized construction cost as a function of levee height and crown width is shifting upward 
compared to its original location, toward the smaller levee height and smaller crown width. As a 
result, the annual expected total cost is also shifting upward compared to its original location, 
toward the smaller levee height and smaller crown width. This change of the annual expected 
total cost would lead to the change of the minimum with a bigger expected annual damage cost. 

In this case,	ߝு ൌ ߝ	,$11482 ൌ ு,ߝ ,$830
 ൌ $726, and ߝு,

ு ൌ $5032. It is still 
reasonable to ignore these slight construction cost differences of the asymmetric levee system 
compared to all the construction, expected damage and total costs. 

2.4.2 Applications in A Large Levee on Sacramento River 

Sacramento River has a mean annual peak flow of 30000 cfs (USACE 2006). Assuming one 
side of the Sacramento River has a higher land cost of $3,000 per acre and damage cost of $8.2 
billion as urban side, and the other side has a lower land cost of $1,000 per acre and damage cost 
of $4.1 billion as rural side. 

Except for levee height and levee crown width that differ on two river sides, channel 
geometry and other levee related parameters are the same for two river sides. These include: 
channel width is ܤ ൌ ܹ total channel width including the floodplain is ;ݐ1000݂ ൌ  ;ݐ1200݂
channel depth is ܦ ൌ longitudinal slope of the channel and the floodplain section is ܵ ;ݐ10݂ ൌ
	ܵ ൌ 0.0005; roughness factor of the channel section and the floodplain section is ܰ ൌ ܰ ൌ
0.05; floodplain slope is ݊ܽݐτ ൌ 0.01; levee landside slope and waterside slope are set as 
ߙ݊ܽݐ ൌ 1/4 and ߚ݊ܽݐ ൌ 1/3 respectively; total levee length is ܮ ൌ  Parameters .ݐ95040݂
related to construction cost are the same as Cosumnes River. Using these site-specific values and 
assuming the Sacramento levee is under fair condition, the optimal results from enumeration 
with an increment of 0.1ft designed levee height and an increment of 0.1ft designed levee crown 
width for the four potential consequences are in Table 2.6.  

Table 2.6 Optimal Levee System Design for Sacramento River 

Parameters 

Symmetric 
levee system 

50% failure on 
each side 

Asymmetric 
levee height, 

short rural 
levee 

Asymmetric 
levee crown 

width, narrow 
rural levee 

Asymmetric levee 
height and crown 
width, short and 

narrow rural levee 
TC (billion $) 0.43 0.41 0.38 0.36 

EAD (billion $) 0.20 0.20 0.18 0.17 
ACC (billion $) 0.23 0.21 0.20 0.18 

H (ft) 13.7 12.3 13.6 12.2 
Bc (ft) 87.9 90.0 71.3 77.5 

Prob. Of Intermediate 
Failure 

0.0217 0.0229 0.0275 0.0271 

Prob. Of Overtopping 
Failure 

0.0111 0.0152 0.0113 0.0155 

RETURN (yrs) 90 66 88 64 
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Similar conclusions can be achieved that the asymmetric levee system with a short and 
narrow rural levee and a high and wide urban levee is the most economically optimal design with 
the lowest annual expected total cost, as well as a lowest expected annual damage cost and a 
lowest annualized construction cost. And all the asymmetric levee systems are more cost-
effective than the symmetric levee system in terms of annual expected total cost. Among the 
three asymmetric levee systems, optimal levee height remains fairly constant compared to the 
changes of optimal levee crown width, which are all smaller than those of the symmetric levee 
system. This also leads to the bigger changes in the probability of intermediate geotechnical 
failure than in the probability of overtopping failure. Additionally, the intermediate geotechnical 
failure is about twice likely to occur than the overtopping failure for each of the four optimally 
design levee system, which again demonstrate the importance of including the intermediate 
geotechnical failure in the risk-based analysis for optimal levee design. 

In this case, the construction cost difference of the asymmetric levee system with only 
asymmetric levee height is	ߝு ൌ $824,493, with only asymmetric levee crown width is	ߝ ൌ
$97,732, with asymmetric levee height and asymmetric levee crown width is ߝு,

 ൌ $92,129 
for the crown width difference and ߝு,

ு ൌ $734,854 for the height difference. Compared to the 
annual expected total cost, expected annual damage cost and annualized construction cost, it is 
reasonable to ignore these slight construction cost differences of the asymmetric levee system, 
especially the difference between a narrow levee and a wide levee. 

As different levee conditions would affect the intermediate geometrical failure probability, 
we can compare the optimal results of levee system design under different levee conditions. 
Assuming the levee system on Sacramento River is under good condition, the optimal results for 
the four potential consequences are in Table 2.7. 

Table 2.7 Optimal Levee System Design for Sacramento River, Assuming Good Levees 

Parameters 

Symmetric 
levee system 

50% failure on 
each side 

Asymmetric 
levee height, 

short rural 
levee 

Asymmetric 
levee crown 

width, narrow 
rural levee 

Asymmetric levee 
height and crown 
width, short and 

narrow rural levee 
TC (billion $) 0.29 0.28 0.26 0.24 

EAD (billion $) 0.13 0.13 0.11 0.11 
ACC (billion $) 0.16 0.15 0.15 0.13 

H (ft) 16.6 15.1 15.7 14.7 
Bc (ft) 20.0 26.4 20.0 20.0 

Prob. Of Intermediate 
Failure 

0.0152 0.0155 0.0166 0.0184 

Prob. Of Overtopping 
Failure 

0.0060 0.0082 0.0072 0.0089 

RETURN (yrs) 167 122 139 112 
 

Other than the similar conclusions as from Table 2.6, the good levee systems tend to have 
lower annual expected total costs, lower expected annual damage costs and lower annualized 
construction costs. The optimal levee heights are higher as to balance the decrease in 
intermediate geotechnical failures. Correspondingly, the optimal crown widths are much 
narrower that three of them even reach the lower limits of design crown width. Also, failure 
probabilities of both failure modes are lower with higher return years. These results are all due to 
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the decrease in the intermediate geotechnical failure of a good levee. For a better levee system, 
the expected annual damage cost is shifting downward compared to its original location, toward 
the smaller levee height and smaller crown width. As a result, the annual expected total cost is 
also shifting downward compared to its original location, toward the smaller levee height and 
smaller crown width. This change of the annual expected total cost would lead to the change of 
the minimum with a smaller annualize construction cost. 

2.5 Conclusion 

This study examines the optimal design of a common simple levee system with two levees 
on opposite riverbanks. Risk-based analysis for minimizing overall annual expected total cost is 
used to demonstrate the economic optimality of an asymmetric levee system mathematically and 
analytically. For overtopping failure, intermediate geotechnical failure or a combination of these 
two failures, asymmetric levee system is proved to be the most economic efficient design under 
the assumption that the slight difference of construction cost can be reasonably ignored. 
Specifically, the optimal levee system design would always transferring the entire flood risk to 
the low-valued riverside for any failure modes. In particular, one would always build a relatively 
low and narrow levee on the low-valued to undertake all the likely flood damages from 
overtopping failure and intermediate geotechnical failure. With the overall economic optimality 
of designing asymmetric levee systems to transfer flood risk, individual costs generally increase. 
In order to improve conditions for all parties, compensation for transferred flood risk should be 
negotiated and guaranteed.  
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2.7 Appendixes 

2.7.A Economic Optimality of the Asymmetric Levee Height  

Considering overtopping failure only with symmetric levee crown width, the objectives of 
minimizing total cost for the four listed potential consequences in section 2.3.2 are in the 
following. All damages are assumed to occur once the levee fails. 

(1) Symmetric levee height with simultaneous levee failures on both sides 
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Min ܶܥ௦ሺܪሻ ൌ ሻܪ௦ሺܦܣܧ   ሻܪ௦ሺܥܥܣ

ൌ ሺܦ௨  ሻܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  ܥ ∗ ቂ2 ∗ ܪ ∗ ܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ      (A.1)ܪ

(2) Symmetric levee height with each levee fails at a 50% chance 

Min ܶܥ௦ሺܪହሻ ൌ ହሻܪ௦ሺܦܣܧ   ହሻܪ௦ሺܥܥܣ

ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗ ൣ1 െ ହሻ൯൧ܪொ൫ܳሺܨ  ܥ ∗ ቂ2 ∗ ହܪ ∗ ܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ହܪ

ଶቃ   (A.2) 

(3) Asymmetric levee height with the lower urban levee fails 

Min ܶܥ௦ሺܪ௨ሻ ൌ ௨ሻܪ௦ሺܦܣܧ   ௨ሻܪ௦ሺܥܥܣ

ൌ ௨ܦ ∗ ൣ1 െ ௨ሻ൯൧ܪொ൫ܳሺܨ  ܥ ∗ ቂܿܤ ∗ ሺܪ௨  ሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ௨ଶ   ଶሻቃ      (A.3)ܪ

(4) Asymmetric levee height with the lower rural levee fails 

Min ܶܥ௦ሺܪሻ ൌ ሻܪ௦ሺܦܣܧ   ሻܪ௦ሺܥܥܣ

ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  ܥ ∗ ቂܿܤ ∗ ሺܪ௨  ሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ௨ଶ   ଶሻቃ      (A.4)ܪ

For any given levee height ݄, the expected total cost for the first potential consequence 
should be larger than that for the second potential consequence by the amount of 0.5 ∗
ሺܦ௨  ሻܦ ∗ ൣ1 െ  for the symmetric levee ∗ܪ ொ൫ܳሺ݄ሻ൯൧. Suppose the optimal levee height isܨ
system in the first potential consequence and ܪହ

∗  for the symmetric levee system in the second 
potential consequence. Since ܶܥ௦

∗ሺܪହ
∗ ሻ is the minimum of all ܶܥ௦ሺܪହሻ, all ܶܥ௦ሺܪሻ including 

its minimum ܶܥ௦
∗ሺܪ∗ሻ will be bigger than ܶܥ௦

∗ሺܪହ
∗ ሻ. So compared to the second potential 

consequence of flooding each side at a 50% chance, the first potential consequence of flooding 
both sides simultaneously is sub-optimal. 

Similarly, since the potential damage cost on urban side is higher than that on the rural side, 
the third potential consequence from flooding urban side should be larger than the fourth 
potential consequence from flooding rural side. For any given pair of unequal levee heights 
ሺܪ, ܪ ,௦ሻܪ ൌ ௨ܪ  andܪ ൌ  ,௦ are for the third potential consequence that urban levee failsܪ
while ܪ௨ ൌ ܪ  andܪ ൌ  .௦ are for the fourth potential consequence that rural levee failsܪ
Though annualized construction cost is constant for either asymmetric levee system geometry 
given the same pair of unequal levee heights ሺܪ,  ௦ሻ, the expected damage cost for the thirdܪ
potential consequence should be larger than that for the fourth potential consequence by the 
amount of ሺܦ௨ െ ሻܦ ∗ ൣ1 െ  .௦ሻ൯൧, as well as the total expected annual costܪொ൫ܳሺܨ

Suppose the optimal levee height of the short levee side is ܪ௨∗  for the asymmetric levee 
system with the short urban levee fails in the third potential consequence and ܪ∗ for the 
asymmetric levee system with the short rural levee fails in the fourth potential consequence. 
Since ܶܥ௦

∗ሺܪ∗ሻ is the minimum of all ܶܥ௦ሺܪሻ, all ܶܥ௦ሺܪ௨ሻ including its minimum 
௦ܥܶ

∗ሺܪ௨∗ሻ will be bigger than ܶܥ௦
∗ሺܪ∗ሻ. So an asymmetric levee system with a shorter urban 

levee is sub-optimal to an asymmetric levee system with a shorter rural levee. 

The problem then becomes to compare the optimal value of the second potential 
consequence ܶܥ௦

∗ሺܪହ
∗ ሻ and the last potential consequence ܶܥ௦

∗ሺܪ∗ሻ. 
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As long as the urban levee is higher than the rural levee, even a small increment in urban 
levee height compared to rural levee height could guarantee only the rural side be flooded. 
Therefore, we can assume the difference of construction cost between a higher urban levee and a 
lower rural levee is constant, defined as ߝு. 

ுߝ ൌ

	

ܥ ∗ ܿܤ ∗ ܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰ ∗ ܪ

ଶ൨ െ ܥ ∗ ܿܤ ∗ ௦ܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰ ∗  ௦ଶ൨ܪ

ൌ ܥ ∗ ቂܿܤ ∗ ሺܪ െ ௦ሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ

ଶ െ                                                         ௦ଶሻቃܪ

(A.5) 

This ߝு would be relatively small. For example, a higher freeboard on urban levee would 
only add a small additional cost compared to the annualized construction cost of levee. So ߝு can 
be ignored in the calculation here. And the urban levee height in the annualized construction cost 
calculation can also be approximated as the rural levee height. The objective becomes: 

Min ܶܥ௦ሺܪሻ ൌ ሻܪ௦ሺܦܣܧ   ሻܪ௦ሺܥܥܣ

ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  ܥ ∗ ቂ2 ∗ ܪ ∗ ܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଶቃܪ   ு     (A.6)ߝ

Then for any given ܪ,  

ହܪ௦ሺܥܶ ൌ  ሻܪ

ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  ܥ ∗ ቂ2 ∗ ܪ ∗ ܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  																						ଶቃܪ

(A.7) 

ܪ௦ሺܥܶ ൌ ሻܪ ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  ܥ ∗ ቂ2 ∗ ܪ ∗ ܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଶቃܪ           ுߝ

(A.8) 

The annual expected total cost for the symmetric levee system should be larger than that for 
the asymmetric levee system by the amount of ൛0.5 ∗ ሺܦ௨ െ ሻܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ െ  ுൟ withߝ
௨ܦ െ ܦ  0, 1 െ ሻ൯ܪொ൫ܳሺܨ  0 and the assumption that ߝு can be ignored here. 

Since ܶܥ௦
∗ሺܪ∗ሻ is the minimum of all ܶܥ௦ሺܪሻ, all ܶܥ௦ሺܪହሻ including its minimum 

௦ܥܶ
∗ሺܪହ

∗ ሻ will be bigger than ܶܥ௦
∗ሺܪ∗ሻ. Therefore, with the assumption that ߝு can be 

ignored, it can be concluded that ܶܥ௦
∗ሺܪହ

∗ ሻ  ௦ܥܶ
∗ሺܪ∗ሻ. So the asymmetric levee system with 

the short rural levee fails in the fourth potential consequence is preferable. 

In conclusion, among all the four potential consequences, the asymmetric levee system with 
the shorter rural levee fails in the fourth potential consequence is preferable with the global 
minimum total expected annual cost ܶܥ௦

∗ሺܪ∗ሻ. 

2.7.B Optimal Levee Height of the Asymmetric Levee Height 

We can also compare the optimal levee height in symmetric levee system and asymmetric 
levee system according to optimal conditions, starting from the comparison between ܪ∗ and ܪ∗.  

The necessary optimal condition is that the first-order derivative of the objective should be 
zero. 
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ௗ்

ௗு
ൌ 0 ⇒ െௗா

ௗு
ൌ ௗ

ௗு
	 																																																																																																																													

(B.1) 

The sufficient optimal condition is that the second-order derivative of the objective should 
be positive (non-negative) to ensure minimization (no demonstration here) 

ௗమ்

ௗுమ  0	 																																																																																																																																																									(B.2) 

Therefore, for symmetric levee system and asymmetric levee system: 
ௗ்ೞ
ௗு∗ ൌ 0 ⇒ െௗாೞ

ௗு∗ ൌ ௗೞ
ௗு∗ 	 																																																																																																																													

(B.3) 
ௗ்ೌೞ
ௗுೝ

∗ ൌ 0 ⇒ െௗாೌೞ
ௗுೝ

∗ ൌ ௗೌೞ
ௗுೝ

∗ 	 																																																																																																													

(B.4) 

Substitute the expressions of expected annual damage cost and annualized construction 
cost: 

െ
ௗ൛ሺೠାೝሻ∗ൣଵିிೂ൫ொሺுሻ൯൧ൟ

ௗு
ൌ

ௗቄ∗ቂଶ∗ு∗ାቀ భ
ೌഀ

ା భ
ೌഁ

ቁ∗ுమቃቅ

ௗு
	 																																																																	

(B.5) 

െ
ௗ൛ೝ∗ൣଵିிೂ൫ொሺுೝሻ൯൧ൟ

ௗுೝ
ൌ

ௗቄ∗ቂଶ∗ுೝ∗ାቀ
భ

ೌഀ
ା భ
ೌഁ

ቁ∗ுೝమቃାఌಹቅ

ௗுೝ
	 																																																																	

(B.6) 

Simplify the above formula: 

ሺܦ௨  ሻܦ
ௗൣிೂ൫ொሺுሻ൯൧

ௗு
ൌ 2 ∗ ܥ ∗ ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ 	ቃܪ 																																																																	

(B.7) 

ܦ
ௗൣிೂ൫ொሺுೝሻ൯൧

ௗுೝ
ൌ 2 ∗ ܥ ∗ ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ቃܪ 

ௗఌಹ
ௗுೝ

	 																																																																	

(B.8) 

where 
ௗఌಹ
ௗுೝ

ൌ
ௗቄ∗ቂଶ∗∗ሺுೠିுೝሻାቀ

భ
ೌഀ

ା భ
ೌഁ

ቁ∗൫ுೠమିுೝమ൯ቃቅ

ௗுೝ
 . 

With the assumption ߝ is constant and can be ignored, 
ௗఌಹ
ௗுೝ

 should be zero and can be 

ignored as well. However, it should be noticed that	ܪ௨ will change with the change of ܪ, so 
ௗுೠ
ௗுೝ

 

should also be considered in a more precise calculation. 

The left hand side of each individual optimal condition can be defined as the marginal 
benefit from protecting flood damage by levee construction, and the right hand side can be 
defined as the marginal cost from building levees. So there exist: 

ሻܪ௧ሺ்ܤܯ ൌ ሻܪሺܤܯ ܤܯ௨ሺܪሻ	 																																																																																																														
(B.9) 
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ሻܪ௧ሺ்ܥܯ ൌ ሻܪሺܥܯ  	ሻܪ௨ሺܥܯ 																																																																																																											
(B.10) 

The optimal conditions for symmetric levee system and asymmetric levee system can 
therefore be expressed as: 

ሻܪ௧ሺ்ܤܯ ൌ 	ሻܪ௧ሺ்ܥܯ 																																																																																																																										
(B.11) 

ሻܪሺܤܯ ൌ ሻܪሺܥܯ  	ሻܪ௨ሺܥܯ 																																																																																																											
(B.12) 

where ்ܤܯ௧ሺܪሻ ൌ ሺܦ௨  ሻܦ
ௗൣிೂ൫ொሺுሻ൯൧

ௗு
 is the total marginal benefit from protecting flood 

damage on both river sides for symmetric levee system; ்ܥܯ௧ሺܪሻ ൌ 2 ∗ ܥ ∗ ቂܿܤ 

ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ቃ is the total marginal cost from building levees on both river sides forܪ

symmetric levee system; ܤܯሺܪሻ ൌ ܦ
ௗൣிೂ൫ொሺுೝሻ൯൧

ௗுೝ
 is the marginal benefit of rural side from 

protecting flood damage on rural side for asymmetric levee system, and there’s no flood damage 

on urban side that ܤܯሺܪሻ ൌ ሻܪሺܥܯ  ;0 ൌ ܥ ∗ ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ቃ is the marginalܪ

cost of rural side from building a rural levee for asymmetric levee system; ܥܯ௨ሺܪሻ ൌ ܥ ∗

ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ቃܪ 

ௗఌಹ
ௗுೝ

 is the marginal cost of urban side from building a urban levee 

for asymmetric levee system.  

With the assumption 
ௗఌಹ
ௗுೝ

ൌ 0, we could have the approximation: 

ሻܪ௧ሺ்ܥܯ ൌ ሻܪሺܥܯ  	ሻܪ௨ሺܥܯ 																																																																																												
(B.13) 

So the optimal conditions for symmetric levee system and asymmetric levee system can be 
also expressed as: 

ሻܪ௧ሺ்ܤܯ ൌ 	ሻܪ௧ሺ்ܥܯ 			                                                                                                
(B.14) 

ሻܪሺܤܯ ൌ 	 ሻܪ௧ሺ்ܥܯ 			                                                                                                
(B.15) 

According to the Chain Rule in Leibniz's notation 

ௗൣிೂ൫ொሺுሻ൯൧

ௗு
ൌ

ௗൣிೂ൫ொሺுሻ൯൧

ௗொሺுሻ
∗ ௗொ

ሺுሻ

ௗு
	 																														                                                              

(B.16) 

For 
ௗൣிೂ൫ொሺுሻ൯൧

ௗொሺுሻ
 ሻ൯ is generally a non-decreasing function. As ܳ increases from aܪொ൫ܳሺܨ ,

small value, ܨொ൫ܳሺܪሻ൯ will increase at an increasing rate first, in accordance with the increase 
of its derivative, the probability distribution function ொܲሺܳሻ.  The increasing rate of ܨொ൫ܳሺܪሻ൯ 

is the biggest at the peak of ொܲሺܳሻ, located at ܳ ൌ ݁ఓା
మ

మ . After this point, as ܳ continues to 
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increase, ܨொ൫ܳሺܪሻ൯ will increase at a decreasing rate, in accordance with the decrease of 

ொܲሺܳሻ.   

The designed levee height from our risk-based analysis is generally belong to the area 

where ܳ  ݁ఓା
మ

మ , which means 
ௗൣிೂ൫ொሺுሻ൯൧

ௗொሺுሻ
 is decreasing from a positive number approaching 

zero, or can be identified as 
ௗమൣிೂ൫ொሺுሻ൯൧

ௗொሺுሻమ
൏ 0. 

For 
ௗொሺுሻ

ௗு
, we have the expression of ܳሺܪሻ depending on channel geometry and Manning’s 

Equation: 

ܳሺܪሻ ൌ ሻܪሺܣ ∗ ܸሺܪሻ ൌ ሻܪሺܣ ∗ 


∗ ቂ

ሺுሻ

ሺுሻ
ቃ
ଶ ଷ⁄

∗ ܵଵ ଶ⁄ ൌ
∗ௌభ మ⁄ ∗ቂାቀௐା ಹ

ೌഀ
ቁ∗ுቃ

ఱ య⁄

∗ାଶ∗ு∗ටଵା
భ

ሺೌഀሻమ
൨
మ య⁄ 																			

(B.17) 

So 
ௗொሺுሻ

ௗு
 can be expressed as: 

݀ܳሺܪሻ

ܪ݀
ൌ
݇ ∗ ܵଵ ଶ⁄

݊
∗ ቀ|ߙ݊ܽݐ| ∗ ܲ  2 ∗ ඥߙ݊ܽݐଶ  1 ∗ ቁܪ

ଵ ଷ⁄
∗ ൫ߙ݊ܽݐ ∗ ܪ ∗ܹ  ଶܪ  ߙ݊ܽݐ ∗ ൯ܣ

ଶ ଷ⁄
∗ 

ଶߙ݊ܽݐൣ ଷ⁄ ∗ ൫5 ∗ ߙ݊ܽݐ ∗ |ߙ݊ܽݐ| ∗ ܲ ∗ ܹ  10 ∗ |ߙ݊ܽݐ| ∗ ܪ ∗ ܲ൯  ଶߙ݊ܽݐ ଷ⁄ ∗ ଶߙ݊ܽݐ√  1 ∗ ൫6 ∗ ߙ݊ܽݐ ∗ ܪ ∗ܹ  16 ∗ ଶܪ െ 4 ∗ ߙ݊ܽݐ ∗ ൯൧ܣ

ଶߙ݊ܽݐ ଷ⁄ ∗ ൣ3 ∗ ଶߙ݊ܽݐ ∗ ܲ
ଶ  ሺ12 ∗ ଶߙ݊ܽݐ  12 ∗ ሻߙ݊ܽݐ ∗ ଶ൧ܪ  12 ∗ ହߙ݊ܽݐ ଷ⁄ ∗ ଶߙ݊ܽݐ√  1 ∗ |ߙ݊ܽݐ| ∗ ܪ ∗ ܲ

 

	 			(B.18) 

As the design flow or flow capacity will increase with increasing levee height, 
ௗொሺுሻ

ௗு
 0.  

