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ABSTRACT

Contemporary reservoir systems often require operators to meet a variety of objec-
tives, which frequently complicate water management decisions. In addition, many
reservoir objectives have non-linear relationships and are difficult to implement using
traditional optimization techniques. A practical application of multi-objective opti-
mization is developed for Folsom Reservoir near Sacramento, California where water
delivery, hydropower and downstream temperature control are desired. In the summer
and early fall fishery habitat is managed by regulating river temperatures downstream
of Folsom reservoir. Downstream temperature is adjusted by the volume and location
of release from the reservoir. However, temperature management can impose a cost
to hydropower generation if colder temperature water bypasses the hydropower tur-
bines. The objectives are to minimize delivery target deviation, minimize downstream
temperature target exceedance, and maximize hydropower generation. In this appli-
cation, optimal seasonal reservoir release decisions are found using a multi-objective
evolutionary algorithm and a one-dimensional hydrodynamic reservoir temperature
model. Seasonal reservoir release policies, June through November, from two scenar-
ios are examined to evaluate tradeoffs between objectives. Results suggest alternate
release strategies to minimize costs to water delivery, temperature target exceedance,
and hydropower generation. Model sensitivity, limitations and recommendations for
future development are also discussed.
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1. INTRODUCTION

The United States has over 6,390 large reservoirs, many which are designated as
multi-purpose systems operating for hydropower generation, irrigation, water supply
and flood control. Because multi-purpose reservoirs serve more than one use and uses
often conflict, they must frequently compromise each individual objective. Multi-
objective reservoir systems often perform more poorly than anticipated, due to the
complexity of operating such systems with conflicting purposes (World Commission
on Dams, 2000).

California has a complex surface water supply system which includes 20 state
and federal reservoirs. California’s federal storage projects have a variety of officially
recognized purposes including: river regulation, navigation, flood control, irrigation
and domestic use, fish and wildlife mitigation, protection and restoration, power and
fish and wildlife enhancement (U.S. Bureau of Reclamation, 2004). To emphasize
the economic importance of this system, in the year 2000, the state as a whole used
42.2 billion cubic meters (BCM) of water supplies for farming and agriculture, 11
BCM for urban water use, and 48.6 BCM for environmental purposes (California
Department of Water Resources, 2005). As a result, in part or whole, California is the
largest agricultural producer in the nation, the most populous, and the most popular
travel destination in the United States (California Department of Water Resources,
2005). Also in the year 2000, California’s federal reservoir systems generated over 6
billion kWh of hydroelectric power (Linenberger, 2002). Average total hydropower
generation accounts for nearly a quarter of the power in the state. In addition,
environmental resources related to riparian and wetland areas such as bird watching,
fishing, hunting or other wildlife recreation in California is a hundreds of millions of
dollars a year industry (California Department of Water Resources, 2005).

Many of Californias large reservoirs are multi-purpose systems which include
environmental habitat protection. For example, hydropower operations on river sys-
tems can impose stressful temperature conditions for some species of fish. In other
regions of the west, sustaining Fall-run Chinook salmon in the long-term is thought
to require modifying river and reservoir temperatures to maintain a suitable thermal
regime (Sauter et al., 2001). Likewise in California, temperature control devices have
been added to allow reservoir operators to blend releases from various depths to pro-
vide temperatures that better support a habitat for targeted fish and fish hatcheries
(U.S. Bureau of Reclamation, 2004). This exemplifies the increase in the complexity
of reservoir operation due to conflicting reservoir purposes in California’s reservoir
systems.

Although more reservoir purposes make broader use of available resources,
they increase the decision making burden on reservoir operators and exacerbate sub-
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optimal reservoir operations. Greater attention and understanding of conflicting wa-
ter demands between anthropogenic and environmental systems increase the impor-
tance and motivation of efficient water system operations (Wik, 1995; Howitt and
Lund, 1999). Numerous investigations have examined methods to optimize reservoir
policy decisions (Labadie, 2004; Yeh, 1985). Recently, non-traditional optimization
methods, such as genetic algorithms, have gained popularity with multi-objective
problems to overcome hindrances of traditional methods (Deb, 2001).

This thesis presents an application of multi-objective genetic algorithm op-
timization techniques with a one-dimensional hydrodynamic reservoir temperature
model to find better temperature dependent reservoir release policies. The optimiza-
tion is designed for a single reservoir with multiple objectives and is applied to Folsom
Reservoir near Sacramento, California. The purpose of this work is to find a set of op-
timal solutions and tradeoffs among water supply release quantities, reservoir release
temperature and the quantity of hydropower generation. This paper investigates pre-
vious research and application of water quality and optimization modeling followed
by details of Folsom Reservoir and its operation. Simulation and optimization model
formulations, application, and results also are presented. Finally, the thesis discusses
the analysis of the model application, conclusions and recommendations for further
study.