Using the order-of-magnitude analysis: the magnitude of ܪ in nominator is 
ଵ

ଷ
	ସ

ଷ
 1 ൌ 	 ଼

ଷ
, 

and the magnitude of ܪ in denominator is 2. So the magnitude of ܪ in 
ௗொሺுሻ

ௗு
 is 

଼

ଷ
െ 2 ൌ 	 ଶ

ଷ
, 

which means 
ௗொሺுሻ

ௗு
	will decrease as ܪ increase, or 

ௗమொሺுሻ

ௗுమ ൏ 0. 

In summary from the analyses of 
ௗൣிೂ൫ொሺுሻ൯൧

ௗொሺுሻ
 and 

ௗொሺுሻ

ௗு
, it can be concluded that 

ௗൣிೂ൫ொሺுሻ൯൧

ௗு
 is decreasing from a positive number approaching zero, or

ௗమൣிೂ൫ொሺுሻ൯൧

ௗுమ ൏ 0. 

Therefore, in the optimal condition for the symmetric levee system (Eqn. B.7) and 

asymmetric levee system (Eqn. B.8) with short rural levee fails, for any given ܪ that 
ௗൣிೂ൫ொሺுሻ൯൧

ௗு
 

is the same for both optimal conditions, ሺܦ௨  ሻܦ
ௗൣிೂ൫ொሺுሻ൯൧

ௗு
ൌ is always bigger than 

ܦ
ௗൣிೂ൫ொሺுೝୀுሻ൯൧

ௗሺுೝୀுሻ
. Besides, the right hand sides of the two optimal conditions are approximately 

identical with the assumption that 
ௗఌಹ
ௗுೝ

ൌ 0. Then comparing the specific levee height to satisfy 

the optimal condition that the left hand side equals the right hand side, ܪ∗ for the symmetric 
levee system will be bigger than ܪ∗ for the asymmetric levee system, i.e. ܪ∗    .∗ܪ

Following is an illustrative plot of ்ܤܯ௧ሺܪሻ, ்ܥܯ௧ሺܪሻ or ்ܥܯ௧ሺܪሻ, ܤܯሺܪሻ, 
and ܤܯ௨ሺܪሻ, ܥܯሺܪሻ, ܥܯ௨ሺܪሻ for comparison to show the optimal levee heights. 
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Figure 2.5 Optimal levee heights for symmetric levee system and asymmetric levee system 
with short rural levee failing based on optimal conditions or economically marginal theory. 

Define the difference of optimal expected annual damage cost between symmetric levee 
system and asymmetric levee system as ∆

∗, or the Net Damage Cost Reduction of the 
asymmetric levee system. Specifically, ∆,௨

∗ and ∆,
∗ are the Damage Cost Reduction of the 

asymmetric levee system for urban side and rural side respectively. Define the difference of the 
optimal construction cost between symmetric levee system and asymmetric levee system as ∆

∗, 
or the Construction Cost Reduction of the asymmetric levee system. 

௦ܥܶ
∗ሺܪ∗ሻ െ ௦ܥܶ

∗ሺܪ∗ሻ ൌ ∆
∗  ∆

∗ൌ ∆,௨
∗  ∆,

∗  ∆
∗	 			                                   (B.19) 

∆,௨
∗ൌ ௨ܦ ∗ ൣ1 െ 	ሻ൯൧∗ܪொ൫ܳሺܨ 			 	 			                                                                       (B.20) 

∆,
∗ൌ ܦ ∗ ∗ሻ൯ܪொ൫ܳሺܨൣ െ 	ሻ൯൧∗ܪொ൫ܳሺܨ 			                                                                        

(B.21) 

∆
∗ൌ ∆,௨

∗  ∆,
∗ൌ ௨ܦ ∗ ൣ1 െ ሻ൯൧∗ܪொ൫ܳሺܨ  ܦ ∗ ∗ሻ൯ܪொ൫ܳሺܨൣ െ 	ሻ൯൧∗ܪொ൫ܳሺܨ 			

(B.22) 

∆
∗ൌ ܥ ∗ ∗ܪ ∗ ቂ2 ∗ ܿܤ  ቀ ଵ

௧ఈ


ଵ

௧ఉ
ቁ ∗ ቃ∗ܪ െ ܥ ∗ ∗ܪ ∗ ቂ2 ∗ ܿܤ  ቀ ଵ

௧ఈ


ଵ

௧ఉ
ቁ ∗ ∗ቃܪ െ 	ுߝ 			

(B.23) 

∆,௨
∗ 0 is always true for ൣ1 െ ሻ൯൧∗ܪொ൫ܳሺܨ  0. For ∆,

∗, given ܪ∗   ∗, symmetricܪ
levee system has the bigger cumulative probability of flow with levee capacity, ܨொ൫ܳሺܪ∗ሻ൯ ൏
 ,ሻ൯, and it has the smaller cumulative probability of overtopping failure∗ܪொ൫ܳሺܨ
ൣ1 െ ∗ሻ൯൧ܪொ൫ܳሺܨ  ൣ1 െ ሻ൯൧. So ∆,∗ܪொ൫ܳሺܨ

∗൏ 0, and ห∆,
∗ห ൌ െ∆,

∗ is also the Damage 
Cost Increment of the asymmetric levee system for rural side. ∆

∗ 0 is always true with the 
assumption that ߝுis relatively small.   
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In summary: ∆,௨
∗  ∆

∗ is the Cost Reduction of the asymmetric levee system; ห∆,
∗ห is 

the Cost Increment of the asymmetric levee system. 

Then we have the following conclusion: if ∆,௨
∗  ∆

∗ ห∆,
∗ห, the asymmetric levee 

system is preferable; if
 
∆,௨

∗  ∆
∗൏ ห∆,

∗ห, the symmetric levee system is preferable. 

According to the previous analysis and the assumption of ignoring ߝு, we know that the 
asymmetric levee system with the lower rural levee fails is preferable, so ∆,௨

∗  ∆
∗ ห∆,

∗ห, 
Cost Reduction exceeds Cost Increment of the asymmetric levee system. 

Similarly, we can compare the optimal levee height between ܪହ
∗  and ܪ∗.  

Similar to Eqn. B.5 and Eqn. B.6, 

െ
ௗ൛.ହ∗ሺೠାೝሻ∗ൣଵିிೂ൫ொሺுఱబሻ൯൧ൟ

ௗுఱబ
ൌ

ௗቄ∗ቂଶ∗ுఱబ∗ାቀ
భ

ೌഀ
ା భ
ೌഁ

ቁ∗ுఱబ
మቃቅ

ௗுఱబ
	 			                                    

(B.24) 

െ
ௗ൛ೝ∗ൣଵିிೂ൫ொሺுೝሻ൯൧ൟ

ௗுೝ
ൌ

ௗቄ∗ቂଶ∗ுೝ∗ାቀ
భ

ೌഀ
ା భ
ೌഁ

ቁ∗ுೝమቃାఌಹቅ

ௗுೝ
	 			                                                

(B.25) 

Simplify the above formula and similar to Eqn. B.7 and Eqn. B.8: 

0.5 ∗ ሺܦ௨  ሻܦ
ௗൣிೂ൫ொሺுఱబሻ൯൧

ௗுఱబ
ൌ 2 ∗ ܥ ∗ ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ 	ହቃܪ 			                        

(B.26) 

ܦ
ௗൣிೂ൫ொሺுೝሻ൯൧

ௗுೝ
ൌ 2 ∗ ܥ ∗ ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ቃܪ 

ௗఌಹ
ௗுೝ

	 			                                                

(B.27) 

where 
ௗఌಹ
ௗுೝ

ൌ
ௗቄ∗ቂଶ∗∗ሺுೠିுೝሻାቀ

భ
ೌഀ

ା భ
ೌഁ

ቁ∗൫ுೠమିுೝమ൯ቃቅ

ௗுೝ
. 

The optimal levee heights similar to Eqn. (B.9) and Eqn. (B.10) are: 

ሻܪ௧ሺ்ܤܯ ൌ 0.5 ∗ ሾܤܯሺܪሻ ܤܯ௨ሺܪሻሿ	 			                                                                        
(B.28) 

ሻܪ௧ሺ்ܥܯ ൌ ሻܪሺܥܯ  	ሻܪ௨ሺܥܯ 			                                                                                    
(B.29) 

Then the optimal conditions can be also expressed as: 

ହሻܪ௧ሺ்ܤܯ ൌ 	ହሻܪ௧ሺ்ܥܯ 			                                                                                    
(B.30) 

ሻܪሺܤܯ ൌ ሻܪሺܥܯ  	ሻܪ௨ሺܥܯ 			                                                                                    
(B.31) 

where ்ܤܯ௧ሺܪହሻ ൌ 0.5 ∗ ሺܦ௨  ሻܦ
ௗൣிೂ൫ொሺுఱబሻ൯൧

ௗுఱబ
 is the total marginal benefit from 

protecting flood damage on both river sides for symmetric levee system; ்ܥܯ௧ሺܪହሻ ൌ 2 ∗
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ܥ ∗ ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ହቃ is the total marginal cost from building levees on both river sidesܪ

for symmetric levee system; ܤܯሺܪሻ, ܥܯሺܪሻ and ܥܯ௨ሺܪሻ are the same above.  

With the assumption 
ௗఌಹ
ௗுೝ

ൌ 0, we could have the approximation: 

ሻܪ௧ሺ்ܥܯ ൌ ሻܪሺܥܯ  	ሻܪ௨ሺܥܯ 			                                                                        
(B.32) 

So the optimal conditions can be also expressed as: 

ହሻܪ௧ሺ்ܤܯ ൌ 	ହሻܪ௧ሺ்ܥܯ 			                                                                                    
(B.33) 

ሻܪሺܤܯ ൌ 	ሻܪ௧ሺ்ܥܯ 			                                                                                                
(B.34) 

According to the same analytical discussion above, in the optimal condition for the 
symmetric levee system (Eqn. B.26) and asymmetric levee system (Eqn. B.27) with short rural 

levee fails, for any given ܪ that 
ௗൣிೂ൫ொሺுሻ൯൧

ௗு
 is the same for both optimal conditions, 0.5 ∗

ሺܦ௨  ሻܦ
ௗൣிೂ൫ொሺுఱబୀுሻ൯൧

ௗுఱబ
 is always bigger than ܦ

ௗൣிೂ൫ொሺுೝୀுሻ൯൧

ௗሺுೝୀுሻ
. Besides, the right hand sides 

of the two optimal conditions are approximately identical with the assumption that 
ௗఌಹ
ௗுೝ

ൌ 0. 

Then comparing the specific levee height to satisfy the optimal condition that the left hand side 
equals the right hand side, ܪହ

∗  for the symmetric levee system with each levee fails at a 50% 
chance will be bigger than ܪ∗ for the asymmetric levee system with short rural levee fails, i.e. 
ହܪ
∗    .∗ܪ

Following is an illustrative plot of ்ܤܯ௧ሺܪହሻ, ்ܥܯ௧ሺܪହሻ or ்ܥܯ௧ሺܪሻ, 
 .ሻ for comparison to show the optimal levee heightsܪ௨ሺܥܯ ,ሻܪሺܥܯ ,ሻܪ௨ሺܤܯ ሻ, andܪሺܤܯ
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Figure 2.6 Optimal levee heights for symmetric levee system with each levee fails at a 50% 
chance and asymmetric levee system with short rural levee fails based on optimal 

conditions or economically marginal theory 

Then we have similar to Eqn. B.19 to B.23: 

௦ܥܶ
∗ሺܪହ

∗ ሻ െ ௦ܥܶ
∗ሺܪ∗ሻ ൌ ∆

∗  ∆
∗ൌ ∆,௨

∗  ∆,
∗  ∆

∗	 			                                    
(B.35) 

∆,௨
∗ൌ 0.5 ∗ ௨ܦ ∗ ൣ1 െ ହܪொ൫ܳሺܨ

∗ ሻ൯൧	 			                                                                        
(B.36) 

∆,
∗ൌ 0.5 ∗ ܦ ∗ ∗ሻ൯ܪொ൫ܳሺܨൣ െ ହܪொ൫ܳሺܨ

∗ ሻ൯൧	 			                                                            
(B.37) 

∆
∗ൌ ∆,௨

∗  ∆,
∗ൌ 0.5 ∗ ௨ܦ ∗ ൣ1 െ ହܪொ൫ܳሺܨ

∗ ሻ൯൧  0.5 ∗ ܦ ∗ ∗ሻ൯ܪொ൫ܳሺܨൣ െ ହܪொ൫ܳሺܨ
∗ ሻ൯൧				

(B.38) 

∆
∗ൌ ܥ ∗ ହܪ

∗ ∗ ቂ2 ∗ ܿܤ  ቀ ଵ

௧ఈ


ଵ

௧ఉ
ቁ ∗ ହܪ

∗ ቃ െ ܥ ∗ ∗ܪ ∗ ቂ2 ∗ ܿܤ  ቀ ଵ

௧ఈ


ଵ

௧ఉ
ቁ ∗ ∗ቃܪ െ 	ுߝ 	  

(B.39) 

∆,௨
∗ 0 is always true for ൣ1 െ ହܪொ൫ܳሺܨ

∗ ሻ൯൧  0. For ∆,
∗, given ܪହ

∗   ∗, symmetricܪ
levee system has the bigger cumulative probability of flow with leveed channel capacity, 
∗ሻ൯ܪொ൫ܳሺܨ ൏ ହܪொ൫ܳሺܨ

∗ ሻ൯, and it has the smaller cumulative probability of overtopping 
failure, ൣ1 െ ∗ሻ൯൧ܪொ൫ܳሺܨ  ൣ1 െ ହܪொ൫ܳሺܨ

∗ ሻ൯൧. So ∆,
∗൏ 0, and ห∆,

∗ห ൌ െ∆,
∗ is also the 

Damage Cost Increment of the asymmetric levee system for rural side. ∆
∗ 0 is always true 

with the assumption that ߝுis relatively small.   

In summary: ∆,௨
∗  ∆

∗ is the Cost Reduction of the asymmetric levee system; ห∆,
∗ห is 

the Cost Increment of the asymmetric levee system. 

Then we have the following conclusion: 

If ∆,௨
∗  ∆

∗ ห∆,
∗ห, the asymmetric levee system with short rural levee fails is 

preferable. 

If
 
∆,௨

∗  ∆
∗൏ ห∆,

∗ห, the symmetric levee system with each levee fails at a 50% chance 
is preferable. 

According to the previous analysis and the assumption of ignoring ߝு, we know that the 
asymmetric levee system with the short rural levee fails is preferable, so ∆,௨

∗  ∆
∗ ห∆,

∗ห, 
Cost Reduction exceeds Cost Increment of the asymmetric levee system. 

2.7.C Economic Optimality of the Asymmetric Levee Crown Width 

Considering intermediate geotechnical failure only with symmetric levee height, the 
objectives of minimizing total cost for the four listed potential consequences in section 2.3.3 are 
in the following. All damages are assumed to occur once the levee fails. 

(1) Symmetric levee crown width with simultaneous levee failures on both sides 

Min ܶܥ௦ሺܿܤሻ ൌ ሻܿܤ௦ሺܦܣܧ   ሻܿܤ௦ሺܥܥܣ
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ൌ ሺܦ௨  ሻܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
  ܥ ∗ ቂ2 ∗ ܪ ∗ ܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ (C.1)ܪ

(2) Symmetric levee crown width with each levee fails at a 50% chance 

Min ܶܥ௦ሺܿܤହሻ ൌ ହሻܿܤ௦ሺܦܣܧ   ହሻܿܤ௦ሺܥܥܣ

ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ହሻ൧݀ܳܿܤ
ொሺுሻ
  ܥ ∗ ቂ2 ∗ ܪ ∗ ହܿܤ  ቀ ଵ

௧ఈ


ଵ

௧ఉ
ቁ ∗       ଶቃܪ

(C.2) 

(3) Asymmetric levee crown width with the narrow urban levee fails 

Min ܶܥ௦ሺܿܤ௨ሻ ൌ ௨ሻܿܤ௦ሺܦܣܧ   ௨ሻܿܤ௦ሺܥܥܣ

ൌ ௨ܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ௨ሻ൧݀ܳܿܤ
ொሺுሻ
  ܥ ∗ ቂሺܿܤ௨  ሻܿܤ ∗ ܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ  (C.3)ܪ

(4) Asymmetric levee crown width with the lower rural levee fails 

Min ܶܥ௦ሺܿܤሻ ൌ ሻܿܤ௦ሺܦܣܧ   ሻܿܤ௦ሺܥܥܣ

ൌ ܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
  ܥ ∗ ቂሺܿܤ௨  ሻܿܤ ∗ ܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ  (C.4)ܪ

For any given ܿܤ, the expected total cost of the first potential consequence should be larger 
than that of the second potential consequence by the amount of 0.5 ∗ ሺܦ௨  ሻܦ ∗

 ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
 . Suppose the optimal levee crown width is ܿܤ∗ for the symmetric 

levee system in the first potential consequence and ܿܤହ
∗  for the symmetric levee system in the 

second potential consequence.  Since ܶܥ௦
∗ሺܿܤହ

∗ ሻ is the minimum of all ܶܥ௦ሺܿܤହሻ, all ܶܥ௦ሺܿܤሻ 
including its minimum ܶܥ௦

∗ሺܿܤ∗ሻ will be bigger than ܶܥ௦
∗ሺܿܤହ

∗ ሻ. So compared to the second 
potential consequence of flooding each side at a 50% chance, the first potential consequence of 
flooding both sides simultaneously is sub-optimal. 

Similarly, based on the assumption that the potential damage cost on urban side is higher 
than that on the rural side, the third potential consequence from flooding urban side should be 
larger than the fourth potential consequence from flooding rural side. For any given pair of 
unequal levee crown widths ሺܿܤ௪, ܿܤ ,ሻܿܤ ൌ ௨ܿܤ ௪ andܿܤ ൌ   are for the third potentialܿܤ
consequence that urban levee fails, while ܿܤ ൌ ௨ܿܤ  andܿܤ ൌ  ௪ are for the fourth potentialܿܤ
consequence that rural levee fails. Though annualized construction cost is constant for either 
asymmetric levee system geometry given the same pair of unequal levee crown widths 
ሺܿܤ௪,  ሻ, the expected damage cost for the third potential consequence should be larger thanܿܤ

that for the fourth potential consequence by the amount of ሺܦ௨ െ ሻܦ ∗  ൣ ܲሺܳሻ ∗
ொሺுሻ


ܲሺܳ,  .ሻ൧݀ܳ, as well as the total expected annual costܿܤ

Suppose the optimal levee crown width of the narrow levee side is ܿܤ௨∗  for the asymmetric 
levee system with the narrow urban levee fails in the third potential consequence and ܿܤ∗ for the 
asymmetric levee system with the narrow rural levee fails in the fourth potential consequence. 
Since ܶܥ௦

∗ሺܿܤ∗ሻ is the minimum of all ܶܥ௦ሺܿܤሻ, all ܶܥ௦ሺܿܤ௨ሻ including its minimum 
௦ܥܶ

∗ሺܿܤ௨∗ሻ will be bigger than ܶܥ௦
∗ሺܿܤ∗ሻ. So an asymmetric levee system with a narrow urban 

levee is sub-optimal to an asymmetric levee system with a narrow rural levee. 

The problem then becomes to compare the optimal value of the second potential 
consequence ܶܥ௦

∗ሺܿܤହ
∗ ሻ and the last potential consequence ܶܥ௦

∗ሺܿܤ∗ሻ. 
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According to our simplifying assumption that the intermediate geotechnical failure 
probability of a comparatively narrow levee is always greater than that of a wide levee at any 
water level, as long as the urban levee is wide than that he rural levee, even a small increment in 
urban levee crown width compared to rural levee crown width could guarantee only the rural 
side be flooded. Therefore, we can assume the difference of construction cost between a wide 
urban levee and a narrow rural levee is constant, defined as ߝ. 

ߝ ൌ

	

ܥ ∗ ܿܤ௪ ∗ ܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰ ∗ ଶ൨ܪ െ

	

ܥ ∗ ܿܤ ∗ ܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰ ∗  ଶ൨ܪ

ܥ	= ∗ ܪ ∗ ሺܿܤ௪ െ 	ሻܿܤ 		                                                                                                   
(C.5) 

This ߝ can be relatively small, in which case ߝ can be ignored and the urban levee 
crown width in the annualized construction cost calculation can also be approximated as the rural 
levee crown width. The objective becomes: 

Min ܶܥ௦ሺܿܤሻ ൌ ሻܿܤ௦ሺܦܣܧ   ሻܿܤ௦ሺܥܥܣ

ൌ ܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
  ܥ ∗ ቂ2 ∗ ܿܤ ∗ ܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଶቃܪ    (C.6)ߝ

Then for any given ܿܤ,  

ହܿܤ௦ሺܥܶ ൌ ሻܿܤ ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
  ܥ ∗ ቂ2 ∗ ܿܤ ∗ ܪ 

ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ          (C.7)ܪ

ܿܤ௦ሺܥܶ ൌ ሻܿܤ ൌ ܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
  ܥ ∗ ቂ2 ∗ ܿܤ ∗ ܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗

ଶቃܪ                                                                                                                            (C.8)ߝ

The annual expected total cost of the symmetric levee system should be larger than that of 

the asymmetric levee system by ቄ0.5 ∗ ሺܦ௨ െ ሻܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
 െ  ቅ withߝ

௨ܦ െ ܦ   ,0 ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
  0 and the assumption that ߝ can be ignored 

here. 

Since ܶܥ௦
∗ሺܿܤ∗ሻ is the minimum of all ܶܥ௦ሺܿܤሻ, all ܶܥ௦ሺܿܤହሻ including its minimum 

௦ܥܶ
∗ሺܿܤହ

∗ ሻ will be bigger than ܶܥ௦
∗ሺܿܤ∗ሻ. Therefore, with the assumption that ߝ can be 

ignored, it can be concluded that ܶܥ௦
∗ሺܿܤହ

∗ ሻ  ௦ܥܶ
∗ሺܿܤ∗ሻ. So the asymmetric levee system 

with the narrow rural levee fails in the fourth potential consequence is preferable. 

In conclusion, among all the four potential consequences, the asymmetric levee system with 
the narrow rural levee fails in the fourth potential consequence is preferable with the global 
minimum total expected annual cost ܶܥ௦

∗ሺܿܤ∗ሻ. 

2.7.D Economic Optimality of the Asymmetric Levee System Geometry 

Considering both the overtopping failure and intermediate geotechnical failure, the 
objectives of minimizing total cost for the four listed potential consequences in section 2.3.4 are 
in the following. All damages are assumed to occur once the levee fails. 
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(1) Symmetric levee system with each levee fails at a 50% chance, ሺܪ௨ ൌ ܪ ൌ
,ହܪ ௨ܿܤ ൌ ܿܤ ൌ  ሻ	ହܿܤ

Min ܶܥ௦ሺܪହ, ହሻܿܤ ൌ ,ହܪ௦ሺܦܣܧ ହሻܿܤ  ,ହܪ௦ሺܥܥܣ  ହሻܿܤ

ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗ ൣ1 െ ହሻ൯൧ܪொ൫ܳሺܨ  0.5 ∗ ሺܦ௨  ሻܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ହሻ൧݀ܳܿܤ
ொሺுሻ
 

ܥ ∗ ቂ2 ∗ ହܪ ∗ ହܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ହܪ

ଶቃ      (D.1) 

(2) Asymmetric levee system with asymmetric levee height and symmetric levee 
crown width, overtopping failure occurs on short rural levee side, intermediate geotechnical 
failure occurs on each side at a 50% chance, ሺܪ௨ ൌ ܪ,ܪ ൌ ,௦ܪ ௨ܿܤ ൌ ܿܤ ൌ  ሻ	ହܿܤ

Min ܶܥ௦ሺܪ, ହሻܿܤ ൌ ,ܪ௦ሺܦܣܧ ହሻܿܤ  ,ܪ௦ሺܥܥܣ  ହሻܿܤ

ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  0.5 ∗ ሺܦ௨  ሻܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ହሻ൧݀ܳܿܤ
ொሺுೝሻ
  ܥ ∗ ቂܿܤହ ∗

ሺܪ௨  ሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ௨ଶ   ଶሻቃ      (D.2)ܪ

(3) Asymmetric levee system with symmetric levee height and asymmetric levee 
crown width, overtopping failure occurs on each side at a 50% chance, intermediate geotechnical 
failure occurs on narrow rural levee side, ሺܪ௨ ൌ ܪ ൌ ,ହܪ ௨ܿܤ ൌ ,௪ܿܤ ܿܤ ൌ  ሻ	ܿܤ

Min  ܶܥ௦ሺܪହ, ሻܿܤ ൌ ,ହܪ௦ሺܦܣܧ ሻܿܤ  ,ହܪ௦ሺܥܥܣ  ሻܿܤ

ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗ ൣ1 െ ହሻ൯൧ܪொ൫ܳሺܨ  ܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுఱబሻ
  ܥ ∗ ቂሺܿܤ௨ 

ሻܿܤ ∗ ହܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ହܪ

ଶቃ                                                                            (D.3) 

(4) Asymmetric levee system with asymmetric levee height and asymmetric levee 
crown width, overtopping failure and intermediate geotechnical failures occur on short and 
narrow rural levee side, ሺܪ௨ ൌ ܪ,ܪ ൌ ,௦ܪ ௨ܿܤ ൌ ,௪ܿܤ ܿܤ ൌ  ሻ	ܿܤ

Min ܶܥ௦ሺܪ, ሻܿܤ ൌ ,ܪ௦ሺܦܣܧ ሻܿܤ  ,ܪ௦ሺܥܥܣ  ሻܿܤ

ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  ܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுೝሻ
  ܥ ∗ ቂܿܤ௨ ∗ ௨ܪ  ܿܤ ∗ ܪ 

ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ௨ଶ   ଶሻቃ      (D.4)ܪ

According to previous discussion, ܶܥ௦
∗ሺܪହ

∗ , ହܿܤ
∗ ሻ in the first potential consequence is 

suboptimal to ܶܥ௦
∗ሺܪ∗, ହܿܤ

∗ ሻ in the second potential consequence by the amount of 
൛0.5 ∗ ሺܦ௨ െ ሻܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ െ  ு can be ignored. Andߝ ுൟ assuming thatߝ
௦ܥܶ

∗ሺܪହ
∗ , ହܿܤ

∗ ሻ in the first potential consequence is suboptimal to ܶܥ௦
∗ሺܪହ

∗ ,  ∗ሻ in the thirdܿܤ

potential consequence by the amount of ቄ0.5 ∗ ሺܦ௨ െ ሻܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
 െ  ቅߝ

assuming that ߝ can be ignored. ߝு and ߝ are from Equation (A.5) and (B.5) respectively. 

So the economically optimal design of the levee system geometry should be chosen from 
௦ܥܶ

∗ሺܪ∗, ହܿܤ
∗ ሻ in the second potential consequence, ܶܥ௦

∗ሺܪହ
∗ ,  ∗ሻ in the third potentialܿܤ

consequence and ܶܥ௦
∗ሺܪ∗,  .∗ሻ in the last potential consequenceܿܤ
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First we compare ܶܥ௦
∗ሺܪ∗, ହܿܤ

∗ ሻ in the second potential consequence and ܶܥ௦
∗ሺܪ∗,  ∗ሻܿܤ

in the last potential consequence. The difference of construction cost between these two potential 
consequences is defined as ߝு,

 . 

ு,ߝ
 ൌ

	

ܥ ∗ ܿܤ௪ ∗ ܪ  ܿܤ ∗ ௦ܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰ ∗ ሺܪ

ଶ  ௦ଶሻ൨ܪ െ

	
 

ܥ ∗ ܿܤ ∗ ሺܪ  ௦ሻܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰ ∗ ሺܪ

ଶ   ௦ଶሻ൨ܪ

ൌ

	

ܥ ∗ ሾܿܤ௪ ∗ ܪ  ܿܤ ∗ ௦ܪ െ ܿܤ ∗ ሺܪ  	௦ሻሿܪ 																																																																																
(D.5) 

Given ܿܤ ൌ  ,in our analysis ܿܤ

ு,ߝ
 ൌ ܥ ∗ ሺܿܤ௪ െ ሻܿܤ ∗ 	ܪ 																																																																																																												(D.6) 

This ߝு,
  would be relatively small, in which case ߝு,

  can be ignored. And the urban 
levee in the annualized construction cost calculation can also be approximated as the rural levee.  

For any given ܿܤ, 

,ܪ௦ሺܥܶ ହܿܤ ൌ  ሻܿܤ

ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  0.5 ∗ ሺܦ௨  ሻܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுೝሻ
  ܥ ∗ ቂܿܤ ∗

ሺܪ௨  ሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ௨ଶ   ଶሻቃ      (D.7)ܪ

,ܪ௦ሺܥܶ ܿܤ ൌ  ሻܿܤ

ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  ܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுೝሻ
  ܥ ∗ ቂܿܤ ∗ ሺܪ௨  ሻܪ 

ଵ

ଶ
∗

ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ௨ଶ  ଶሻቃܪ  ு,ߝ

       (D.8) 

The annual expected total cost in the second potential consequence should be larger than 

that in the last potential consequence by the amount of ቄ0.5 ∗ ሺܦ௨ െ ሻܦ ∗  ൣ ܲሺܳሻ ∗
ொሺுೝሻ


ܲሺܳ, ሻ൧݀ܳܿܤ െ ு,ߝ
 ቅ with ܦ௨ െ ܦ   ,0 ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ

ொሺுೝሻ
  0 and the 

assumption that ߝு,
  can be ignored here. 

Since ܶܥ௦
∗ሺܪ∗, ,ܪ௦ሺܥܶ ∗ሻ is the minimum of allܿܤ ,ܪ௦ሺܥܶ ሻ, allܿܤ  ହሻ including itsܿܤ

minimum ܶܥ௦
∗ሺܪ∗, ହܿܤ

∗ ሻ will be bigger than ܶܥ௦
∗ሺܪ∗,  ∗ሻ. Therefore, with the assumptionܿܤ

that ߝு,
  can be ignored, it can be concluded that ܶܥ௦

∗ሺܪ∗, ହܿܤ
∗ ሻ  ௦ܥܶ

∗ሺܪ∗,  ∗ሻ. So theܿܤ
asymmetric levee system with the short and narrow rural levee fails in the last potential 
consequence is preferable. 

Then we compare ܶܥ௦
∗ሺܪହ

∗ , ௦ܥܶ ∗ሻ in the third potential consequence andܿܤ
∗ሺܪ∗,  ∗ሻܿܤ

in the last potential consequence. The difference of construction cost between these two potential 
consequences is defined as ߝு,

ு . 

ு,ߝ
ு ൌ

	

ܥ ∗ ܿܤ௪ ∗ ܪ  ܿܤ ∗ ௦ܪ 
1
2
∗ ൬

1
ߙ݊ܽݐ


1

ߚ݊ܽݐ
൰ ∗ ሺܪ

ଶ  ௦ଶሻ൨ܪ െ
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ܥ ∗ ቂሺܿܤ௪  ሻܿܤ ∗ ܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ 	ଶቃܪ 																																																																																

(D.9) 

Given ܪ௦ ൌ  ,in our analysis ܪ

ு,ߝ
ு ൌ ܥ ∗ ቂሺܿܤ௪ െ ሻܿܤ ∗ ܪ 

ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪ

ଶ െ 	௦ଶሻቃܪ 																																																

(D.10) 

This ߝு,
ு  would be relatively small, in which case ߝு,

ு  can be ignored. And the urban 
levee in the annualized construction cost calculation can also be approximated as the rural levee.  

For any given ܿܤ, 

ହܪ௦ሺܥܶ ൌ ,ܪ  ሻܿܤ

ൌ 0.5 ∗ ሺܦ௨  ሻܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  ܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
  ܥ ∗ ቂሺܿܤ௨ 

ሻܿܤ ∗ ܪ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ      (D.11)ܪ

ܪ௦ሺܥܶ ൌ ,ܪ  ሻܿܤ

ൌ ܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ  ܦ ∗  ൣ ܲሺܳሻ ∗ ܲሺܳ, ሻ൧݀ܳܿܤ
ொሺுሻ
  ܥ ∗ ቂሺܿܤ௨  ሻܿܤ ∗ ܪ 

ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଶቃܪ  ு,ߝ

ு       (D.12) 

The annual expected total cost in the third potential consequence should be larger than that 
in the last potential consequence by the amount of ൛0.5 ∗ ሺܦ௨ െ ሻܦ ∗ ൣ1 െ ሻ൯൧ܪொ൫ܳሺܨ െ ு,ߝ

ு ൟ 
with ܦ௨ െ ܦ  0, 1 െ ሻ൯ܪொ൫ܳሺܨ  0 and the assumption that ߝு,

ு  can be ignored here. 

Since ܶܥ௦
∗ሺܪ∗, ,ܪ௦ሺܥܶ ∗ሻ is the minimum of allܿܤ ,ହܪ௦ሺܥܶ ሻ, allܿܤ  ሻ including itsܿܤ

minimum ܶܥ௦
∗ሺܪହ

∗ , ௦ܥܶ ∗ሻ will be bigger thanܿܤ
∗ሺܪ∗,  ∗ሻ. Therefore, with the assumptionܿܤ

that ߝு,
ு  can be ignored, it can be concluded that ܶܥ௦

∗ሺܪହ
∗ , ∗ሻܿܤ  ௦ܥܶ

∗ሺܪ∗,  ∗ሻ. So theܿܤ
asymmetric levee system with the short and narrow rural levee fails in the last potential 
consequence is preferable. 

In conclusion, among all the four potential consequences, the asymmetric levee system with 
asymmetric levee height and asymmetric levee crown width is of the overall economic 
optimality. Specifically, the short and narrow rural levee fails in the fourth potential consequence 
is preferable with the global minimum total expected annual cost ܶܥ௦

∗ሺܪ∗,  .∗ሻܿܤ
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Chapter 3: Game Theory and Risk-Based Levee System Design  

3.1 Summary 

Optimal risk-based levee design is usually developed for economic efficiency. However, in 
many river systems, the design and operation of different levees are controlled by different 
agencies. For example, along many rivers, levees on opposite riverbanks are a simple levee 
system with each levee owned separately. Collaborative design of the two levees can be 
economically optimal for the whole system. But rational and self-interested land owners on each 
river bank often tend to independently optimize their levees, resulting in a Pareto-inefficient 
levee system design from a society-wide perspective. Game theory is applied in this study to 
analyze decision-making in a simple levee system where land owners on each river bank develop 
levee designs using risk-based economic optimization. For each land owner, the annual expected 
total cost includes expected annual damage cost and annualized construction cost. The non-
cooperative Nash equilibrium is identified and compared to the optimal distribution of flood risk 
and damage cost, which minimizes total flood cost system-wide. The system-wide optimal 
solution often is not feasible politically or legally without compensating for the transferred flood 
risk to guarantee and improve outcomes for all parties. Such compensation can be determined 
and implemented in practice using cooperative game theory with landowners’ agreements on 
collaboration to develop an economically optimal design. By examining the successive repeated 
non-cooperative game in reversible and irreversible decision modes, the cost of decision making 
myopia can be calculated to show the significance of considering the externalities and evolution 
path of dynamic water resource problems for optimal decision making. 

3.2 Introduction 

Levees protect flood prone areas by increasing channel capacity to retain flood flow within 
the leveed channel rather than overflowing a protected area. However, levees possibly fail by the 
overtopping and intermediate geotechnical failures, though at a low probability. As risk is the 
failure probability multiplied by the consequences of failure, summed over all possible events, 
levees can decrease but cannot eliminate the likelihood of flooding and flood risk (Hashimoto et 
al. 1982).  

Risk-based analysis has long been applied to optimal levee design, for example the basic 
risk models for flood levee design which systematically analyzed the various hydrologic and 
hydraulic uncertainties (Van Dantzig 1956; Tung and Mays 1981a), and a recent study of single 
levee design considering both overtopping and intermediate geotechnical failures (Chapter 1). 
Building a taller and wider levee decreases its failure probability and reduces its damage cost, 
but increases its construction cost. The optimal system design should minimize annual expected 
total cost, including both expected annual damage and annualized construction costs. For a levee 
system of two levees on opposite riverbanks, the overall cost on two sides from damage and 
construction should be optimized with risk-based analysis.  

Different levee system designs change how flood risk is distributed. A symmetric levee 
system has two identical levees that possibly fail at the same chance, while the relatively lower 
levee in an asymmetric levee system is more likely to fail. Croghan (2013) discussed the 
economic flood risk transformation and transference among floodplain users, finding that total 
flood risk could be reduced from transferring risk from the high-cost urban side to the low-
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valued rural side of a river. Chapter 2 provides the theoretical and numerical foundation that such 
an asymmetric levee system allowing flood risk transfer across the river can also reduce the total 
cost containing construction for asymmetric river channel system. It proves the overall economic 
optimality of such asymmetric levee system mathematically and analytically. However, as 
individual costs usually increase with transferred flood risk, compensation for the transferred 
flood risk can be needed to guarantee and improve conditions for all parties. 

Many quantitative and qualitative methods have been proposed for water resources conflict 
resolution studies, for example Shared Vision Modeling (Lund and Palmer 1997) and descriptive 
methods for prevention and resolution of water resources conflict (Wolff 2002). A mathematical 
study on the interaction among independently self-interested agents, known as game theory, can 
be applied to analyze the design strategy of each floodplain as two individual owners involved in 
a levee system. Nash (1951; 1953) developed explicit theories for two types of games: 
cooperative games where all stakeholders collaborate, and non-cooperative games where each 
stakeholder acts independently with incentives to disregard the common good. The main 
application of game theory has been in economics, but it has been applied in many fields, such as 
computer science, political science, biology and psychology (Neumann 1947; Ostrom 1998; 
Colman 2013). Many researches have applied game-theoretic framework to water conflict 
resolution studies (Carraro et al. 2005; Parrachino et al. 2006; Zara et al. 2006). Madani (Madani 
2010) has reviews the application of game theory to general water resources conflict 
management problems, particularly non-cooperative game theory. It emphasized the differences 
between outcomes predicted by game theory and results proposed by optimization methods 
assuming all parties agree to collaborate. For this simple levee system design problem, game 
theory can provide insights for the conditions needed to achieve the overall economically 
optimal levee system design, as long as the decision makers of the two river banks are rational. 
More importantly, compensation for the transferred flood risk can be determined by examining 
the risk-based levee system design solutions with different types of games and comparing their 
outcomes (Brandenburger 2007). 

This chapter proceeds as follows. Section 3.3 describes the game theory framework and 
risk-based optimization for a simple levee system, including model description, risk-based 
analysis for overtopping failure, a simple game theory framework, and two illustrative cases of 
identical and different floodplain conditions on opposite riverbanks. Section 3.4 briefly employs 
cooperative game theory, which generates an overall economically optimal design (minimizing 
the annual expected total system cost). This is followed by discussions of applying different non-
cooperative game conditions that require no collaboration of parties involved in the levee system 
design problem. Section 3.5 applies the single-shot non-cooperative Nash equilibrium game 
theory to this simple levee system. Sections 3.6 and 3.7 then analyze the levee system design 
problem as a successive repeated non-cooperative game with reversible and irreversible 
decisions. Section 3.8 concludes with key findings. 

3.3 Risk-based Optimal Levee Design and Game Theory Framework  

Risk is the sum of each possible failure event probability multiplied by its consequences, 
and reliability is one minus the probability of failure (Hashimoto. et al. 1982). Risk-based 
analysis for levee design typically minimizes the annual expected total cost, including expected 
annual damage and annualized construction costs. This section applies game theory to a simple 
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levee system design problem using risk-based optimization to generate individual payoffs with 
various strategies. 

3.3.1 Model Description 

In this study, all the discussions are only for overtopping levee failure when water 
overflows any levee, ignoring the intermediate geotechnical levee failure. Levee heights on two 
riverbanks are the decision variables in this risk-based levee system design problem. The other 
physical levee design parameters are set by some standards and are the same for two riverbanks. 
Surrounding areas of each riverbank determines its relevant economic parameters. 

An idealized cross-section of a leveed river channel system is in Figure 3.1, with two levees 
on opposite riverbanks (Tung and Mays 1981b). ܤ is the channel width,  ܦ is the channel depth, 
߬ is the slope of the floodplain section, ܹ is the total floodplain width including channel, ܻ is 
water elevation, and ܼ is the water side slope of levee. For levees with a general trapezoid cross 
section,	ܿܤ is levee crown width, ߙ is landside slope, ߚ is water side slope, and ܪ is levee height 
 Floodplain conditions on opposite .(ଶ representing levee height on each floodplainܪ ଵ andܪ)
riverbanks could be identical as a symmetric river channel system, or be different as an 
asymmetric river channel system. For example, floodplain 1 and floodplain 2 can both be rural 
area with the same damage potential. It could also be that floodplain 1 is in rural area with 
smaller flood damage potential, and floodplain 2 is in urban area with larger damage potential. 

 

Figure 3.1 Idealized cross-section of leveed river channel system with two levees on 
opposite riverbanks 

To represent the probability of annual flood flow, flood frequency is assumed to follow a 
log-normal distribution. For this study, flow and water level are converted with Manning’s 
Equation for the given channel geometry. 
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3.3.2 Risk-based Optimization for the Whole Levee System 

If accounting only for overtopping levee failure, possible levee failures solely depend on the 
relative levee heights on two levees for symmetric or asymmetric floodplain conditions. So there 
are four potential failure outcomes during a major flood: 

(1) Two levees fail simultaneously, when levees are symmetric ሺܪଵ ൌ  ;ଶሻܪ
(2) Only one levee fails, each with a 50% chance, when levees are symmetric, relieving 

pressure on the opposite levee ሺܪଵ ൌ  ;ଶሻܪ
(3) Levee 1 fails if it is shorter ሺܪଵ ൏  ;ଶሻܪ
(4) Levee 2 fails if it is shorter ሺܪଵ    .ଶሻܪ

Figure 3.2 depicts the varying relationship between the two levees to illustrate where flood 
damages possibly occur, considering only overtopping failure. Figure 3.2(a) shows the 
symmetric levee system, either levees fail simultaneously or each fails at a 50% chance. Figure 
3.2(b)  illustrates where levee 1 is shorter and it possibily fails first. And Figure 3.2(c) shows 
where levee 2 is shorter and it possibily fails first. 

Figure 3.2 Profile view of varying levee height relationships 
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The symmetric levee system with identical levees on opposite riverbanks can be considered 
as one single levee with roughly doubled annualized construction cost and summed expected 
annual damage cost, while the asymmetric levee system has different levees on each riverbank 
that costs are calculated separately. For the system as a whole, the objective of minimizing 
annual expected total cost ܶܥሺܪଵ, ,ଵܪሺܦܣܧ ଶሻ including expected annual damage costܪ	  ଶሻܪ	
and annualized construction cost ܥܥܣሺܪଵ,  :ଶሻ isܪ	

Min ܶܥሺܪଵ, ଶሻܪ	 ൌ ,ଵܪሺܦܣܧ ଶሻܪ	  ,ଵܪሺܥܥܣ  ଶሻ      (3.1)ܪ	

The expected annual damage cost is: 

,ଵܪሺܦܣܧ ଶሻܪ	 ൌ 	 ሺܳሻܦ ∗ ܲሺܳሻ ∗ ݀ܳ
ஶ
ொሺுభ,	ுమሻ

ൌ ܦ ∗ ൣ1 െ ,ଵܪொ൫ܳሺܨ  ଶሻ൯൧      (3.2)ܪ	

where ܦሺܳሻ = damage cost as a function of flow ܳ depending on the potential damage costs ܦଵ 
of floodplain 1 and ܦଶ of floodplain 2, assuming constant potential damage ܦଵ and ܦଶ for any 

levee failure. ܦଵ ൌ ଵܦ  ଶܦ ,ଶܦ ൌ ଵ

ଶ
ሺܦଵ  ଷܦ ,ଶሻܦ ൌ ସܦ ,ଵܦ ൌ  ଶ are damages for the fourܦ

potential failure outcomes respectively;	ܳሺܪଵ,  ,ଶሻ = flow capacity of the levee systemܪ	
calculated here by Manning’s Equation, which depends on the lower levee height between levee 
 ܲሺܳሻ = probability density function of a given flood flow ܳ, here ;(ଶܪ	) and levee 2 (ଵܪ) 1
assuming a log-normal distribution; ܨொሺܳሻ = the cumulative distribution function of flow. 

The annualized construction cost can be explicitly expressed as 

,ଵܪሺܥܥܣ ଶሻܪ	 ൌ ሺݏ ∗ ܸ ∗ ܿ  ଵܥܮ  ଶሻܥܮ ∗ ቂ
∗ሺଵାሻ

ሺଵାሻିଵ
ቃ      (3.3) 

where ݎ = real (inflation-adjusted) discount or interest rate; ݊  = number of the levee’s useful 
years;	ݏ = a cost multiplier to cover engineering and construction administrative costs; ܿ = unit 

construction cost per volume; ܸ ൌ ܮ	 ∗ ቂܿܤ ∗ ሺܪଵ  ଶሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪଵ

ଶ  ଶܪ
ଶሻቃ is 

total volume of levee 1 and levee 2 along the entire length (ܮ) of the river reach; ܥܮଵ ൌ ଵܥܷ ∗  ଵܣ
is the cost for purchasing land on floodplain 1 to build the levee, with a unit land cost ܷܥଵ, and 

the area of land occupied by levee 1 base ܣଵ ൌ ܮ ∗ ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଶܥܮ	;ଵቃܪ ൌ ଶܥܷ ∗  ଶܣ

is the cost for purchasing land on floodplain 2 to build the levee, with a unit land cost of ܷܥଶ, 

and the area of land occupied by levee 2 base ܣଶ ൌ ܮ ∗ ቂܿܤ  ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗  ଶቃ. Land cost isܪ

an additional cost to represent the site-specific expense of purchasing an acre of land.   

Given the risk-based optimization model for overtopping levee failure only, the optimal 
results can be solved with calculus by substituting the expected annual damage cost and the 
annualized construction cost into the cost-minimizing function. In addition to satisfying all the 
physical constraints, the optimal conditions include the First-order Necessary Condition that the 
first-order derivative of the objective is zero, and the Second-order Sufficient Condition that the 
Second-order derivative should be non-negative to ensure minimization. 

3.3.3 A Simple Game Theory Framework 

If each levee owner acts independently, one would tend to optimize for its own levee height 
with risk-based analysis, given a known levee condition of the other floodplain. Instead of 
accounting for the overall economically efficient cost on both floodplains combined, each 
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floodplain would try to minimize its own cost to the greatest extent, disregarding impacts on the 
other floodplain. 

Game theory can help predict how two floodplains design their levees, following their own 
local interests, especially in conflict. Each floodplain is considered as one player. Each player 
has a set of strategies (levee design choices). Considering overtopping levee failure only, 
strategies would be various levee heights. Payoffs to each player for possible outcomes of the 
game are the individual annual expected total costs, which include expected annual damage cost 
and annualized construction cost. Comparing the possible payoffs can identify the dominant 
decisions of each player (levee heights in this case). 

The payoff function for floodplain 1 is 

,ଵܪଵሺܥܶ ଶሻܪ ൌ ,ଵܪଵሺܦܣܧ ଶሻܪ   ଵሻ      (3.4)ܪଵሺܥܥܣ

,ଵܪଵሺܦܣܧ ଶሻܪ ൌ ൞

0																																																																																									, ଵܪ	݂݅  ଶܪ
0.5  ଵܦ ܲሺܳሻ݀ܳ

ஶ
ொሺுభሻ

ൌ ଵൣ1ܦ0.5 െ ,ଵሻ൯൧ܪொ൫ܳሺܨ ଵܪ	݂݅ ൌ ଶܪ

 ଵܦ ܲሺܳሻ݀ܳ
ஶ
ொሺுభሻ

ൌ ଵൣ1ܦ െ ,												ଵሻ൯൧ܪொ൫ܳሺܨ ଵܪ	݂݅ ൏ ଶܪ

      (3.5) 

where ܳሺܪଵሻ = flow capacity of the levee system calculated by Manning’s Equation depending 
on the lower levee 1 height (ܪଵ);  

The annualized construction cost can be explicitly expressed as 

ଵሻܪଵሺܥܥܣ ൌ ሺݏ ∗ ଵܸ ∗ ܿ  ଵሻܥܮ ∗ ቂ
∗ሺଵାሻ

ሺଵାሻିଵ
ቃ      (3.6) 

where ଵܸ ൌ ܮ	 ∗ ቂܿܤ ∗ ଵܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଵܪ

ଶቃ is total volume of levee 1 along the entire 

length (ܮ) of the river reach, ܥܮଵ is the same as discussed before. 

Similarly, the payoff function for floodplain 2 is 

,ଵܪଶሺܥܶ ଶሻܪ ൌ ,ଵܪଶሺܦܣܧ ଶሻܪ   ଶሻ      (3.7)ܪଶሺܥܥܣ

,ଵܪଶሺܦܣܧ ଶሻܪ ൌ ൞

0																																																																																									, ଶܪ	݂݅  ଵܪ
0.5  ଶܦ ܲሺܳሻ݀ܳ

ஶ
ொሺுమሻ

ൌ ଶൣ1ܦ0.5 െ ,ଶሻ൯൧ܪொ൫ܳሺܨ ଶܪ	݂݅ ൌ ଵܪ

 ଶܦ ܲሺܳሻ݀ܳ
ஶ
ொሺுమሻ

ൌ ଶൣ1ܦ െ ,												ଶሻ൯൧ܪொ൫ܳሺܨ ଶܪ	݂݅ ൏ ଵܪ

      (3.8) 

where	ܳሺܪଶሻ = flow capacity of the levee system calculated by Manning’s Equation depending 
on the lower levee 2 height (ܪଶ).  

The annualized construction cost can be explicitly expressed as 

ଶሻܪଶሺܥܥܣ ൌ ሺݏ ∗ ଶܸ ∗ ܿ  ଶሻܥܮ ∗ ቂ
∗ሺଵାሻ

ሺଵାሻିଵ
ቃ      (3.9) 

where ଶܸ ൌ ܮ	 ∗ ቂܿܤ ∗ ଶܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ଶܪ

ଶቃ is total volume of levee 2 along the entire 

length (ܮ) of the river reach, ܥܮଶ is the same as discussed before.  

The payoff (annual expected total cost) of each player (floodplain 1 or floodplain 2) is a 
discontinuous function of the individual design levee height, because its component expected 
annual damage cost is discontinuous and also depends on the other player’s levee decision.  
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For each player on a single levee design case that flood risk is not transferable, it will have 
an individual overall optimal levee height ܪ∗ corresponding to an individual overall minimum 
annual expected total cost ܶܥ∗. Figure 3.3 illustrates such single levee design scenarios for two 
floodplains with different damage potentials. For an individual player with increasing design 
levee height, its expected annual damage cost is decreasing and its annualized construction cost 
is increasing. So its summed annual expected total cost decreases rapidly first as dominated by 
the decreasing expected annual damage cost, and then slightly increases as dominated by the 
increasing annualized construction cost. For two floodplains with different damage potentials, 
the annualized construction costs are identical here for any given levee heights, while the 
expected annual damage costs differ proportionally. Given floodplain 1 has a smaller damage 
potential than floodplain 2, its individual minimum annual expected total cost would be smaller 
than that of floodplain 2 ሺܶܥଵ

∗ ൏ ଶܥܶ
∗ሻ. And the individual optimal levee height of floodplain 1 

would be smaller than that of floodplain 2 ሺܪଵ
∗ ൏ ଶܪ

∗ሻ (Figure 3.3). ܪଵ
 and ܪଶ

 in Figure 3.3 are 
the upper limits of one player’s possible best levee height (for floodplain 1 and floodplain 2 
respectively) that are discussed later. 

 

Figure 3.3 Variation of optimal levee height and annual expected total cost with different 
damage potentials in a single levee design case 

Based on this developed game theory framework for the risk-based levee system design 
problem, various types of games can be applied for given floodplain conditions and play 
strategies. 
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3.3.4 Illustrating Cases 

To apply game theory to different levee system design institutions, we use the Cosumnes 
River in California as an illustrating example. Symmetric and asymmetric floodplain conditions 
on opposite riverbanks are analyzed as symmetric game and asymmetric game respectively 
(Nash 1951). For the symmetric river channel system with identical floodplain conditions on 
opposite riverbanks, we assume both floodplains are surrounded by rural area. For the 
asymmetric river channel system with different floodplain conditions, we assume floodplain 1 is 
in rural area and floodplain 2 is in urban area. 

The Cosumnes River has a median annual peak flow of 930݂ܿݏ and a mean annual peak 
flow of 1300݂ܿݏ (USACE 2006). Channel geometry and levee related parameters include: 
channel width is ܤ ൌ ܹ total channel width including the floodplain is ;ݐ200݂ ൌ  ;ݐ300݂
channel depth is ܦ ൌ longitudinal slope of the channel and the floodplain section is ܵ ;ݐ3݂ ൌ
	ܵ ൌ 0.0005; Manning’s roughness for the channel section and floodplain is ܰ ൌ ܰ ൌ 0.05; 
floodplain slope is ݊ܽݐτ ൌ 0.01; levee landside slope and waterside slope are set as ߙ݊ܽݐ ൌ 1/4 
and ߚ݊ܽݐ ൌ 1/2 respectively; levee crown width is ܿܤ ൌ  according to standards; total ݐ36݂
levee length is ܮ ൌ  Construction cost parameters are cost per unit levee material is .ݐ2640݂
ܿ௦ ൌ ݎ ଷ; real (inflation-adjusted) discount or interest rate isݐ݂/$10 ൌ 0.05; useful life of the 
levee is ݊ ൌ  the cost multiplier for engineering and construction administrative costs is ;ݏݎݕ100
ݏ ൌ 1.3. 

Under the identical floodplain conditions, each rural floodplain has a land cost of $3000 per 
acre (0.066	 $ ⁄ଶݐ݂ ) and roughly $8	݈݈݉݅݅݊ damage cost if the surrounded area is flooded. For 
either floodplain optimized in a single levee design case, the individual optimal levee height is 
ଵܪ
∗ ൌ ଶܪ

∗ ൌ  corresponding to an individual overall minimum annual expected total cost of ݐ4.3݂
ଵܥܶ

∗ ൌ ଶܥܶ
∗ ൌ ଵܦܣܧ which include an expected annual damage cost of ,݈݈݊݅݅݉	$0.54

∗ ൌ
ଶܦܣܧ

∗ ൌ ଵܥܥܣ and an annualized construction cost of ݈݈݊݅݅݉	$0.18
∗ ൌ ଶܥܥܣ

∗ ൌ  .݈݈݊݅݅݉	$0.36
And the levee failure probability at optimal levee design is ܨொଵ

∗ ൌ ொଶܨ
∗ ൌ 0.0197. 

Under the different floodplain conditions, rural floodplain 1 has a land cost of $3000 per 
acre (0.066	 $ ⁄ଶݐ݂ ) and roughly $8	݈݈݉݅݅݊ damage cost if its rural area is flooded, and urban 
floodplain 2 has a land cost of $9000 per acre (0.198	 $ ⁄ଶݐ݂ ) and $20	݈݈݉݅݅݊ damage cost if 
the surrounded urban area is flooded (USACE 2006). For rural floodplain 1 optimized in a single 
levee design case, the individual overall optimal levee design and costs are as above. For urban 
floodplain 2 optimized as a single levee design case, ܪଶ

∗ ൌ ଶܥܶ ,ݐ5.4݂
∗ ൌ  ,݈݈݊݅݅݉	$0.74

ଶܦܣܧ
∗ ൌ ଶܥܥܣ and ݈݈݊݅݅݉	$0.25

∗ ൌ ொଶܨ and ,݈݈݊݅݅݉	$0.49
∗ ൌ 0.01.  

3.4 Cooperative Design 

In a cooperative game, players make decisions collaboratively to optimize the entire system 
(Nash 1953). They would act together like an ideal social planner that can reach a Pareto-
efficient levee system design. This is the case described in Chapter 2. 

Such collaborative levee system designs are commonly seen where opposite river banks 
along a river belong to one land owner. A system-wide decision maker may design two identical 
levees for identical floodplain conditions, while would design a slightly shorter levee on low-
valued floodplain for different floodplain conditions to essentially protect the other high-valued 
floodplain. For example with commonly different floodplain conditions, the social planner is 
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likely to sacrifice one riverbank for possible floods by designing a shorter levee on that 
floodplain (weirs as an extreme example). During a major flood event, this can be done by 
demolishing the levee on the low-valued floodplain or raising the levee on the other floodplain. 

If the two floodplains on opposite riverbanks are identical, the best design for the whole 
system is a symmetric levee system (two identical levees) with each levee fails at a 50% chance. 
Under this condition, the optimal annual expected total cost ܶܥ௦

∗ሺܪହ
∗ ሻ with identical optimal 

levee heights on two riverbanks ܪହ
∗  is better than any of the asymmetric levee system designs. 

However, if the two floodplains on opposite riverbanks are different or it is likely that both 
levees would fail, an asymmetric levee system is economically optimal (Chapter 2). If the cost 
difference of constructing a lower rural levee 1 and a slightly higher urban levee 2, ߝ ൌ ܥ ∗

ቂܿܤ ∗ ሺܪଶ െ ଵሻܪ 
ଵ

ଶ
∗ ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ሺܪଶ

ଶ െ ଵܪ
ଶሻቃ, can be ignored, ܶܥ௦

∗ሺܪହ
∗ ሻ is economically 

inferior to ܶܥ௦
∗ሺܪଵ

∗ሻ (Chapter 2). Therefore, the most economically optimal design of the 
asymmetric river channel system is a slightly shorter rural levee 1 and a slightly higher urban 
levee 2. The low-valued lower rural levee 1 would take all the residual flood risk by failing 
before the urban levee 2. Assuming only overtopping failure, the higher urban levee 2 height ܪଶ 
only has to be one additional height increment higher than the lower rural levee 1 height ܪଵ. So 
the best levee system design is the rural levee 1 at its individual optimal height as if designed as 
in a single levee design case, ܪଵ

∗ ൌ  and the urban levee 2 slightly higher to resist all flood ,ݐ4.3݂
risk, ܪଶ

∗ ൌ ଵܪ
∗   Compensation for the transferred .(is the design levee height increment ܪ∆) ܪ∆

flood risk should be greater than ܶܥଵ
∗ሺܪଵ

∗ሻ െ ଵܥܥܣ
∗ሺܪଵ

∗   ሻ, to guarantee that ruralܪ∆2
floodplain 1 keeps its levee height at ܪଵ

∗ and will not increase its levee higher than ܪଶ
∗. The 

benefit that urban floodplain 2 gains from transferring the entire flood risk to rural floodplain 1 is 
ଶܥܶ

 െ ଵܥܥܣ
∗ሺܪଵ

∗  ଶܥܶ ሻ, whereܪ∆2
 is the equilibrium annual expected total cost of urban 

floodplain 2 under the competitive non-cooperative levee system design. So this benefit would 
be the upper limit of compensation that the urban floodplain 2 is willing to offer. ܶܥଶ

 varies 
with different institutional arrangements, as discussed below.	

3.5 Single-shot Non-cooperative Game: Nash Equilibrium 

Non-cooperative game theory deals with non-cooperative games in which players compete 
and make decisions independently (Nash 1951). In such non-cooperative games, Nash 
equilibrium is an outcome where no single player has an incentive to deviate unilaterally from 
the chosen strategy with consideration of the other players’ choices. A game may have multiple 
Nash equilibria or none at all. The Nash Equilibrium discussed in this study refers to only pure 
strategy. Future studies can analyze mixed strategies Nah Equilibrium that exist in any finite 
game (Nash 1950). Nash equilibrium is self-enforcing, so it is rational, but may not be 
economically optimal (Neumann and Morgenstern 1947). Non-cooperative game theory can help 
predict how levee designs where independently floodplain follows its own economic interests. In 
a typical non-cooperative game, decision makers (players or floodplain owners) would try to 
outsmart one another by anticipating each other’s decision with their own goals. Each floodplain 
optimizes its own objective knowing that the other floodplain’s decision affects its objective 
value, and knowing that its decision affects the other’s payoff and decision as well.  

Levee system design is highly unusual approximated by such a single-shot non-cooperative 
game, as the entire design process is unlikely to be done in a negligible time period. Negotiations 
back and forth should be allowed. The complete levee design always includes lots discussions 
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and evaluations, followed by construction and maintenance. One seemingly single-shot non-
cooperative levee system design game would be taking immediate response protection actions 
during an emergency flood event (Lund 2012). In a short time, two riverbanks have to determine 
and implement their flood fighting actions, for example sandbagging or ring levee construction, 
which can be considered as “levee design”. Without collaboration, an independent player would 
take its best flood fighting action regardless of the other’s decision. 

3.5.1 Identical Floodplain Conditions on Opposite Riverbanks 

If, for example, each floodplain only has 2 discrete design choices of levee height (1ft, 6ft), 
we could have the following normal payoff matrix (Table 3.1). For each pair of design decisions 
from two floodplains, the number on the left in each cell in the matrix represents the payoff of 
row player (rural floodplain 1), and the number on the right represents the payoff of column 
player (rural floodplain 2). The colored numbers are one player’s preferable or dominant levee 
height decisions given the other player’s levee height choice (yellow color for floodplain 1 on 
the row and red color for floodplain 2 on the column). The bold colored numbers in one cell 
(right bottom) represent a Nash equilibrium, if exists. Such representation is the same for all the 
following normal payoff matrixes. 

Table 3.1 Payoffs for two floodplains with 1ft and 6ft design choices 

  Height of Rural Levee2 (ft) 

  1 6 

Height of Rural 
Levee1 (ft) 

1 0.89 0.89 1.72 0.56 

6 0.56 1.72 0.60 0.60 

 
In this case, the best levee height for levee 1 given 1ft high levee 2 is 6ft, and given 6ft high 

levee 2 is 6ft. Meanwhile, the best levee height for levee 2 given 1ft high levee 1 is 6ft, and 
given 6ft high levee 1 is 6ft. Clearly, the dominant design levee height for floodplain 1 or 
floodplain 2 is 6ft, with one Nash equilibrium (in bold) that both levees are 6ft high. A social 
planner’s economically levee system design for this case has also both levees at 6ft high, leading 
to an overall minimum annual expected cost for the whole levee system. 

To illustrate this example more comprehensively, each floodplain is provided 10 design 
choices of levee height from 1ft to 10ft with 1ft increment. Table 3.2 is a normal payoff matrix 
representing the payoffs of two identical floodplains with all possible 10 design choices. 
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Table 3.2 Payoffs for two floodplains with 10 design choices 

  Height of Rural Levee2 (ft) 

  1 2 3 4 5 6 7 8 9 10 

Height 
of 

Rural 
Levee1 

(ft) 

1 0.89 0.89 1.72 0.15 1.72 0.23 1.72 0.33 1.72 0.44 1.72 0.56 1.72 0.69 1.72 0.83 1.72 0.98 1.72 1.14

2 0.15 1.72 0.55 0.55 0.95 0.23 0.95 0.33 0.95 0.44 0.95 0.56 0.95 0.69 0.95 0.83 0.95 0.98 0.95 1.14

3 0.23 1.72 0.23 0.95 0.43 0.43 0.63 0.33 0.63 0.44 0.63 0.56 0.63 0.69 0.63 0.83 0.63 0.98 0.63 1.14

4 0.33 1.72 0.33 0.95 0.33 0.63 0.44 0.44 0.54 0.44 0.54 0.56 0.54 0.69 0.54 0.83 0.54 0.98 0.54 1.14

5 0.44 1.72 0.44 0.95 0.44 0.63 0.44 0.54 0.50 0.50 0.56 0.56 0.56 0.69 0.56 0.83 0.56 0.98 0.56 1.14

6 0.56 1.72 0.56 0.95 0.56 0.63 0.56 0.54 0.56 0.56 0.60 0.60 0.64 0.69 0.64 0.83 0.64 0.98 0.64 1.14

7 0.69 1.72 0.69 0.95 0.69 0.63 0.69 0.54 0.69 0.56 0.69 0.64 0.72 0.72 0.75 0.83 0.75 0.98 0.75 1.14

8 0.83 1.72 0.83 0.95 0.83 0.63 0.83 0.54 0.83 0.56 0.83 0.64 0.83 0.75 0.85 0.85 0.88 0.98 0.88 1.14

9 0.98 1.72 0.98 0.95 0.98 0.63 0.98 0.54 0.98 0.56 0.98 0.64 0.98 0.75 0.98 0.88 1.00 1.00 1.02 1.14

10 1.14 1.72 1.14 0.95 1.14 0.63 1.14 0.54 1.14 0.56 1.14 0.64 1.14 0.75 1.14 0.88 1.14 1.02 1.16 1.16

 
Similarly, each floodplain has a best levee height choice corresponding to another 

floodplain’s levee height choice. In this case, each floodplain has 10 levee height choices, there 
are two Nash equilibriums (in bold): 1) both levees at 4ft high; and 2) both levees at 5ft high. A 
social planner’s least-cost levee system design for this case is both levees at 4ft high. So the 
second Nash equilibrium is not Pareto optimal. 

One player’s best response given other players’ strategies is the strategy that produces its 
most favorable payoff, which is central to Nash equilibrium as it is the point that all players at 
their best responses (Fudenberg and Tirole 1991; Gibbons 1992). Given a series of the other 
player’s strategies, one player’s best responses can be represented with a best response curve, 
and vise versa. We draw best response curves of each player’s best choices shown in Table 3.2 
with ∆ܪ ൌ  increment in levee height discretization (Figure 3.4(a)), and with a smaller ݐ݂	1
ܪ∆ ൌ  levee height increment (Figure 3.4(b)). Best responses in Figure 3.4(b) are plotted ݐ݂	0.1
only for those within the more varying range of levee height between 4ft to 6.5ft.  

Since the two floodplains are identical, their best responses to the other’s choice are 
identical as well, following the same curve. The red dots in Figure 3.4 are levee 1’s best 
responses, and the green dots are levee 2’s best responses, given the other’s levee height. Each 
point in Figure 3.4 represents one best response of one player that together can constitute one 
player’s best response curve. For example in Figure 3.4(a), given a 1ft high levee 1, floodplain 2 
has a best response of a 2ft high levee 2. Such representations are the same for the best responses 
curves below. In Figure 3.4(b) for levee 1 or levee 2, when the other player’s choice exceeds 
some levee height, one’s best responses become constant at its individual optimal levee height. 
Nash equilibrium does not exist when ∆ܪ ൌ  And there would be no Nash .(Figure 3.4(b)) ݐ݂	0.1
equilibrium with even smaller levee height increment than ∆ܪ ൌ  since the best responses ݐ݂	0.1
will be across over but not overlap. 
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Figure 3.4 Best levee height responses of each floodplain with different design levee height 
increments, for identical floodplains 

The trend of best response curves depends primarily on levee height and the resulting 
annualized construction cost. At a relatively low levee height where annualized construction cost 
is less than ܶܥ∗, each player would always choose to build a levee higher than the other’s to 
transfer all the flood risk to the other floodplain. According to previous assumptions, one 
floodplain would take all the residual flood risk as long as its levee is shorter than the other’s. So 
given a design levee height increment ∆ܪ, for example ∆ܪ ൌ  one floodplain’s dominant ,ݐ݂	0.1
strategy is to have a levee ∆ܪ higher than the other’s.  

For each floodplain, there is an upper limit of its best levee height ܪ as design levee height 
increases (Figure 3.3). This individual critical levee height is the highest levee that one 
floodplain would choose to build. It is where the corresponding annualized construction cost 
(which only includes annualized construction cost by transferring all the flood risk to the other 
floodplain) becomes higher than a floodplain’s individual optimal annual expected total cost. So 
it satisfies the condition that ܥܥܣሺܪሻ  ሻ∗ܪሺ∗ܥܶ ൏ ܪሺܥܥܣ  ܪ ሻ, withܪ∆   The .∗ܪ
individual optimal levee height ܪ∗ becomes one floodplain’s best response if it would otherwise 
have to pass the critical levee height. In this case with ∆ܪ ൌ  levee height increment, the ݐ݂	0.1
individual critical levee height ܪ ൌ ∗ܪ and individual optimal levee height ݐ5.7݂ ൌ  are ݐ4.3݂
the same for the two floodplains. 

3.5.2 Different Floodplain Conditions on Opposite Riverbanks 

Table 3.3 is a normal payoff matrix for each floodplain having 2 discrete design choices of 
levee height (1ft, 6ft) for the case that floodplain conditions are different on opposite riverbanks. 
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Table 3.3 Payoffs for two floodplains with 1ft and 6ft design choices 

  Height of Urban Levee2 (ft) 

  1 6 

Height of Rural 
Levee1 (ft) 

1 0.89 2.13 1.72 0.56 

6 0.56 4.20 0.60 0.66 

 
The dominant strategies and Nash equilibrium (in bold) shown in Table 3.3 are similar to 

those in Table 3.1. In this case, the best levee height for rural floodplain given 1ft high urban 
levee 2 is 6ft, and given 6ft high urban levee 2 is 6ft. Meanwhile, the best levee height for urban 
floodplain given 1ft high rural levee 1 is 6ft, and given 6ft high rural levee 1 is 6ft. And the 
dominant design levee height for rural floodplain or urban floodplain is 6ft, which results in a 
Nash equilibrium and also a social planner’s economically optimal levee system design. 

Similar to Table 3.2, we have the following Table 3.4 showing the payoffs of two 
floodplains if each has 10 design choices of levee height from 1ft to 10ft with 1ft increment. 

Table 3.4 Payoffs for two floodplains with 10 design choices 

  Height of Urban Levee2 (ft) 

  1 2 3 4 5 6 7 8 9 10 

Heigh
t of 

Rural 
Levee
1 (ft) 

1 0.89 2.13 1.72 0.15 1.72 0.23 1.72 0.33 1.72 0.44 1.72 0.56 1.72 0.69 1.72 0.83 1.72 0.98 1.72 1.14

2 0.15 4.20 0.55 1.15 0.95 0.23 0.95 0.33 0.95 0.44 0.95 0.56 0.95 0.69 0.95 0.83 0.95 0.98 0.95 1.14

3 0.23 4.20 0.23 2.15 0.43 0.73 0.63 0.33 0.63 0.44 0.63 0.56 0.63 0.69 0.63 0.83 0.63 0.98 0.63 1.14

4 0.33 4.20 0.33 2.15 0.33 1.24 0.44 0.60 0.54 0.44 0.54 0.56 0.54 0.69 0.54 0.83 0.54 0.98 0.54 1.14

5 0.44 4.20 0.44 2.15 0.44 1.24 0.44 0.86 0.50 0.59 0.56 0.56 0.56 0.69 0.56 0.83 0.56 0.98 0.56 1.14

6 0.56 4.20 0.56 2.15 0.56 1.24 0.56 0.86 0.56 0.75 0.60 0.66 0.64 0.69 0.64 0.83 0.64 0.98 0.64 1.14

7 0.69 4.20 0.69 2.15 0.69 1.24 0.69 0.86 0.69 0.75 0.69 0.76 0.72 0.76 0.75 0.83 0.75 0.98 0.75 1.14

8 0.83 4.20 0.83 2.15 0.83 1.24 0.83 0.86 0.83 0.75 0.83 0.76 0.83 0.83 0.85 0.89 0.88 0.98 0.88 1.14

9 0.98 4.20 0.98 2.15 0.98 1.24 0.98 0.86 0.98 0.75 0.98 0.76 0.98 0.83 0.98 0.95 1.00 1.03 1.02 1.14

10 1.14 4.20 1.14 2.15 1.14 1.24 1.14 0.86 1.14 0.75 1.14 0.76 1.14 0.83 1.14 0.95 1.14 1.08 1.16 1.19

 
Similarly, each floodplain would have a best design levee height for any anticipation of 

another floodplain’s levee height. Unfortunately, this case has no Nash Equilibrium. A social 
planner’s economically optimal levee system design is a 3ft high rural levee 1 and a 4ft high 
urban levee 2, where all residual flood risk is transferred to the lower rural levee 1. 

Figure 3.5(a) shows the best responses curves of each player with 1ft levee height 
increment. And Figure 3.5(b) is the best response curves with 0.1ft levee height increment within 
the more changing range of levee height between 4ft to 7.5ft. No Nash equilibrium exists with 
neither 1ft nor 0.1ft design levee height increment. And no Nash equilibrium exists with even 
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smaller levee height increment as there would be no overlap between two floodplains’ best 
responses. 

 

 

Figure 3.5 Best levee heights of each floodplain with different design levee height 
increments, for different floodplains 

Since the two floodplains are different, their best response curves follow the same trend that 
both increase first and then reduce back to one’s individual optimal levee height, but differ in the 
value of individual optimal levee height ܪ∗ and the critical levee height ܪ.  

The trend of the best response curves is clear. Each floodplain’s dominant strategy is to 
have a levee ∆ܪ higher than the other’s at low levee heights when annualized construction cost 
is less than ܶܥ∗, until reaching the upper limit of its best levee height ܪ. In this case, rural 
floodplain 1 has smaller ܪଵ

∗ and ܪଵ
. For a ∆ܪ ൌ ଵܪ ,levee height increment ݐ݂	0.1

∗ ൌ  and ݐ4.3݂
ଵܪ
 ൌ ଶܪ for rural floodplain 1, and ݐ5.7݂

∗ ൌ ଶܪ and ݐ5.4݂
 ൌ  for urban floodplain 2. If ݐ7.3݂

floodplain 1 needs to build a levee higher than ܪଵ
 to avoid the flood risk, its best strategy is to 

reduce its best levee height back to ܪଵ
∗. Under this condition, the individual minimum annual 

expected total cost of rural floodplain 1 ܶܥଵ
∗ሺܪଵ

∗ሻ including both annualized construction cost 
and expected annual damage cost is cost-effective, compared to the higher annual expected total 
cost with only annualized construction cost of building a higher levee ܥܥܣଵሺܪଵ

   .ሻܪ∆

In conclusion, the results from the single-shot non-cooperative Nash equilibrium game are 
not likely to be applied to practical use. Given a list of design choices and the associated payoffs 
of all possible choice combination, the dominant decisions of each floodplain may lead to Nash 
equilibrium, or may not, for example when the design levee height is around a practical value of 
 Even if a Nash equilibrium exists, it may differ from an overall economically optimum .ݐ݂	0.1
levee system design from a social planner’s perspective. So a rational player's best choice under 
this game type with a ∆ܪ ൌ  levee height increment would be to randomly choose a design ݐ݂	0.1
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levee height. Mixed strategies Nash equilibrium can help solving such randomness. But such a 
single-shot institutional situation for levee design would be highly unusual. 

3.6 Successive Repeated Non-cooperative Game: Reversible Decision Making Mode 

A repeated game in game theory includes multiple shots that a player can make moves 
(design decisions) at each shot step. The single shot game discussed above is non-repeated game 
(Osborne 1994). A repeated game involves the idea that a player has to account for the impacts 
from other players’ current and future actions. It is typically categorized into finitely and 
infinitely repeated games, depending on the number of times game repeated. An infinitely 
repeated game may keep growing as long as the possible strategies are infinite, or it could 
eventually follow a cycle or converge at some point (Fudenberg and Tirole 1991; Osborne 1994). 
Here the levee system design is examined as an infinitely repeated game, but we manually limit 
the number of steps game played when cycle or convergence is observed. 

Levees have been served for flood control in California since the construction of the first 
levees in 1851, and there are inefficient competitive levee constructions in the early era (Hanak 
2010). From 1867 to 1880, adjacent districts along the Sacramento River race each other to 
construct levees on each river bank (Russo 2010). In 1868, landowners along the Sacramento 
River and its tributaries were authorized to collaborate on flood control projects. Unfortunately, 
since channeled floodwater would overflow or breach shorter and weaker levees rather than 
taller and stronger levees, flood-prone landowners responded (in kind) to escalating their levees 
that essentially forced the floodwater onto their neighbors. The resulting continuous escalation of 
levees in the Sacramento Valley later became ineffective and economically inefficient, which 
may cause deliberate non-natural disasters during a flood that some landowners would demolish 
a neighbor’s levees instead of raising the height of their own levees (Kelley 1989). 

In a repeated levee system design game that each floodplain can make levee construction 
decisions more than once, non-cooperative floodplains can change their best levee design 
strategies in response to the other in subsequent periods. This multi-shot levee system design 
game can involve reversible decisions, which is discussed in this section, or (more likely) 
irreversible decisions discussed in the next section (Smale 1980). We let each floodplain 
deciding their design levee heights initially from a lowest level. In a reversible game, each 
floodplain can choose all possible levee heights, even decrease heights back to its former choice, 
as its best design strategy at each step. However, in an irreversible game, each floodplain cannot 
decide to decrease its levee height, but can only increase its levee height by ∆ܪ or make no 
change. Reinforcement-Learning (RL) (Sutten and Barto 2000) could be used to address this 
challenge and derive the best response strategies of non-cooperating players. 

Assuming recurring levee system design decisions: before a final decision on design levee 
height, both floodplains can bargain over multiple times, until they reach converged heights or 
the allowed bargaining time ends. At each bargain step, one or both players would state its best 
design levee height at that time. Such successive multi-shot game can be either a leader-follower 
game or a simultaneous game. In a leader-follower game, one player as a leader starts the game 
and makes its best design decision at step 1. The other player as a follower makes its decision 
according to the leader’s decision at step 2, and this player in turn becomes the leader for step 3. 
Then in each of the following steps, the follower chooses its best decision according to the 
leader’s best decision from the previous step, and the follower at current step becomes the leader 
for next step. Whereas, in a simultaneous game, two players both make their best decisions at 
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current step according to each other’s best decisions from previous step. Obviously, who starts 
the game and the initial design decisions may affect the final results.  

According to the trend of the best response curves from previous section 3.5, at the 
beginning when annualized construction cost is less than ܶܥ∗, each player would always choose 
to build a higher levee transferring all the flood risk to the other floodplain. So during the 
beginning steps, one player would increase its best levee height (best response strategy) to be ∆ܪ 
higher than the other player’s. As players increase their best levee heights one by one in response 
the other in each step, the best annualized construction cost of one floodplain (the leading one, 
depending on who starts the game) is approaching its minimum annual expected total cost ܶܥ∗. 
When a floodplain has to build a levee higher than the upper limit of its best levee height ܪ to 
avoid the flood risk, its best strategy is reducing its best levee height back to ܪ∗. The upper limit 
of best levee height ܪ has the same value as in the single-shot game for any conditions. 

3.6.1 Identical Floodplain Conditions on Opposite Riverbanks 

The levee system design game is analyzed in a leader-follower mode first, and then in a 
simultaneous mode, in this section and the following different cases.  

Since the two players are identical in this case, which player starts the leader-follower game 
first would not affect the final results. For illustration, plots in Figure 3.6(a) and (b) are the 
results of the levee system design problem letting rural floodplain 1 starts the game in response 
to the initial 0݂ݐ high levee on the other rural floodplain 2. Levee height increment is ∆ܪ ൌ
 Two floodplains are playing the game for totally 100 steps, and each is playing 50 steps .ݐ0.1݂
since one plays every two steps. Figure 3.6(a) shows one floodplain’s best levee height choice at 
current step given the other floodplain’s best levee height at previous step. Figure 3.6(b) shows 
the corresponding individual annual expected total cost at each step for the player playing the 
game at that step. Plots in Figure 3.6(c) and (d) are the results of the levee system design 
problem with the two floodplains playing the game simultaneously in response to the initial 0݂ݐ 
levee heights. In a simultaneous decision-making mode, both floodplains are optimizing their 
best levee heights at each step in response to each other’s best choice at previous step. Figure 
3.6(c) and (d) shows two floodplains’ individual best levee heights and the corresponding 
individual best annual expected total costs at current step given the other floodplain’s best choice 
at previous step.  

From Figure 3.6(a) and (b), two floodplains keep increasing their best levee heights by 
ܪ∆ ൌ  higher than the other at each consecutive step. The leading floodplain 1 will stop ݐ0.1݂
increasing and reduce its best levee height to ܪଵ

∗ ൌ  when levee 1 will have to be greater ݐ4.3݂
than ܪ ൌ  to avoid the entire potential flood damage, in which case its annualized ݐ5.7݂
construction cost ܥܥܣሺܪ   ሻ would be greater than its individual overall optimal total costܪ∆
 ሻ including expected annual damage cost. Clearly, the best levee height choices of two∗ܪሺ∗ܥܶ
floodplains do not converge, and there’s no equilibrium in this reversible leader-follower 
successive repeated levee system design problem. Non-convergence of the best levee heights is 
because of the discontinuous individual payoff functions (individual annual expected total cost).  

Similarly in Figure 3.6 (c) and (d), two floodplains keep increasing their best levee heights 
by ∆ܪ ൌ  higher than the other’s best height at previous step. The two identical floodplains ݐ0.1݂
will stop increasing and reduce their best levee heights to ܪ∗ ൌ  at the same time when any ݐ4.3݂
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levee should be greater than 5.7݂ݐ to avoid the entire flood risk. And two floodplains’ best levee 
heights do not converge.  

 

 

Figure 3.6 Successive repeated levee system design problem in a reversible leader-follower 
and simultaneous decision making mode, for identical floodplains 

Comparing the results from Figure 3.6(a), (b) and Figure 3.6(c), (d), the changing rate of 
individual best levee height is different in the leader-follower and simultaneous games. At each 
step in the leader-follower game, only one floodplain acts. While in the simultaneous game, both 
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floodplains play the game at each step. Besides, one floodplain’s best levee height always 
increases by ∆ܪ ൌ  than the other’s previous best height, if not decreases. So the individual ݐ0.1݂
best levee height of each floodplain is increasing by 2∆ܪ at its two consecutive steps in the 
leader-follower game, while by ∆ܪ at its two consecutive steps in the simultaneous game. Since 
the unstable tie condition is avoided and decision making is more efficient, the resulting best 
levee height increases two times faster when two floodplains acting as leader and follower. This 
is also shown in the later comparison between leader and follower case and simultaneous case 
for different floodplain conditions. Another difference is the resulting individual best levee 
heights of two floodplains at the given step where they have to stop the game, even there’s no 
convergence. Two floodplains’ final individual best levee heights are the same in the 
simultaneous game, while there is a ∆ܪ difference in the leader-follower game. 

We also could draw best response curves for the above results, which are the same for the 
leader-follower game and the simultaneous game. Figure 3.7(a) shows the best responses of each 
floodplain within the possible choices region, from the initial 0݂ݐ to the upper limit of the best 
levee height ܪ ൌ  To show the dynamic of the best responses, Figure 3.7(b) shows the .ݐ5.7݂
trends of the best response curves that each individual floodplain’s best design levee heights are 
clearly trapped following a cycle (best responses for levee heights from 3݂ݐ to 5.7݂ݐ). The non-
convergence and lack of equilibrium in this reversible successive repeated levee system design 
problem are seen in Figure 3.7(b). This case of best responses eventually following a cycle is 
similar to the typical rock-paper-scissors game, but with more strategies (Fisher 2008). 

 

Figure 3.7 Best response curves in the successive repeated levee system design problem in a 
reversible decision making mode, for identical floodplains 

3.6.2 Different Floodplain Conditions on Opposite Riverbanks 

When floodplain conditions are different on opposite riverbanks, which player starts first 
may affect the final results. So the 100-step game is played twice, letting each floodplain starts 

(a) Best Response Curves within feasible region (b) Best Response Curves trends 

0 

1 

2 

3 

4 

5 

6 

7 

0 1 2 3 4 5 6 7 

R
u

ra
l 

L
e

ve
e2

 H
ei

g
h

t 
(f

t)
 

Rural Levee1 Height (ft) 

Rural Levee1 BR 

Rural Levee2 BR 

3 

3.5 

4 

4.5 

5 

5.5 

6 

3 3.5 4 4.5 5 5.5 6 

R
u

ra
l 

L
e

ve
e2

 H
ei

g
h

t 
(f

t)
 

Rural Levee1 Height (ft) 

Rural Levee1 BR 

Rural Levee2 BR 

Levee 1 Best Responses 

Levee 2 Best Responses 

(b) 

Levee 1 Best Responses 

Levee 2 Best Responses 



	

	 75

once. Increment of levee height is ∆ܪ ൌ  Figure 3.8(a) and (b) shows the individual best .ݐ0.1݂
levee heights and the corresponding best annual expected total costs respectively, for the levee 
system design problem letting rural floodplain 1 starts the game in response to the initial 0݂ݐ 
high urban levee. Results of letting urban floodplain 2 starts the game in response to the initial 
 high rural levee are similar, so are not included here. Figure 3.8(c) and (d) shows similar ݐ0݂
results as Figure 3.8(a) and (b) for a reversible simultaneous successive 100-step levee system 
design problem with the two different floodplains playing the game simultaneously in response 
to initial 0݂ݐ levee heights.  
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Figure 3.8 Successive repeated levee system design problem in a reversible leader-follower 
and simultaneous decision making mode, for different floodplains 

Results shown in Figure 3.8 are similar to those in Figure 3.6. The two floodplains keep 
increasing their best levee heights by ∆ܪ ൌ  .higher than the other’s height at previous step ݐ0.1݂
Floodplain 1 in the less damageable rural area will stop increasing and reduce its best levee 
height to ܪଵ

∗ ൌ ଵܪ when levee 1 should be greater than ݐ4.3݂
 ൌ  to avoid the entire ݐ5.7݂

potential flood damage. The levee heights do not convergence and no equilibrium exists in this 
reversible leader-follower successive multi-shot levee system design game. 

An interesting result in this multi-shot game is that after the first jumping down from the 
peaks, levee 1 is always ∆ܪ higher than levee 2 at each step, except for when levee 1 is at its 
bottom best height of ܪଵ

∗ ൌ  This is because that starting from the bottom where floodplain .ݐ4.3݂
1 choses ܪଵ

∗ ൌ ଵܪ and floodplain 2 chooses ݐ4.3݂
∗   best responses to each other’s previous ,ܪ∆

best height would lead to floodplain 1 being ∆ܪ higher than floodplain 2 in the following steps 
till the peak. 

The best response curves for the above results are plotted in Figure 3.9, (a) for the leader-
follower game and (b) for the simultaneous game. Similar to the best response curves trends in 
Figure 3.7, each individual floodplain’s best design levee heights are trapped following a cycle, 
but different floodplains follow different cycles in theory. Since two floodplains make decisions 
in response to each other, Figure 3.9(b) shows the real best responses curves that rural floodplain 
1 follows a cycle and urban floodplain 2 follows a line back and forth as following floodplain 1’s 
cycle by one step behind. There is still non-convergence and no equilibrium in this reversible 
successive multi-shot levee system design problem. 

 

Figure 3.9 Best response curves in the successive repeated levee system design problem in a 
reversible decision making mode, for different floodplains 

(a) Possible Best Response Curves trends  
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(b) Actual Best Response Curves trends  
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Overall, no convergence and no equilibrium exist in this reversible successive multi-shot 
levee system design problem for identical or different levee conditions. The best strategy for 
each floodplain is to randomly pick a levee height within the cycle region.	

3.7 Successive Repeated Non-cooperative Game: Irreversible Decision Making Mode 

The irreversible repeated non-cooperative game are observed and examined in many areas, 
such as policies, environment and fishing (Carraro and Siniscalco 1993; David 1994; Sumaila 
1999). In the irreversible successive multi-shot levee system design game, each floodplain can 
only choose their levee height from the current or higher levee heights at each step. This is a 
more typical situation for most levee system problems. For flood control purposes, levees are 
rarely lowered. 

3.7.1 Identical Floodplain Conditions on Opposite Riverbanks 

In this irreversible successive multi-shot game, two floodplains can still behave in a leader-
follower mode or a simultaneous mode. At each successive step, one floodplain (leader-follower 
mode) or two floodplains (simultaneous mode) are optimizing their best levee heights one by one 
in response to the other player’s best choice from previous step. Floodplain conditions on 
opposite riverbanks are identical, so who starts the game does not affect the results. Below are 
the results for leader-follower case and simultaneous case respectively.  

Figure 3.10 shows the results of the irreversible successive multi-shot levee system design 
game, letting one floodplain (e.g. rural floodplain 1) start the game in response to the initial 0݂ݐ 
high levee on the other floodplain (rural floodplain 2). Levee height increment is ∆ܪ ൌ  The .ݐ1݂
game lasts for 25 steps where convergence of the best levee heights has been clearly recognized. 
And the levee heights of the two identical floodplains on opposite riverbanks converge at the 
same level. Differing from the reversible successive multi-shot game where results do not 
converge, the levee heights of two players converge with irreversible levee decisions. This 
difference is primarily because that a player cannot go back to its previous decision in this case. 
With a relatively large levee height increment (∆ܪ ൌ  convergence occurs only after a few ,(ݐ1݂
steps. 
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Figure 3.10 Successive repeated levee system design problem in an irreversible leader-
follower decision making mode with 1ft levee height increment, for identical floodplains 

Figure 3.11 shows the results of the two floodplains selecting their levee heights 
simultaneously in response to the initial 0݂ݐ high levee on the other floodplain. Levee height 
increments in Figure 3.11 (a) are ∆ܪ ൌ  and the successive game lasts for 25 steps. With a ݐ1݂
levee height increment of ∆ܪ ൌ  Figure 3.11 (b) shows a 150-steps irreversible game. In ,ݐ0.1݂
both Figure 3.11(a) and (b), the best levee heights of two floodplains converge at the same level 
under identical floodplain conditions. However, comparing Figure 3.11(a) and (b), the converged 
heights differ for different height increment ∆ܪ. 
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Figure 3.11 Successive repeated levee system design problem in an irreversible 
simultaneous decision making mode, for identical floodplains 

For one floodplain in the irreversible mode with non-decreasing levee heights, where best 
levee heights converge depends on the trade-off between additional increased annualized 
construction cost and extra expected annual damage cost with an additional levee height 
increment ∆ܪ.  

At time step ݐ when each floodplain makes its ݐ move, two floodplains have their individual 
best levee heights ܪଵ,௧ and ܪଶ,௧ (the same according to previous results) that could transfer all 
flood risk to the other floodplain from their own perspectives considering the other’s previous 
best levee height. So their best annual expected total costs only includes annualized construction 
costs, for example for floodplain 1: 

,ଵ,௧ܪଵ,௧൫ܥܶ ଶ,௧ିଵ൯ܪ ൌ 																																																																											ଵ,௧൯ܪଵ,௧൫ܥܥܣ 																 
(3.10) 

At time step ݐ  1, one floodplain’s levee height decision can be the same (e.g. ܪଵ,௧ାଵ ൌ
ଵ,௧ାଵܪ .e.g) ݐ than the other at previous time step ܪ∆ ଵ,௧) or increase by oneܪ ൌ ଶ,௧ܪ   For .(ܪ∆
example for floodplain 1, if ܪଵ,௧ାଵ ൌ  ଵ,௧, it would take all flood risk since floodplain 2 is likelyܪ
to increase its levee height. Even both floodplains do not change their levee heights, they have to 
equally share the flood risk. If ܪଵ,௧ାଵ ൌ ଶ,௧ܪ  ܪ∆ ൌ ଵ,௧ܪ   ,ܪ∆ could increase by multiple) ܪ∆
but not how it works in this study), floodplain 1 can transfer all the flood risk to floodplain 2 
with a slightly higher annualized construction cost. So floodplain 1 could have an annual 
expected total cost at time step ݐ  1 as in Eqn. 3.11 and 3.12, and it will choose the less costly 
levee height between ܪଵ,௧ and ܪଵ,௧   .ܪ∆

,ଵ,௧ାଵܪଵ,௧ାଵ൫ܥܶ ଶ,௧൯ܪ ൌ ଵ,௧ାଵ൯ܪଵ,௧ାଵ൫ܥܥܣ  ,ଵ,௧ାଵܪଵ,௧ାଵ൫ܦܣܧ 																				ଶ,௧൯ܪ 																 
(3.11) 

,ଵ,௧ାଵܪଵ,௧ାଵ൫ܦܣܧ ଶ,௧൯ܪ ൌ ቊ
ଵܦ ቂ1 െ ொܨ ቀܳ൫ܪଵ,௧൯ቁቃ,														ܪଵ,௧ାଵ ൌ ଵ,௧ܪ
ଵ,௧ାଵܪ																																												,0 ൌ ଵ,௧ܪ  ܪ∆

					 																 

(3.12) 

If ܪଵ,௧ is the converged levee height of floodplain 1, ܪଵ,௧ାଵ ൌ  ଵ,௧ will cost less thanܪ
ଵ,௧ାଵܪ ൌ ଵ,௧ܪ   ଵ,௧ in all theܪ that floodplain will keep its individual best levee height at ܪ∆
following steps. In another word, once the extra increased annualized construction cost 
ଵ,௧ܪଵ൫ܥܥܣ)  ൯ܪ∆ െ  ଵ,௧൯) exceeds the extra additional expected annual damage costܪଵ൫ܥܥܣ
 with additional levee height increment, a player will stop increasing its design (ଵ,௧൯ܪଵ൫ܦܣܧ)
levee height. So the convergence condition for ܪଵ,௧ is that: 

ଵ,௧൯ܪଵ൫ܦܣܧ  ଵ,௧ܪଵ൫ܥܥܣ  ൯ܪ∆ െ 																																																																ଵ,௧൯ܪଵ൫ܥܥܣ 			 
(3.13) 

where ܥܥܣଵ൫ܪଵ,௧  ൯ܪ∆ െ ଵ,௧൯ܪଵ൫ܥܥܣ ൌ ቄݏ ቂܮ ∗ ܿܤ ∗ ܪ∆  

ଶ
ቀ ଵ

௧ఈ
 ଵ

௧ఉ
ቁ ∗ ൫∆ܪଶ  ଵ,௧ܪ2 ∗

൯ቃܪ∆ ܿ  ଵܥܷ ∗ ܮ ቀ
ଵ

௧ఈ
 ଵ

௧ఉ
ቁ∆ܪቅ ∗ ቂ∗

ሺଵାሻ

ሺଵାሻିଵ
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Decreasing ∆ܪ will decrease ܥܥܣଵ൫ܪଵ,௧  ൯ܪ∆ െ  ଵ,௧൯ decreasesܪଵ൫ܦܣܧ ଵ,௧൯, whileܪଵ൫ܥܥܣ
as ܪଵ,௧ increases, although there is a slight counteraction from ܪଵ,௧ on annualized construction 
cost (Figure 3.3). So a smaller ∆ܪ will lead to slightly larger converged best levee heights. This 
could be shown mathematically by substituting the formula of ܦܣܧ and ܥܥܣ from Eqn. 3.5 and 
3.6 to Eqn. 3.13. Theoretically without any limitations on levee construction, if the levee height 
increment ∆ܪ is infinitely small, the converged best levee heights will be infinitely large. But 
such situation is most unlikely in reality due to the design standards for levee height increments 
and financial budget limit for possible costs, and most importantly the upper limit of standard 
design levee height.	

3.7.2 Different Floodplain Conditions on Opposite Riverbanks 

With different floodplain conditions on opposite riverbanks, which floodplain starts the 
leader-follower game may affect the results. However, in this irreversible successive levee 
system design game, the results are similar for regardless floodplain starts. For illustration, 
Figure 3.12 shows the results of letting rural floodplain 1 start first in response to the initial 0݂ݐ 
high levee on urban floodplain 2. Design levee height increment is ∆ܪ ൌ  and the game is ݐ1݂
lasting for 25 steps. Similar to the results in Figure 3.10 for identical floodplain conditions, best 
levee heights of two players converge after a few number of steps. The difference between the 
two converged best levee heights is one levee height increment (∆ܪ ൌ  .in this case (ݐ1݂

 

Figure 3.12 Successive repeated levee system design problem in an irreversible leader-
follower decision making mode with 1ft levee height increment, for different floodplains 

Similar to Figure 3.11, Figure 3.13 shows the results of the irreversible levee system design 
problem with the two floodplains playing the game simultaneously in response to the initial 0݂ݐ 
levee heights. Levee height increment in Figure 3.12 (a) is ∆ܪ ൌ  with the game lasting for ݐ1݂
25 steps, and in Figure 3.13 (b) is ∆ܪ ൌ  with the game lasting for 150 steps. Individual ݐ0.1݂
best levee height converges after a number of steps for each floodplain, while converged heights 
differ for two different floodplains in this case. For either 1ft levee height increment in Figure 
3.13(a) or 0.1ft levee height increment in Figure 3.13(b), the difference between the two 
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converged best levee heights is one levee height increment ∆ܪ. The impacts on best levee height 
convergence from levee height increments are similar to those in Figure 3.11. 

 

Figure 3.13 Successive repeated levee system design problem in an irreversible 
simultaneous decision making mode, for different floodplains 

The problem that the converged best levee heights may be infinitely high still theoretically 
exists for different floodplain conditions. For each individual floodplain, the converged best 
levee height (with 0.1ft or smaller levee height increments) is inferior to the individual optimal 
levee height ܪ∗ that corresponds to a lower annual expected total cost ܶܥ∗. The cost of decision 
making myopia would be the difference between annual expected total costs corresponding to 
the converged best levee height and the individual optimal levee height respectively. Under such 
condition, a non-myopic player may stop increasing its best levee height at a relatively low level 
to take strategic loss in order to avoid further incredibly high cost.	

3.8 Discussions and Conclusions 

For a simple levee system with two levees on opposite riverbanks, game theory is applied to 
analyze decision making with risk-based levee design. The land owners on each river bank 
develop their levee designs using risk-based economic optimization in a game theory context. 
The social planner’s optimal distribution of flood risk and damage cost throughout the system, 
which results in the minimum total flood cost for the system, is the most economic levee system 
design. Employing a cooperative game theory can lead to an economically efficient levee system 
design, similar to a social planner’s optimal solution. However, a Pareto-inefficient levee system 
design is likely to be the outcome that the rational and self-interested land owners on each river 
bank independently optimize their levees with risk-based analysis. So the non-cooperative Nash 
equilibrium cannot guarantee the social optimal solution. Under this condition, compensation for 
the transferred flood risk should be negotiated and guaranteed for achieving the economic 
efficiency for all parties involved, which can be determined by the comparing cooperative and 
non-cooperative games. In addition to the single-shot Nash equilibrium game, by examining the 
successive repeated game in the reversible and irreversible decision making modes, with either 

(a) 1ft levee height increment  (b) 0.1ft levee height increment  
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identical or different floodplain conditions on opposite riverbanks, problems of non-convergence 
and no equilibria are identified and the cost of decision making myopia is calculated to show the 
significance of externalities and evolution of dynamic water resource problems for optimal 
decision making.  

Conclusions of this levee system design study are: (1) a social planner is necessary that can 
guarantee an economically efficient levee system design in all cases; (2) a rational land owner 
may become trapped in a cycle or accepting unreasonable decisions in some cases; (3) random 
choice is the best in some cases; and (4) strategic loss could avoid further incredibly high cost if 
a player is not myopic. 

Furture study on this levee system design problem can analyze how the structure of this 
game evolves over time, and how the resulting equilibriums and the Pareto-optimal outcomes of 
the game change. Similar game theory can be applied to complex levee systems that involve 
multiple players, for example in a ring levee system that each player is in charge of one levee 
section, to predict the different behaviors of each individual player and coalitions. 
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Chapter 4: Optimal Flood Pre-release—flood hedging for a single reservoir   

4.1 Summary 

Flood hedging reservoir operation is when a pre-storm release creates a small flood 
downstream (with certainty) to reduce the likelihood of a larger more damaging flood in the 
future. Such pre-releases before a storm can increase reservoir storage capacity available to 
capture severe flood volumes, but also can increase downstream levee failure risks and reduce 
stored water supply. This paper explores some theoretical conditions needed for flood hedging to 
be optimal, considering the hydrologic uncertainty from flood forecast and engineering 
uncertainty from levee overtopping and internal structural failures. Forecasted storms are 
categorized as small, intermediate or overwhelmingly large, depending on flood risk likelihood 
downstream. Extremely large storms, which overwhelm flood management systems, and small 
storms, which are handled relatively easily, do not encourage flood hedging operations. 
Intermediate storms that are large, but not overwhelming, where additional flood storage 
capacity from pre-releases materially reduces overall flood damage, drives the optimality of 
flood hedging pre-release operations. The ideal theoretical condition for optimal flood hedging is 
that current marginal damages from pre-releases equal future marginal expected damages from 
later storm releases. A necessary condition for flood hedging is that the overall risk from flood 
pre-release decisions are convex. The convexity in overall flood risk works with the probability 
distribution of possible storms to determine the optimality of flood hedging. Water supply losses 
due to pre-releases tend to reduce the use of hedging pre-release for flood management. 

 

4.2 Introduction 

 “Life is uncertain.  Eat dessert first.”  

Ernestine Ulmer, 1892-1987 

Flood protection is a major function of most large reservoirs. Many simulation and 
optimization models have been developed for release decisions to reduce potential flood 
damages (Wurbs 1993; Lund 2002; Labadie 2004). Operating rules based on flood-storage levels 
often are used for reservoir release decisions during flood seasons (Stedinger 1997). For flood 
operation, reservoirs sometimes encounter a situation where water is stored in the reservoir and a 
large oncoming flood is forecast. So the operating agency can release water from the reservoir in 
advance of the storm to make space for a likely major flood. In some cases, it might be 
worthwhile to make a large pre-release, which causes small downstream flood losses (sometimes 
with certainty), but lowers the probability of much larger oncoming flood damages. This 
situation of a trade-off between current and future probable flood damages is similar to water 
supply hedging for current and future water use benefits (Zhao et al. 2014).  

In water supply reservoir operations, hedging involves creating a small water shortage in the 
near term as a way to reduce the probability of large shortages in the future (Draper and Lund 
2004; You and Cai 2008a; Zhao et al. 2011). Water supply hedging deals with the trade-off 
between current and future benefits from water uses for limited water availability. For water 
supply hedging to be optimal, a necessary condition is that a large shortage be disproportionately 
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more costly than a small shortage, and there must be significant persistence or length to dry 
periods (Draper and Lund 2004).  

Hedging rules for water supply have been derived with numerical optimization methods and 
hydroeconomic analysis. Studies on water supply hedging have improved the understanding of 
creating small current water shortages in case of likely future large water shortages, and 
strengthened the practical optimal operation rules by incorporating hydrologic uncertainties and 
real engineering constraints (Draper and Lund 2004; You and Cai 2008a, b; Shiau 2011; Zhao et 
al. 2011). The fundamental rational hedging is when the marginal expected benefit of storing 
water equals that of releasing water (Draper and Lund 2004). You and Cai (2008a, b) 
implemented economic and numerical analyses for hedging rules considering the uncertain 
future inflow. Shiau (2011) analyzed the hedging rules for the beneficial balances between 
current release and carry-over storage. Zhao et al. (2011) interpreted economically the typical 
physical constraints in water supply hedging. 

Zhao et al. (2014) discussed the similarities between flood hedging rules and water supply 
hedging rules, and pointed out some dissimilarities between water supply and flood operation 
problems. The basic principle of flood hedging for a single storm is to equalize the marginal 
expected costs of current and future damage by allocating the expected flood-safety margin 
between expected flood volume and flood-conveyance capacity.  

Former hedging studies (You and Cai 2008a, b; Zhao et al. 2011; Zhao et al. 2014) focused 
on hydrologic uncertainty only. Zhao et al. (2014) assumes that flood risk is only from levee 
overtopping, ignoring the frequently observed levee internal structural failures. Such engineering 
uncertainty from different levee failure modes, should also be incorporated into hedging analysis 
for levee systems in general conditions.  

This study analytically examines flood hedging for one oncoming flood to a single reservoir 
from theoretical perspective. Hydrologic uncertainty is usually represented as an ensemble of 
possible forecasted storms for one future flood event. A simple model is developed to determine 
the optimal flood hedging pre-release by minimizing the expected flood damages from the range 
of forecasted storms over the current and forecast periods. The section proceeds as follows. 
Section 4.3 introduces a basic optimization model for determining the best flood hedging pre-
release. Different failure probability curves and storms in different sizes are briefly discussed. 
Section 4.4 derives the theoretical optimal conditions for this optimization model, including 
Lagrange Multiplier and KKT conditions, theoretical optima for general levee failure probability 
curves, and some apparent implications from the theoretical optima. Section 4.5 shows the 
application of this model by discussing and comparing two illustrative examples for different 
failure probability functions, and demonstrates the theoretical optimal conditions. Section 4.6 
extends the optimization formulation by incorporating additional economic water supply losses 
from spilled pre-releases, and by merging water supply hedging with flood hedging to develop 
blended hedging rules. Section 4.7 concludes this paper. 

4.3 Simple Optimization Formulation 

4.3.1 Model Description 

Consider the case of a simple reservoir with a capacity ݇, protecting a leveed downstream 
town (Figure 4.1). The levee protecting the town could fail by overtopping failure or internal 
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structural (intermediate geotechnical) failure, thus the potential flood damages become a major 
concern to the town. Such potential flood damages depend primarily on the magnitude and 
duration of flood flow. Optimal operation of the upstream reservoir is one way to reduce 
potential downstream flood damages. 

 

Figure 4.1 Schematic for simple flood hedging 

The levee protecting the town has an overtopping flood conveyance capacity ݍ at the top 
of the levee, a base channel capacity ݍ at the toe of the levee (no floodplain in this study), and 
an increasing probability of structural failure between the base channel capacity and the over-
topping capacity. Actual levee failure probabilities are generally not linear between a levee’s safe 
channel capacity and overtopping capacity. For levees in good condition, small increases in flow 
above some safe channel capacity would cause a small likelihood of levee failure, with failure 
rates growing until overtopping or perhaps tapering off near overtopping as a result of flood-
fighting efforts. Comparatively, levees in poor condition could easily fail with even small flows. 
Levees in fair condition would have a failure probability in between good and poor levees. 

Figure 4.2 shows three possible levee failure probability curves between the base channel 
capacity and the overtopping capacity from professional judgment (Wolff 1997; USACE 2011). 
The general conceptual levee failure probability curve for levees in poor condition is concave 
(red dash-dot line A in Figure 4.2) with a decreasing marginal (negative second-order derivative) 
failure probability as flow ܳ increases. For levees in good condition, failure probability is 
convex (green line C in Figure 4.2) with an increasing marginal (positive second-order 
derivative) failure probability as flow ܳ increases. Levees in “fair” condition have a failure 
probability between good levees and poor levees, simply represented here as a linear curve (blue 
dash line B in Figure 4.2). The exact levee failure probability is uncertain since these curves are 
typically based on professional judgment (Perlea and Ketchum 2011). Geotechnical experiments 
and analyses can support more accurate estimation of levee failure probability curves for a given 
levee, but may require much more effort. Here, levee failure occurs only based on the reservoir 
stream release, and is unaffected by peak duration (which can affect saturation of levee 
materials).  

Town 
Reservoir 
Capacity k 

Levee 
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Figure 4.2 Failure probability of town levee with pre-release flow Q 

The pre-release decision involved in flood hedging, ܳ, is made at a forecast time (current 
stage duration) of ݐ before the coming flood, with an initial reservoir storage ܵ and an 
antecedent inflow ܳ. The antecedent inflow could be below or above the base channel capacity. 
At the time of the pre-release decision, an ensemble of ݊ possible storms are forecasted for the 
future stage, each with a probability , a duration ݐ௦, and a flood volume ௦ܸ (Figure 4.3). For 
this initial case, the flood hydrograph is assumed to be a square wave with a duration ݐ௦. 
Following a common reservoir flood operating rule that minimizes the frequency of exceeding 
some downstream channel capacity, the oncoming storm flow is assumed to be first stored in the 
reservoir up to its entire available storage and then be released downstream (Connaughton. et al. 
2014). So the flood flow release of each possible storm ݅ without pre-release is ܳ௦

 ൌ ሾ ௦ܸ െ
	ሺ݇ െ ܵሻሿ/ݐ௦, and the release rate from the reservoir during storm ݅ with pre-release ܳ is ܳ௦ ൌ
ሾ ௦ܸ െ 	ሺ݇ െ ܵ  ܳݐሻሿ/ݐ௦. 

 

Figure 4.3 Antecedent flow and flood flow 
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Theoretically, the optimal flood hedging pre-release ܳ
∗  would provide the same 

incremental reduction to downstream flood risk for current antecedent flow stage and future 
storm stage. Similar to water supply hedging (Draper and Lund 2004), the storm volume 
availability ܣ) ܣ ൌ ܵ  ܫ െ  ) at current antecedent flow stage, is the sum of water currentlyܧ
in the reservoir ܵ plus the antecedent inflow volume ܫ ൌ ܳݐ and minus any expected 
reservoir evaporation or seepage losses ܧ(for this flood application ܧ ൌ 0). In Figure 4.4,  ܸ 
is the downstream base channel capacity, within which storm volume has no risk; and ܸ is the 
downstream overtopping leveed channel capacity, beyond which storm volume causes failure. 
Within the area of feasible releases that may not cause flood damage, there could be many 
possible flood hedging rules based on storm forecasts (Figure 4.4). Hedging pre-release at 
current stage could be large, small or medium, depending on the storm volume forecasted at 
future stage. The model below for optimal flood hedging pre-releases is developed to examine 
general flood hedging rules given storm forecast.   

 

Figure 4.4 Standard minimize flooding frequency policy (thicker line) and possible Flood 
Hedging Rules 

4.3.2 Mathematical Optimization Formulation 

Although flood damage ܦሺܳሻ is generally a non-decreasing function of flow ܳ, we assume 
a constant cost of a catastrophic levee failure downstream ܦሺܳሻ ൌ ܿ, since the flood damage 
function is not the central concern in this study. The flood damage cost from total pre-release 
ሺܳܦ  ܳሻ and from any later storm ݅ release ܦሺܳ௦ሻ are all simplified as a fixed cost ܿ. 

We assume a general continuous non-decreasing levee failure probability function ܨሺܳሻ 
ݍ)  ܳ  , 0ݍ  ሺܳሻܨ  1) between the base channel capacity and the overtopping capacity. 
The failure probability of total pre-release ሺܳ  ܳሻ failing the levee is ܲ	ሺܳሻ ൌ ሺܳܨ  ܳሻ, 

Storm Volume Availability (A = S0+I0-E0) at current antecedent flow stage 
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and the failure probability of storm ݅ release ܳ௦ failing the levee is ܲሺܳ௦ሻ ൌ  ሺܳ௦ሻ. Generallyܨ
as two successive events, a future failure probability would be affected by the current event 
൫ ܲሺܳ௦ሻหܳ൯. Here we assume the levee failure probabilities at two stages are independent. 
Flood risk in this two-stage model comes from current stage pre-release and future stage storm 
release, which are two not-mutually-exclusive independent events (Feller 2008). So for any 
possible storm ݅, the probability it fails the downstream levee is pre-release failure probability 
ܲ	ሺܳሻ plus the pre-release reliability (one minus the failure probability) multiplied by storm 

release failure probability ൫1 െ ܲ	ሺܳሻ൯ ܲሺܳ௦ሻ. Summation of the failure probability over all 
possible storms is the overall failure probability of this flood event covering two stages. 

This leads to the following mathematical optimization formulation, which minimizes the 
expected value of downstream flood damage ܼ summed over the pre-release and storm periods. 

Min ܼ ൌ ܿ ∑ ൣ	 ܲ	ሺܳሻ  ൫1 െ ܲ	ሺܳሻ൯ ܲሺܳ௦ሻ൧

ୀଵ                                                            (4.1.a) 

Or 

Min ܼ ൌ ܿ ܲ	ሺܳሻ  ܿ൫1 െ ܲ	ሺܳሻ൯∑ 	 ܲሺܳ௦ሻ

ୀଵ                                                          (4.1.b) 

Subject to: 

ܵ  ݇ െ ܵ  ܳݐ, ∀	݅ ൌ 1: ݊                                                                                             
(4.2) 

ܳݐ  ܵ                                                                                                                          
(4.3) 

௦ܸ ൌ ܵ  ܳ௦ݐ௦, ∀	݅ ൌ 1: ݊                                                                                                   
(4.4) 

ܳ  0                                                                                                                              
(4.5) 

where,  is the probability of possible storm ݅; ܲ	ሺܳሻ ൌ ሺܳܨ  ܳሻ and ܲሺܳ௦ሻ ൌ  ሺܳ௦ሻܨ
are the failure probability of total pre-release and storm ݅ release; ܵ is the volume of storm ݅ 
stored in the reservoir;	 ௦ܸ  is the volume of storm ݅, assumed to be a square hydrograph; ܳ௦ is the 
release rate from the reservoir during storm ݅; ݐ௦ is the duration of storm ݅’s reservoir inflows; ݇ 
is the reservoir’s total flood storage capacity; ܵ is the reservoir’s initial storage; ܳ is the pre-
release hedging flow rate; ݐ is the flood forecast period in advance of the coming storm; ܳ is 
the antecedent inflow rate; ݍ is the downstream base channel capacity (with no levee failure) 
possibility; ݍ is the downstream over-topping channel capacity, with a failure probability of 1. 

The first three constraints (Eqn. 4.2 to Eqn. 4.4) are some basic assumptions. Storage 
capacity constraint (upper bound of storage) that the reservoir cannot store more than its 
available capacity (Eqn. 4.2); release capacity constraint (upper bound of release/lower bound of 
storage) that pre-release volume cannot exceed the initial reservoir storage (Eqn. 4.3); and water 
balance constraint that all storm flood volumes must be stored or released during the storm, with 
no water losses (Eqn. 4.4). The last constraint (Eqn. 4.5) is non-negativity of the hedging pre-
release flow rate ܳ, which is also a release capacity constraint (lower bound of release). 
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The two terms in the minimization objective (Eqn. 4.1.b) represent the expected 
downstream flood damage costs (flood risk) from current stage pre-release (ܥܦ௨௧ ൌ
ܿ ܲ	ሺܳሻ), and the expected downstream flood damage costs from future stage storm releases 

௨௧௨ܥܦܧ) ൌ ܿ൫1 െ ܲ	ሺܳሻ൯∑ 	 ܲሺܳ௦ሻ

ୀଵ ). The flood operation process includes a first 

stage of antecedent flow with pre-release and a second stage of flood flow. This two-stage 
decision formulation can be solved by a one-dimension search over the range of feasible hedging 
pre-release ܳ, with the other variables determined by the constraint equations.   

This simple formulation illustrates many aspects of the problem. For more complex storms 
and storm forecasts, third or fourth stages of pre-releases and storm release decisions might be 
added, with a consequent increase in parameter estimation and computational effort. 

4.3.3 Small, Intermediate and Large Storms 

To distinguish the flood risks at future stages, we divided the forecasted storms into three 
groups, according to its likelihood triggering a levee failure (Figure 4.5). A linear failure 
probability curve is used in Figure 4.5 for initial illustration purposes. 

(1) Small storms, where later storm releases pose no threat to the levee ( ܲሺܳ௦ሻ ൌ 0) even 
with no pre-release, but a flood pre-releases would increase current risk at a failure probability of 
ܲ	ሺܳሻ. The occurrence probability of such small storms is the probability that hedging pre-

releases will be futile, increasing immediate risk without helping later flood protection. 

(2) Intermediate storms, where pre-releases increase storage capacity to significantly 
decrease later storm releases, but later storm releases would still threaten the levee at a failure 
probability of ܲሺܳ௦ሻ (0 ൏ ܲሺܳ௦ሻ ൏ 1). Overall flood risks exist in two stages with a failure 
probability ൣ ܲ	ሺܳሻ  ൫1 െ ܲ	ሺܳሻ൯ ܲ௦൧. 

(3) Large storms, which would overwhelm the reservoir and levee regardless of pre-release 
decision, with a ܲሺܳ௦ሻ ൌ 1 levee failure probability for future stage and overall flood risk.  

Volume	 ௦ܸ and duration ݐ௦ of forecasted storms would determine the categorization of the 
small, intermediate and large storms. 

The flood volume boundary between small and intermediate storms is at oncoming flood 
volume	 ௦ܸ ൌ ݇ െ ܵ  ௦, whereݐݍ ܲሺܳ௦ሻ ൌ 0 and ܳ௦   . Besides the given reservoir andݍ
channel parameters, the number of small storms within this boundary depends on the 
characteristics of forecasted storm volume	 ௦ܸ and duration ݐ௦. Of ݊ possible storms that are 
forecasted, the number of small storms is defined as ܽ, for which hedging pre-releases would 
raise risks of levee failure without reducing second-stage flood risks. 

The system is completely overwhelmed (and doomed to fail) if flood volume exceeds 
available storage even with maximal pre-releases plus channel capacity, so the flood volume 
boundary between intermediate and large storms is	 ௦ܸ ൌ ݇ െ ܵ 	൫ݍ െ ܳ൯ݐ   .௦ݐݍ
Meanwhile, ൫ݍ െ ܳ൯ݐ  ܵ, since pre-release volume cannot exceed initial storage. If pre-
releases empty the entire initial storage, the boundary is ௦ܸ ൌ ݇   ௦. The number of stormsݐݍ
not overwhelming the system is defined as ܾ of the ݊ total forecasted storms, depending on the 
characteristics of forecasted storm volume	 ௦ܸ and duration ݐ௦. So the number of intermediate 
storms is ሺܾ െ ܽሻ, and there are ሺ݊ െ ܾሻ large storms. 
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Figure 4.5 shows the likely failure cause variation with storm size, grouping possible storms 
into small, intermediate and large storms. The horizontal red dash-dot line is the levee failure 
risk from a total pre-release ܳ  ܳ. The purple solid piece-wise linear line is the levee failure 
risk from original storm release ܳ௦

  without any pre-releases, and the purple dash piece-wise 
linear line is the levee failure risk from storm release ܳ௦ with a maximum hedging pre-release 
ܳ. The two vertical dash lines are the boundaries dividing ݊ total forecast storms into three 
groups with the hedging pre-releases ܳ. If a storm is categorized as “small”, its threat to the 
levee is only from the pre-release ܳ at current stage. In addition to the pre-release risk, a storm 
belonging to the intermediate storms group will cause levee failure by storm release at future 
stage as well, and a “large” storm will doom the downstream levee by its storm release. For any 
increasing levee failure probability as a function of flow, the boundary between small and 
intermediate storms is where ܳ௦ ൌ   without pre-release, and that between intermediate andݍ
large storms is where ܳ௦ ൌ  with a maximum pre-release ܳݍ ൌ  . These two boundaries areݍ
clear in Figure 4.5 for a linear failure probability function. 

A hedging pre-release increases storage capacity by ܳݐ to capture more future storm 
volume and decrease the flood risk from later storm releases, but it may cause flood risk at 
current stage at a failure probability of ܲ. So an increment in hedging pre-release could reduce 
the future expected flood damage, but increase the current flood damage. An optimal hedging 
pre-release would balance the current and future flood risks where an additional pre-release 
cannot benefit the overall flood damage minimization. 

 

Figure 4.5 Variation of likely release risk to downstream levees with storm volume, storm 
releases follow standard minimize flooding frequency policy 

To represent the possible levee failures risk for different groups of storms at two stages, the 
objective function in Eqn. 4.1.a and 4.1.b can be re-written as Eqn. 4.6.a and 4.6.b. 
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Min ܼ ൌ ܿ ∑  ܲ	ሺܳሻ

ୀଵ 	 ܿ ∑ ൣ ܲ	ሺܳሻ  ൫1 െ ܲ	ሺܳሻ൯ ܲ	ሺܳ௦ሻ൧


ୀାଵ  ܿ ∑ 


ୀାଵ     (4.6.a) 

Or  

Min ܼ ൌ ܿ ܲ	ሺܳሻ  ܿ൫1 െ ܲ	ሺܳሻ൯ൣ∑  ∗ ܲ	ሺܳ௦ሻ

ୀାଵ  ∑ 


ୀାଵ ൧                 (4.6.b) 

The three terms in Eqn. 4.6.a represent the expected downstream flood damage costs from 
only pre-release for the small storms group (ܥܦܧ௦), from both releases for the intermediate 
storms group (ܥܦܧ௧), and from doomed releases for the large storms group (ܥܦܧ). Pre-
releases may increase the overall failure probability for small storms, decrease the overall flood 
risk from intermediate storms, and do not affect the overall consequences from large storms. The 
benefit of hedging pre-release to the overall flood management for intermediate storms has to 
offset the cost from increased immediate flood risk for small storms. 

4.4 Theoretical Optima 

Flood hedging pre-release trades off the expected flood damage downstream at the current 
antecedent flow stage from pre-release risk ( ܲ	ሺܳሻ) against future storm stage from storm 
release risks (൫1 െ ܲ	ሺܳሻ൯ ܲ	ሺܳ௦ሻ). Theoretically, the unconstrained optimal hedging pre-
release would cause the same marginal flood risk at current antecedent flow stage and future 
storm release stage.  

4.4.1 KKT Optimality Conditions and Lagrange Multiplier 

Theoretical optima of this optimization formulation can be derived from Lagrangian or the 
more general KKT conditions (Lagrange 1853; Karush 1939; Kukn and Tucker 1951). We re-
write the minimization objective in Eqn. 4.6.b as a maximization objective: Max ሺെܼሻ. The 
optimization constraints of this pre-release problem (Eqn. 4.2 to Eqn. 4.5) can be rewritten as: 

െܳ  ሺ݇  ܳ௦ݐ௦ െ ௦ܸ െ ܵሻ ⁄ݐ , ∀	݅ ൌ 1: ݊                                                                (4.7) 

ܳ  ܵ ⁄ݐ                                                                                                                         (4.8) 

െܳ  0                                                                                                                            
(4.9) 

So the Lagrangian for the optimal pre-release problem can be formulated as: 

ܮ ൌ െ ቄ ܿ ܲ	ሺܳሻ  ܿ ቀ1 െ ܲ	ሺܳሻቁ ൣ∑  ∗ ܲ	ሺܳ௦ሻ

ୀାଵ  ∑ 


ୀାଵ ൧ቅ   

∑ ൣሺ݇ߣ  ܳ௦ݐ௦ െ ௦ܸ െ ܵሻ ⁄ݐ  ܳ൧

ୀଵ  ାଵ൫ܵߣ ⁄ݐ െ ܳ൯  ାଶሺ0ߣ  ܳሻ         (10) 

An optimal set of ܳ and Lagrange Multipliers ߣሺ݅ ൌ 1: ݊  2ሻ would satisfy all the KKT 
conditions. The Lagrange Multiplier indicates the shadow price or willing to pay to modify each 
physical constraint. Detailed derivations of KKT conditions are in the appendix. 

4.4.2 Derivation of Theoretical Optimal Conditions 

Where solutions lie within the extremes of the inequality constraints, implying that some 
flood pre-releases are optimal, the first-order conditions for the optimal amount of hedging pre-
release ܳ from Eqn. 6.b become: 

ௗ

ௗொ
ൌ 0 ൌ ܿ

ௗ	ሺொ
∗ሻ

ௗொ
	 ܿ

	ௗൣଵି	ሺொ
∗ሻ൧ቂ∑ ∗	ሺொೞሻ

್
సೌశభ ା∑ 


స್శభ ቃ

ௗொ
                                 (4.11) 
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The current marginal downstream flood damage cost from pre-release is ܥܦܯ௨௧ ൌ
݀ೠೝೝ

݀ொ
ൌ ܿ

ௗ	ሺொሻ

ௗொ
, and the future marginal expected downstream flood damage cost from 

storm releases is ܥܦܧܯ௨௧௨ ൌ
݀ாೠೠೝ

݀ொ
ൌ െ ܿ

	ௗൣଵି	ሺொሻ൧ቂ∑ ∗	ሺொೞሻ
್
సೌశభ ା∑ 


స್శభ ቃ

ௗொ
. So the 

ideal theoretical optimal condition equalizes the two marginal expected damages that 
௨௧ሺܳܥܦܯ

∗ሻ ൌ ௨௧௨ሺܳܥܦܧܯ
∗ሻ. 

For this case with a constant potential damage cost, the levee failure cost does not affect the 
optimal hedging pre-release decision (Eqn. 4.11). So we can drop ܿ from the optimality 
condition: 

ௗ	ሺொ
∗ሻ

ௗொ
ൌ

ௗ	ሺொ
∗ሻ

ௗொ
ൣ∑  ∗ ܲ	ሺܳ௦ሻ


ୀାଵ  ∑ 


ୀାଵ ൧ െ ൣ1 െ ܲ	ሺܳ

∗ሻ൧ ∑ ቀ
ௗ	ሺொೞሻ

ௗொ
ቁ

ୀାଵ (4.12a) 

ൣ1 െ ܲ	ሺܳሻ൧ is the current first stage non-failure probability or the reliability that pre-

release ܳ does not cause levee failure. If incorporating ܲ	ሺܳ௦ሻ ൌ 0 and 
ௗ	ሺொೞሻ

ௗொೞ
ൌ 0 for 

“small” storms (݅ ൌ 1: ܽ), and ܲ	ሺܳ௦ሻ ൌ 1 and 
ௗ	ሺொೞሻ

ௗொೞ
ൌ 0 for “large” storms (݅ ൌ ܾ  1: ݊), 

the expected levee failure probability at future second stage from intermediate and large storms 

is ܸܧ ቀ ܲଶ	ሺܳሻቁ ൌ ൣ∑  ∗ 0

ୀଵ  ∑  ∗ ܲ	ሺܳ௦ሻ


ୀାଵ  ∑ 


ୀାଵ ∗ 1൧ ൌ ∑  ∗ ܲ	ሺܳ௦ሻ


ୀଵ , 

and its derivative (the expected marginal future levee failure probability) is ܸܧ ቀ
ௗమ	ሺொሻ

ௗொ
ቁ ൌ

ቂ∑  ∗ 0

ୀଵ  ∑  ∗

ௗ	ሺொೞሻ

ௗொ


ୀାଵ  ∑ 


ୀାଵ ∗ 0ቃ ൌ ∑ ቀ

ௗ	ሺொೞሻ

ௗொ
ቁ

ୀଵ . So we can have a 

general optimal condition:  

ௗ	ሺொ
∗ሻ

ௗொ
ቂ1 െ ܸܧ	 ቀ ܲଶ	ሺܳ

∗ሻቁቃ ൌ െ	ܸܧ ቀ
ௗమ	൫ொ

∗൯

ௗொ
ቁ ൣ1 െ ܲ	ሺܳ

∗ሻ൧,                           ݎ

(4.12.b) 

ଵି	൫ொ
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ଵି	ாቀమ	൫ொ
∗൯ቁ

ൌ

ು	ሺೂ
∗ ሻ

ೂ
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ೂ
ቇ
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(4.12.c) 

ௗ	ሺொ
∗ሻ

ௗொ
ൌ

ଵି	൫ொ
∗൯

ଵି	ாቀమ	൫ொ
∗൯ቁ
െ	ܸܧ ቀ

ௗమ	൫ொ
∗൯

ௗொ
ቁ൨                                                               

(4.12.d) 

The left hand side of Eqn. 4.12.b means the change in ܲ	ሺܳ
∗ሻ given no expected failure in 

the future stage, and the right hand side means the expected change in ܲଶ	ሺܳ
∗ሻ given no failure 

in the current stage. This optimality condition (Eqn. 4.12.b) implies equalizing the weighted 
marginal effectiveness at reducing failure in each stage. The ratio of non-failure (reliability) 

probability (
ଵି	൫ொ

∗൯

ଵି	ாቀమ	൫ொ
∗൯ቁ

) in Eqn. 4.12.c and 4.12.d evaluate the relative marginal effectiveness 

at reducing failure in two stages. 

By substituting ݀ܳ௦ ݀ܳ⁄ ൌ െݐ/ݐ௦ (from the relation	ܳ௦ ൌ ൣ ௦ܸ െ ሺ݇ െ ܵ  ܳݐሻ൧/ݐ௦),  
we have the following optimal condition for hedging pre-releases: 
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ು	ሺೂ
∗ ሻ

ೂ
ቆ భ

ቇ

ଵି	ሺொ
∗ሻ

ൌ 	
∑ 

ು	ሺೂೞሻ
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(4.12.e) 

Eqn. 4.12.e implies that the optimal hedging pre-release ܳ
∗  is where ratio of the increment 

in pre-release failure probability divided by forecast period to the pre-release reliability, equals 
ratio of the expected increment in storm release failure probabilities each divided by its duration 
to the expected storm release reliability. The important role of forecast period ݐ and storm 
duration ݐ௦ here is because of the assumed square hydrographs. 

If any constraints bind on the optimal results, the theoretical optimal condition in Eqn. 4.12 
may not be satisfied. 

Implications of the theoretical optimal condition from Eqn. 4.12 are summarized below. 
(1) For a constant damage cost, the optimal flood hedging pre-release in this case occurs 

when the current marginal downstream flood probability from pre-release equals the future 
marginal expected downstream flood probability from later storm releases. The amount of failure 
damage drops from the optimal solution. 

(2) The optimal flood hedging pre-release depends on the frequencies of intermediate 
storms and originally harmless small storms, but not storms large enough to overwhelm the 
system (having a levee failure probability of one), since even hedging pre-release cannot change 
the fact that the system will fail. However, storm probabilities are correlated that sum to one. 

(3) Having possible intermediate storms, which can be controlled only if pre-releases are 
made, is a necessary condition for flood hedging to be optimal. Flood hedging for small storms is 
not worthwhile as there is no storm release risk. And pre-releases are futile for large storms. So 
hedging pre-release would be large with more intermediate storms forecasted, while it would be 
small with fewer intermediate storms forecasted (Figure 4.4). 

 (4) Longer forecast periods can make flood hedging releases more desirable, as a unit of 
hedging pre-release volume (ܳݐ) will drive less increase in hedging release rate ܳ and levee 
failure probability. According to Eqn. 4.12.e, given fixed marginal failure probabilities from pre-
release or storm releases for optimal pre-release, increasing forecast period ݐ decreases the ratio 
for the current stage, or increases the ratio for future stage. Therefore, optimal hedging pre-
release would increase with larger forecast periods. 

(5) Shorter oncoming storm durations make flood hedging pre-release more effective, as a 
given hedging pre-release volume will reduce peak outflows more to further reduce levee failure 
risk for a forecast storm. 

The optimal hedging pre-release for a linear failure probability curve will be larger than that 
for a concave failure probability curve, and will be less for a convex failure probability curve. 
First, the failure probability of a concave curve is the highest for any given flow, that of a convex 
curve is the lowest, and that of a linear curve is in between (Figure 4.2). Second, a linear failure 
probability function has constant marginal values (0 second-order derivative), a concave failure 
probability curve has decreasing marginal increases (negative second-order derivative), and a 
convex failure probability curve with increasing marginal increases (positive second-order 
derivative) as flow increases. Hedging pre-releases also affect the boundaries of storms groups. 
So a more convex initial shape to levee failure probabilities should induce more flood pre-
release. 
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Equalizing the marginal expected damages from pre-release and storm releases is the basic 
principle of theoretical optimal condition, when flood hedging is at all optimal. Events small 
enough to fit within the safe channel capacity (ݍ) provide no incentive for making pre-releases. 
Hedging pre-releases are encouraged by higher probabilities of potential floods too large for 
existing channel and storage capacity, but which can be accommodated with pre-releases and are 
not so large as to overwhelm all storage and conveyance capacity. This can be seen by re-
allocating event probabilities between the largest and smallest events, which changes total 
damage, but not the least-cost level of flood hedging release. 

4.5 Illustrative Examples 

The following examples illustrate the application of optimizing flood hedging pre-releases 
for different forecast cases with different failure probability functions and demonstrate the 
derived implications. 

4.5.1 Model Inputs 

The ideal theoretical optimum of hedging pre-release is where the current marginal flood 
damage from pre-releases equals the future marginal expected flood damage from forthcoming 
storm releases. This theoretical optimum could be achieved when all constraints and optimality 
conditions are satisfied. This section discusses two flood forecast cases with different flood 
durations and occurrence probabilities by applying the optimization approach with different 
failure probability functions. Table 4.1 is an ensemble of 5 forecast storms for flood forecast 
Case1 and Case2 respectively, each with a flood volume, flood duration and probability of 
occurrence. The event probabilities sum to one.  

Table 4.1 Storm distribution from flood forecast 

Storm ݅ Flood Volume ݒሺ݇݉ଷሻ Flood Duration ݐ௦ሺ10ݏሻ Probability 

Flood 
Forecast 
Case1 

1 1 1 0.4 
2 2 1 0.1 
3 2.5 1.2 0.3 
4 3 1.2 0.1 
5 7 1 0.1 

Flood 
Forecast 
Case2 

1 1 1 0.4 
2 2 1 0.15 
3 2.5 1 0.3 
4 3 1 0.1 
5 7 1 0.05 

 
For the flood forecasts Case1 and Case2, the flood forecast period is ݐ ൌ 1.5 ൈ 10ݏ, the 

minimum downstream channel capacity with no levee failure probability is ݍ ൌ 200݉ଷ ⁄ݏ , the 
maximum downstream leveed channel capacity (overtopping capacity) is ݍ ൌ 3000݉ଷ ⁄ݏ , the 
reservoir’s total flood storage capacity is ݇ ൌ 2݇݉ଷ, the reservoir’s initial storage is ܵ ൌ 1݇݉ଷ, 
and the cost of a catastrophic downstream levee failure is ܿ ൌ  The antecedent inflow .݈݈ܾ݊݅݅	$1
rate is ܳ ൌ 200݉ଷ ⁄ݏ  in Case1 and ܳ ൌ 100݉ଷ ⁄ݏ  in Case2. Further studies can analyze the 
impacts from these input parameters on this optimization model, for example with sensitivity 
analysis, particularly when the solutions around optimal solution change rapidly. 
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Constraining pre-release volume to less than the initial reservoir storage (ܳݐ  ܵ) means 
the maximum pre-release is ܳ,௫ ൌ 667݉ଷ ⁄ݏ . So the failure probabilities of pre-releases that 
exceed 667݉ଷ ⁄ݏ  are infeasible. 

According to the two boundaries for storms groups, in both cases, storm 1 is “small”, 
because it poses no threat to downstream even without pre-releases (failure probability from 
storm release is 0). Storm 5 will overwhelm the levee as a “large” storm. Storms 2, 3 and 4 are 
“intermediate” storms, since they still have failure probability with storm releases while may not 
yet be large enough to doom the levee. 

Three typical levee failure probability functions are implemented in the optimization and 
compared: convex, linear and concave failure probability functions (Figure 4.2). Given two 
points, ሺݍ, 0ሻ and ൫ݍ, 1൯, on the levee failure probability curve, we use three simple levee 
failure probability functions. 

Quadratic Convex Function:	ܨሺܳሻ ൌ ଵ

൫ିబ൯
2 ሺܳ െ  ሻ2ݍ

Linear Function: ܨሺܳሻ ൌ ൬
ொିబ
ିబ

൰ 

Quadratic Concave Function:	ܨሺܳሻ ൌ െ ଵ

൫బି൯
2 ൫ܳ െ ൯ݍ

2
 1 

A necessary condition for flood hedging pre-release to be optimal is the flood risk (expected 
overall damage) from flood release decisions within the feasible region is convex. Such 
convexity primarily depends on the failure probability function, and is also slightly affected by 
the probability distribution of forecast storms. So a convex failure probability function would 
clearly guarantee the convexity of the overall damage that hedging pre-release is desirable. The 
probability distribution of forecast storms dominates the optimal hedging pre-release with a 
linear failure probability function, and hedging pre-release would never be optimal with a 
concave failure probability function. These are shown in the examples below. 

The optimizations below are solved by enumeration of expected failure damage costs over a 
range of hedging pre-releases in 1݉ଷ ⁄ݏ  increment, with other variables determined by the 
constraints. 

4.5.2 Results for Different Failure Probability Functions 

Figure 4.6(a) and (b) are the optimization results with a convex failure probability function 
for Case1 and Case2 respectively. In Figure 4.6, the thickest blue solid lines read on the right 
vertical axis show the expected failure damage cost. Other lines on each figure are the varying 
levee failure probabilities of total pre-release and each storm release, and the varying expected 
overall failure probability with increasing hedging pre-release. The lines in Figure 4.7 and Figure 
4.8 below have the same representations. 

Generally, levee failure probability from the total pre-release increases with increasing 
hedging pre-release, leading to decreasing levee failure probability from the later storm release 
of each possible storm, except for the extreme small storms causing no failure and the extreme 
large storms which definitely fail the levee (Figure 4.6 and later Figure 4.7 and 4.8). “Small” 
storm 1 with a constant 0 failure probability and “large” storm 5 with a constant 1 failure 
probability for any pre-release decisions do not affect the optimal hedging pre-release.  
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The minimum expected failure damage for a convex F(Q) is ܼ௩௫∗ ൌ  that ݈݈ܾ݊݅݅	$0.142
occurs when the pre-release is ܳ,௩௫

∗ ൌ 400݉ଷ ⁄ݏ  in Case1, and  ܼ௩௫∗ ൌ  ݈݈ܾ݊݅݅	$0.094
that occurs when the pre-release is ܳ,௩௫

∗ ൌ 517݉ଷ ⁄ݏ  in Case2. Optimal hedging reduces 
overall failure probability by 0.036 (20%, compared to no pre-release) and 0.075 (44%) for the 
two cases respectively. The results in Figure 4.6 show a fairly broad “near-optimal” hedging 
region for each Case. The (expected) overall damage from flood release decisions within the 
feasible region is clearly convex in Figure 4.6. Such convexity arises primarily from the convex 
failure probability function.  

 
(a) Flood Forecast Case1 
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(b) Flood Forecast Case2 
Figure 4.6 Failure probabilities of pre-release and resulting storm releases, Convex F(Q) 

Figure 4.7 (a) and (b) are the optimization results with linear failure probability function for 
Case1 and Case2 respectively. The minimum expected failure damage ܼ

∗ ൌ  ݈݈ܾ݊݅݅	$0.293
occurs when the pre-release is ܳ,

∗ ൌ 0݉ଷ ⁄ݏ  in Case1, and  ܼ
∗ ൌ  ݈݈ܾ݊݅݅	$0.264

occurs when the pre-release is ܳ,
∗ ൌ 256݉ଷ ⁄ݏ  in Case2, reducing overall failure 

probability by 0 (0%) and 0.032 (11%) respectively. As affected by probability distribution of 
forecast storms, hedging pre-release can be optimal (Case2) or not (Case1) with a linear F(Q). 

Similar to the results in Figure 4.6, Figure 4.7 shows a “near-optimal” hedging region in 
each Case, and the (expected) overall damage from flood release decisions is clearly convex in 
Case 2 where optimal pre-release exists. Such convexity arises primarily from the probability 
distribution of storms, and is not affected by the linear levee failure probability function. 
Hedging pre-release is not optimal in Case1 with a linear levee failure probability function.  
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(b) Flood Forecast Case2 

Figure 4.7 Failure probabilities of pre-release and resulting storm releases, Linear F(Q) 

Figure 4.8 (a) and (b) are the optimization results with concave failure probability function 
for Case1 and Case2. The minimum expected failure damage for a concave levee failure function 
ܼ௩∗ ൌ occurs when the pre-release is ܳ,௩ ݈݈ܾ݊݅݅	$0.409

∗ ൌ 0݉ଷ ⁄ݏ  in Case1, and  
ܼ௩∗ ൌ occurs when the pre-release is ܳ,௩ ݈݈ܾ݊݅݅	$0.391

∗ ൌ 100݉ଷ ⁄ݏ  in Case2, 
reducing overall failure probability by 0 (0%) and 0.034 (8%) respectively.  
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(b) Flood Forecast Case2 

Figure 4.8 Failure probabilities of pre-release and resulting storm releases, Concave F(Q) 

Due to concavity of the concave levee failure probability function, hedging pre-release is 
never optimal with a concave failure probability function when antecedent flow is beyond the 
downstream base channel capacity. We run Case1 and Case2 with a range of antecedent flows: 
only when antecedent flow is below the base channel capacity (ܳ   ), the optimal pre-releaseݍ
(ܳ,௩

∗ ൌ ݍ െ ܳ) exists as the total pre-release causes no flood risk initially. The 
probability distribution of storms slightly offsets the concavity from the concave failure 
probability function and results in a pre-release solution, which is an optimal solution to some 
extent. This demonstrates the necessary condition for flood hedging that the overall expected 
damages from flood release decisions are convex within the feasible release region. 

4.5.3 Comparisons and Discussions 

Table 4.2 summarizes the optimal results for Case1 and Case2 with different failure 
probability functions. 

Table 4.2 Optimal results with different failure probability functions, F(Q) 

Parameters Convex F(Q) Linear F(Q) Concave F(Q) 

Flood 
Forecast 
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(Optima) ܳ
∗ሺ݉ଷ ⁄ݏ ሻ 400 0 0 

(Optima) ܳ
∗  ܳሺ݉ଷ ⁄ݏ ሻ 600 200 200 

(Optima) ܼ∗ሺ$	ܾ݈݈݅݅݊ሻ 0.142 0.293 0.409 
ܽሺܳ

∗ሻ 1 1 1 
ܾሺܳ
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௨௧ሺܳܥܦܯ
∗ሻ 

ሺ$	݈݈݉݅݅݊ ∗ ݏ ݉ଷ⁄ ሻ 
0.10 0.36 0.71 

௨௧௨ሺܳܥܦܧܯ
∗ሻ  

ሺ$	݈݈݉݅݅݊ ∗ ݏ ݉ଷ⁄ ሻ 
0.10 0.34 0.58 

Overall Failure 
Probability Reduction 

0.036 (20%) 0 (0%) 0 (0%) 

Flood 
Forecast 
Case2 

(Optima) ܳ
∗ሺ݉ଷ ⁄ݏ ሻ 517 256 100 

(Optima) ܳ
∗  ܳሺ݉ଷ ⁄ݏ ሻ 617 356 200 

(Optima) ܼ∗ሺ$	ܾ݈݈݅݅݊ሻ 0.094 0.264 0.391 
ܽሺܳ

∗ሻ 1 1 1 
ܾሺܳ

∗ሻ 4 4 4 
௨௧ሺܳܥܦܯ

∗ሻ 
ሺ$	݈݈݉݅݅݊ ∗ ݏ ݉ଷ⁄ ሻ 

0.11 0.36 0.71 

௨௧௨ሺܳܥܦܧܯ
∗ሻ 

ሺ$	݈݈݉݅݅݊ ∗ ݏ ݉ଷ⁄ ሻ  
0.11 0.36 0.64 

Overall Failure 
Probability Reduction 

0.075 (44%) 0.032 (11%) 0.034 (8%) 

 
From the cases where optimal hedging pre-releases exist, i.e. Case1 with Convex F(Q) and 

Case2 with Convex and Linear F(Q), the ideal theoretical optimal condition that equalizing the 
two marginal expected damages is demonstrated. Where the resulting pre-releases are not 
feasible optima, the ideal theoretical optimal condition is unsatisfied. 

For a specific pre-release, the levee failure probability with a convex failure function is the 
smallest, followed by that with a linear failure function, and biggest with a concave failure 
function. This mostly explains the relations of the optimal results from different failure functions 
in each Case that ܼ௩௫∗ ൏ ܼ

∗ ൏ ܼ௩∗  and ܳ,௩௫
∗  ܳ,

∗  ܳ,௩
∗ , 

∗௩௫ܥܦܯ ൏ ܥܦܯ
∗ ൏ ∗௩ܥܦܯ 	 and ܥܦܧܯ௩௫∗ ൏ ܥܦܧܯ

∗ ൏ ∗௩ܥܦܧܯ 	 for 
current stage and future stage. So increasing the convexity of failure probability function is likely 
to increase the optimal hedging pre-release and decrease the total expected downstream flood 
damage and marginal damage cost. 

We could also use a non-linear search algorithm to find the optimal results. Table 4.3 shows 
the optimal results from the Generalized Reduced Gradient algorithm (GRG nonlinear) solver in 
MS-Excel for different failure functions for Case2, including the optimal values of decision 
variables and objectives, and the Lagrange Multipliers for each constraint. 

Table 4.3 Optimal results from GRG nonlinear solver, Case2 

Name Representation Convex F(Q) Linear F(Q) Concave F(Q) 
Variable ܳ

∗ : ሺ݉ଷ ⁄ݏ ሻ 517 256 100 
Objective (Min) ܼ∗ ሺ$	ܾ݈݈݅݅݊ሻ 0.094 0.264 0.391 

  
Slack
ሺ݉ଷ ⁄ݏ ሻ

Lagrange 
Multiplier 

Slack
ሺ݉ଷ ⁄ݏ ሻ

Lagrange 
Multiplier 

Slack
ሺ݉ଷ ⁄ݏ ሻ

Lagrange 
Multiplier 

Constraint 

െܳ  ሺ݇  ܳ௦ଵݐ௦ଵ െ ଵݒ െ ܵሻ ⁄ݐ 517 0 256 0 100 0 
െܳ  ሺ݇  ܳ௦ଶݐ௦ଶ െ ଶݒ െ ܵሻ ⁄ݐ 0 0 0 0 0 0 
െܳ  ሺ݇  ܳ௦ଷݐ௦ଷ െ ଷݒ െ ܵሻ ⁄ݐ 0 0 0 0 0 0 
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െܳ  ሺ݇  ܳ௦ସݐ௦ସ െ ସݒ െ ܵሻ ⁄ݐ 0 0 0 0 0 0 
െܳ  ሺ݇  ܳ௦ହݐ௦ହ െ ହݒ െ ܵሻ ⁄ݐ 0 -0.89 0 -0.10 0 -3.68*105

ܳ  ܵ ⁄ݐ  150 0 410 0 567 0 
െܳ  0 517 0 256 0 100 0 

 
For different failure functions, four of the seven constraints bind on the optimal results (the 

constraints of the second to fifth possible storms). The binding and non-binding constraints are 
the same for different failure probability functions, though with different slack values. Only one 
constraint for each failure probability function has a non-zero Lagrange Multiplier with different 
values. For the convex, linear and concave failure functions, the constraint of the fifth possible 
storm has a non-zero Lagrange Multiplier. Negative Lagrange Multiplier values mean unit 
slackening of the corresponding constraint will reduce the objective by the magnitude of that 
Lagrange Multiplier. The minimized expected downstream flood damage can be improved by 
relaxing any constraint with a non-zero Lagrange Multiplier. From a forecasting perspective, 
small forecast changes for the fifth storm will change the optimal results, while small forecast 
changes for the other storms will not. The Lagrange Multipliers show the most sensitive 
parameters of the current model, and can tell where to pay attention for improving model 
accuracy. The extremely large Lagrange Multiplier in the case with a concave F(Q) is because 
that the resulting hedging pre-release in this case is not optimal from the optimization model’s 
perspective,  although satisfying all the physical constraints. 

4.6 Optimal Flood Hedging with Water Supply Losses and Blended Hedging 

Often flood pre-releases from a reservoir risk the loss of water storage for later water supply 
uses, incurring some economic losses. The previous hedging formulation can be expanded to 
include potential water supply losses from a reservoir’s pre-releases that water users will 
perceive as spill. 

Min ܼ ൌ ܿ ∑  	ቂ ܲሺܳሻ  ቀ1 െ ܲሺܳሻቁ ܲሺܳ௦ሻቃ

ୀଵ  ൫ܥ ௦ܸ൯                                (4.13) 

where ܥ൫ ௦ܸ൯ is the economic loss from pre-release spill as a function of the spilled water 
volume  ௦ܸ. This economic loss function of pre-release spilled water varies for different water 
spill situations; sometimes pre-release spill can be partially recaptured downstream.  

An additional constraint is needed to define the volume of (spilled) water supply lost from 
exceeding the economic water supply release ݍ in the first stage as: 

௦ܸ ൌ ,ሺ0ݔܽܯݐ ܳ  ܳ െ  ሻ                                                                                            (4.14)ݍ

This additional economic loss to water supply from spilled pre-releases would tend to 
reduce the use of flood pre-releases. The overall economic costs here, which includes the 
additional water supply lost, are greater than those only considering the expected value of 
downstream flood damage when total pre-release exceeds the economic water supply release. So 
the new objective function (Eqn. 4.13) is the unchanged original objective function (Eqn. 4.1) 
where the total pre-release ܳ  ܳ is below ݍ (no spill), but the original objective function 
increases further when flood releases imply lost of water supply storage. Since convexity of the 
overall costs from flood release decisions is a necessary condition for optimal flood pre-release, 
  is less than the originalݍ  may or may not change the original optimal hedging pre-release. Ifݍ
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optimal hedging total pre-release ܳ
∗  ܳ that locates where the overall cost is decreasing, the 

original minimum overall cost will increase with the additional water supply lost. So the new 
optimal hedging pre-release is likely to be less than ܳ

∗  and at a minimum of ݍ െ ܳ. However, 
if ݍ is no less than ܳ

∗  ܳ where the overall cost is increasing, the original optimal hedging 
pre-release ܳ

∗  (in the unchanged objective function) remains optimal. The new optimal hedging 
pre-release will be in the range of [ݍ െ ܳ, ܳ

∗]. 

For illustration, we add water supply lost to the previous Case2 with a convex levee failure 
probability function, so overall costs are convex. The water supply loss function of pre-release 
spill is assumed to be linear:  ܥ൫ ௦ܸ൯ ൌ ܿ௦ ௦ܸ, where the unit spill cost is ܿ௦ ൌ
$0.14/݉ଷ. Three economic water supply releases ݍ (200݉ଷ ⁄ݏ , 400݉ଷ ⁄ݏ , 667݉ଷ ⁄ݏ ) are 
implemented and compared. Figure 4.9 shows the optimal flood hedging pre-releases with 
consideration of different economic water supply releases. The original optimal hedging pre-
release without water supply losses is ܳ

∗ ൌ 517݉ଷ ⁄ݏ . 

Comparing the results of different economic water supply releases shown in Figure 4.9, a 
smaller ݍ largely increases the water supply loss and overall cost for any pre-release. A smaller 
 also largely reduces the original ܳݍ

∗  and so reduces the new optimal hedging pre-release 
within the range of [ݍ െ ܳ, ܳ

∗]. For economic water supply releases ݍ ൌ 200݉ଷ ⁄ݏ  and ݍ ൌ
400݉ଷ ⁄ݏ  are smaller than the original ܳݍ	,

∗  ܳ, so the new optimal hedging pre-releases are 
both smaller than 517݉ଷ ⁄ݏ . And the smaller ݍ ൌ 200݉ଷ ⁄ݏ  results in a smaller new optimal 
hedging pre-release (142݉ଷ ⁄ݏ ൏ 300݉ଷ ⁄ݏ ). Besides, for ݍ ൌ 400݉ଷ ⁄ݏ , the new optimal 
hedging pre-release 300݉ଷ ⁄ݏ  reaches its minimum boundary ݍ െ ܳ. For ݍ ൌ 667݉ଷ ⁄ݏ  that 
is greater than the original ܳ

∗  ܳ, the new optimal hedging pre-release remains the same at 
517݉ଷ ⁄ݏ . 

 

Figure 4.9 Optimal flood hedging pre-releases with different economic water supply release 
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The additional economic costs from potential water supply lost would tend to reduce the 
optimal flood hedging pre-release. Such reduction primarily depends on the economic water 
supply release ݍ, which defines the boundary of new optimal hedging pre-release. Water supply 
loss function ܥ൫ ௦ܸ൯ will normally be concave (Draper and Lund 2004; Gal 1979), and so will 
tend to further detract from the flood hedging. Impacts from water supply loss function ܥ൫ ௦ܸ൯ 
can be further analyzed, especially compared with the flood damage cost function ܦሺܳሻ. 

Economic costs from water supply lost are the negative water supply benefits. There could 
be situations where water supply and flood control are equally significant that our minimization 
for hedging release includes flood damage costs and negative water supply benefits (െݔܽܯ ൌ
 Hedging release for water supply at the current stage should consider the possible large .(݊݅ܯ
water shortage at a future stage, while for flood control it should consider the potential large 
flood damage. In the merged water supply and flood control situation, “blended hedging rules” 
would focus on water supply for small water availability and on flood control for large water 
availability. Figure 4.10 shows a blended water supply and flood hedging rule for illustration. 
Pure water supply hedging would be in the area of feasible water supply hedging releases below 
standard water supply operating policy (Hufschmidt et al. 1962; Loucks et al. 1981; Draper and 
Lund 2004), while pure flood hedging would be in the area of feasible flood hedging releases 
above the standard minimize flood frequency policy. There is an area of feasible blended 
hedging releases between two standard policies, as water supply target ܶ is usually involving no 
risk that is less than downstream base channel capacity ܸ. A blended hedging would be 
between the pure water supply hedging and flood hedging, and continuously across the 
intermediate feasible blended hedging area (Figure 4.10). 
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Figure 4.10 Hedging Rules for water supply and flood control, standard water supply 
operating policy (dashed thicker line) and minimize flooding frequency policy (thicker line) 

The mathematical formulation below can optimize the overall cost with blended hedging 
ܼ, which includes minimizing negative water supply benefits (݊݅ܯ	ሺെܼ௪௦ሻ ൌ  ௪௦) andܼ	ݔܽܯ
expected downstream flood damage costs (݊݅ܯ	ܼ), summed over current and future stages.  

Min ܼ ൌ ሺെܼ௪௦ሻߙ  ሺܼሻߚ ൌ ௨௧ܤ൫െߙ െ ௨௧௨൯ܤܧ  ௨௧ܥܦ൫ߚ   ௨௧௨൯    (4.15)ܥܦܧ

Subject to: 

ܳ  ܳ  0                                                                                                                   
(4.16) 

ܵ െ ܳݐ  0                                                                                                                 
(4.17) 

ܵ െ ܳݐ  ݇                                                                                                                 
(4.18) 

ܵ െ ܳݐ  ௦ܸ െ ܳ௦ݐ௦  0, ∀	݅ ൌ 1: ݊                                                                       
(4.19) 

ܵ െ ܳݐ  ௦ܸ െ ܳ௦ݐ௦  ݇, ∀	݅ ൌ 1: ݊                                                                       
(4.20) 

where ܤ௨௧ is the current benefit from water supply delivery; ܤܧ௨௧௨ is the future expected 
benefit from carryover storage and forthcoming inflows; ܥܦ௨௧ and ܥܦܧ௨௧௨ are the 
current flood damage cost from pre-release and future expected damage cost from extra available 
storage and oncoming storm releases, as discussed previously (Eqn. 4.1.b). These four costs are 
all functions of current stage hedging release ܳ. ߙ and ߚ are weights of water supply and flood 
damage in the overall objective. The other parameters are the same as previous discussion for 
flood hedging pre-releases only. 

Physical constraints include: Total release at current stage is non-negative (Eqn. 4.16); 
reservoir’s storage at current stage is between its minimum 0 and maximum reservoir capacity ݇ 
(Eqn. 4.17 and 4.18); reservoir’s storage at future stage is between 0 and ݇ (Eqn. 4.19 and 4.20). 

This optimization formulation for developing blended hedging rules depends primarily on 
the weights of water supply and flood damage in the overall objective and forecast water 
availability at future stage. This should be further discussed. 

Through enumeration over a range of possible current releases or some non-linear search 
algorithms can solve this optimization for optimal blended hedging releases and develop blended 
hedging rules for reservoirs operating for both water supply and flood control. A optimal blended 
hedging release െܳ  ܳ

∗  ܶ ⁄ݐ െ ܳ is for water supply hedging, as the reservoir tends to 
release less than water availability at current stage and save water for future stage beneficial use. 
Flood hedging has an optimal blended hedging release 0  ܳ

∗  ܵ ⁄ݐ , as the reservoir tends to 
release more than water availability at current stage and increase available reservoir capacity for 
future stage water storage. Such blended hedging rules are more applicable for long-term water 
delivery planning where future water availability is rather uncertain. 
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4.7 Conclusions and Discussions 

Flood hedging involves making water releases in advance of a coming flood event to make 
additional flood storage capacity available in the reservoir, as a way of reducing the probability 
of more severe flooding. Such pre-releases can involve the likely loss of water that would have 
value for water supply and might also involve pre-releases large enough to create small floods or 
small increases in downstream levee failures. Optimal flood hedging pre-release would minimize 
the overall expected damages to downstream areas. This paper develops an optimization 
approach for flood hedging pre-releases for a single reservoir, given an ensemble forecast of 
coming storms. Engineering uncertainty is incorporated considering levee overtopping and 
internal structural failures. According to the likely flood risk from pre-release and storm release, 
forecasted storms are divided into small, intermediate and large storms. Theoretical conditions 
for optimal flood hedging are then derived that equalize the marginal damages from current pre-
release and the marginal expected damages from future storm releases. Large overwhelming 
storms do not affect the optimality of flood hedging pre-releases. The theoretical optima and its 
implications are derived and demonstrated. Additional economic costs from lost water supply 
storage could reduce the optimal flood hedging pre-release. 

A convex overall expected failure damage from flood releases is a necessary condition for 
optimal flood hedging, which is primarily affected by the downstream levee failure probability 
function, the probability distribution of storm sizes, and the flood damage function. Flood 
hedging releases can only be optimal if flood or water supply losses from near-term releases are 
disproportionately smaller than consequent loss reductions from intermediate, but not 
overwhelming floods; this is a necessary, but not sufficient condition. There also must be a 
sufficiently high probability of large inflows requiring additional flood storage capacity created 
by pre-releases to prevent major flood damage (large, but not overwhelmingly large storms). 

In some situations, flood reservoir operations should include hedging pre-releases, where 
reservoir releases are increased beyond the base channel capacity to reduce the overall likelihood 
of still higher flood releases from later storms. These flood hedging operations have some 
similarities with the water supply hedging operations in trading off between present and future 
benefits and risks. 

In actual flood reservoir operations, there is often a reluctance to make large pre-releases 
that impose downstream damage as a way of reducing overall flood risk. This reluctance can be 
political in terms of those certain to be flooded downstream versus the praise from those who 
might be saved because of such pre-releases. This raises some institutional difficulties in terms 
of the ability of operators to follow more optimal risk-based operations. 
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For the minimization formula in Eqn. 4.6 and the constraints in Eqn. 4.7 to Eqn. 4.9, we 
derived the Lagrangian in Eqn. 4.10. The KKT conditions for this optimal pre-release problem are 
below. 

1. Gradient condition 
డ

డொ
ൌ 0  

ൌ െ ܿ
ௗ	ሺொሻ

ௗொ
െ	 ܿ

	ௗൣଵି	ሺொሻ൧ቂ∑ ∗	ሺொೞሻ
್
సೌశభ ା∑ 


స್శభ ቃ

ௗொ
 ∑ ߣ ⁄ݐ


ୀଵ െ ାଵߣ ⁄ݐ   ାଶ  (A.1)ߣ

2. Feasibility conditions (optimization constraints) 

െܳ  ሺ݇  ܳ௦ݐ௦ െ ௦ܸ െ ܵሻ ⁄ݐ , ∀	݅ ൌ 1: ݊                                                              (A.2) 
ܳ  ܵ ⁄ݐ                                                                                                                       (A.3) 
െܳ  0                                                                                                                          (A.4) 

3. Complementary slackness 

ൣሺ݇ߣ  ܳ௦ݐ௦ െ ௦ܸ െ ܵሻ ⁄ݐ  ܳ൧ ൌ 0, ∀	݅ ൌ 1: ݊                                                     (A.5) 
ାଵ൫ܵߣ ⁄ݐ െ ܳ൯ ൌ 0                                                                                                   (A.6) 
ାଶሺ0ߣ  ܳሻ ൌ 0                                                                                                          (A.7) 

4. Non-negativity 
ߣ  0, for	݅ ൌ 1: ݊  2                                                                                                  (A.8) 
ܳ  0                                                                                                                            (A.9) 

An optimal set of ܳ and ߣሺ݅ ൌ 1: ݊  2ሻ would satisfy all these KKT conditions. The 

Lagrange Multiplier ߣ ൌ
ࢠࣔ

࢈ࣔ
 (ܾ is the right hand side of each constraint, ݅ ൌ 1: ݊  2) is the 

change in the minimized objective function if constraint ܾ is changed. ߣ is also named shadow 
price or dual variable which can tell the shadow value or willingness to pay for each physical 
constraint.  
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Conclusions 
 
There is a need for optimal design of levee and flood control systems with reservoir 

operations, as significant components of the broad flood management portfolio. A variety of 
preparatory, response and recovery actions, and protection and vulnerability reduction actions 
within each category, should be implemented properly. Optimal designs of each individual action 
and their integration can provide economic benefits to the entire flood management system. This 
research developed new optimization design methods for individual flood management options, 
primarily with economically Risk-based analysis and Benefit-cost analysis and with physically 
technical designs.  

Key contributions of this work include developing optimization models for designing new 
or evaluating existing single levees and simple levee systems with the well-known overtopping 
failure and the more frequent intermediate geotechnical failure, strategically analyzing the best 
levee system designs with different types of games and the way to achieve a system-wide 
economically optimal solution and to prevent inefficient outcomes, and developing hedging rules 
for optimal flood hedging pre-releases of a single reservoir to protect future possible large storms 
by creating a current small storm.  

Since many assumptions and simplifications were made in this research, future studies 
should address these limitations in each individual work to help develop more optimal integrated 
flood management.  

1. Potential damage cost in the entire work is assumed constant and to occur when a levee 
fails. Normally, damage cost should be a non-decreasing function of river flow or water 
level within the leveed channel. A wider range of flood damage cost functions should 
be used in future studies. 

2. Channel geometry, hydrograph routing along a river channel, levee fragility curves and 
levee failure modes would affect single levee and simple levee system designs that 
would be benefit from more general representations. As longer levees should be more 
likely to fail, future work on optimal designs of levee(s) should include the effect of 
levee length. 

3. Levee failure probability changes over time as a levee’s internal structure and external 
conditions evolve. So future study can analyze the dynamic evolution of the levee 
system design game, particularly changes of the resulting equilibriums and the Pareto-
optimal outcomes.  

4. Game theory can be applied to conflicting complex levee systems that involve multiple 
players to predict the different behaviors of each individual player and their coalitions, 
for example a multi-reach levee system with conflict between upstream and 
downstream land owners, and a ring levee system that each player is in charge of one 
levee section. 

5. Blended hedging releases considering both hedging for water supply and for flood 
control could be developed for long term water release planning. The basic principle for 
optimal blended hedging releases should be balancing the current overall benefit/cost 
and the future overall benefit/cost. 

6. Flood hedging pre-releases for a system with multiple correlated reservoirs, in series 
and/or in parallel, could be developed. Such hedging pre-releases involve the 
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economically beneficial trade-off among different reservoirs and that between current 
and future stages. 

The optimally designed levee and flood control systems, which in this study have been 
developed with case studies in California, can be applied widely elsewhere. The Risk-based 
analysis and Benefit-cost analysis developed here for levee and flood control system design 
should, in principle, be extensible to designs of other individual flood management actions, 
which can be contrasted with the actions to manage other types of natural hazards, such as 
droughts and earthquakes. More importantly, these developed individual flood management 
actions can help design integrated flood management systems, which may require each action 
being optimally designed as part of an optimized portfolio of actions, meanwhile considering 
environmental and other water supply objectives for a broader range of beneficiaries. 

 