1.1 Previous Water Quality Modeling and Optimization

Past water quality and optimization modeling methods are examined for technique,
efficiency, and limitations for application to Folsom Reservoir. Previous research and
application have focused on classical methods, joining water quality with systems
planning and analysis to seek efficient reservoir operation. Although reservoir infras-
tructure improvements increase efficiency, additional reservoir objectives increase the
difficulty of reservoir operation. Studies examine various water quality parameters
and solution techniques for optimal reservoir operation. Traditional optimizations of
reservoir water quality operation use linear programming techniques to include dis-
solved oxygen and biochemical oxygen demand control (Loucks and Jacoby, 1972) or
reliability programming (chance-constraint) for salinity control (Orlob and Simonovic,
1982).

A pioneer of water quality and water quantity optimization includes a study
by Loftis et al. (1985) that explores optimal reservoir release for a system of two
lakes, one affected by mine drainage. This study demonstrated a method to identify
optimal quality while meeting quantity constraints by deciding reservoir releases from
varied vertical depths to simulate selective withdrawal ports from the reservoir outlet
structure. Typically, water quality and optimization models of the reservoir system
are separated and iteratively solved for, as is this study.

Other researchers have investigated similar water quality and water quantity
optimization using a variety of solution techniques and applications. A similar in-
spection of water quality and water quantity optimization is in the Murray-Darling
basin in Australia. Dandy and Crawley (1992) developed a linear optimization model
to allocate water releases to minimize salinity impacts downstream. Related research
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includes regional water distribution system optimization and includes reservoirs using
water quality objectives. Mehrez et al., (1992) focus is on real-time operations rather
than planning scenarios for service to agricultural and urban users. A network opti-
mization was used to allocate water in the distribution system from a variety of sources
(surface and groundwater) to meet water quality requirements of the recipient at min-
imal cost. The objective is to minimize daily operational costs (desalination, dilution
with higher quality water, etc.) by modeling hourly operations for a 24 hour period.
Hayes et al. (1998) examined improving water quality downstream from hydroelectric
power plants in the Cumberland River basin of Virginia and Tennessee. Poor reser-
voir water quality (dissolved oxygen and temperature) frequently affects river reaches
downstream of chains of sequential reservoirs. A combined water quantity and qual-
ity network algorithm generated optimized hydroelectric and water quality release
policies by maximizing the hydroelectric benefits and minimizing the water quality
penalties. Detailed operational, flood space, power generation and quality constraints
describe the network system. Thus far, studies have addressed quantity and quality,
but not uncertainty. An investigation by de Azevedo et al. (2000) presents a study
for river basin planning and incorporates hydraulic and physical properties, chemi-
cal properties, boundary conditions and sink/source uncertainties. The study in the
Piracicaba River basin in Brazil incorporates a multi-reservoir optimization (using a
linear network solver) and water quality routing simulation for wastewater discharge,
agricultural, municipal and industrial uses. An ensemble of Monte Carlo realizations
was used to evaluate the uncertainty.

These optimization schemes are commonly hampered by computational limita-
tions, compromised objective functions, and inefficient solution schemes (Deb, 2001).
Traditional optimization assumptions also can impose undesired decisions and results.
Single optimal solutions require either “an accept or reject” response, often caused by
optimization techniques that inherently oblige the analyst to make decisions a priori
(Cohon, 1978). Table 1.1 provides a list of multi-objective optimization classifica-
tions and their respective solutions and techniques based on information presented in
Cohon (1978), Deb (2001), Miettinen (1999) and Collette and Siarry (2003). Desired
optimization techniques provide a set of solutions, relieve the analyst from decision
making, and provide the decision maker a variety of better-performing alternatives.

As previously described, many multiple objective optimizations are solved with
compromising procedures due to limitations in solution methods. Although most
practical problems are multi-objective, it is common for problems to be solved with
traditional methods which are altered single objective optimization solution methods
(Deb, 2001). Some limitations of traditional approaches as summarized by Deb, 2001:

1. Only one Pareto-optimal solution can be expected to be found in one simulation
run of a classical algorithm.

2. Not all Pareto-optimal solutions can be found by some algorithms in non-convex
multi-objective optimization problems.

3. All algorithms require some problem knowledge, such as suitable weights or
target values.



4

Table 1.1: Types of Multi-Objective Optimization Classifications
Classification Flow of

Decision
Information

Solution Technique Optimal So-
lution

No-Preference No information
from Decision
Maker

Method of Global Criterion;
Multi-objective Proximal
Bundle

Single
solution

A Posteriori Analyst to
Decision Maker

Weighting Method;
ε−Constraint; Hybrid;
Weighted Metrics;
Achievement Scalarizing
Function Approach

Range of
solutions
(set)

A Priori Decision Maker
to Analyst

Value Function Method;
Lexicographic Ordering;
Goal Programming

Range of
solutions
(set)

Interactive Iterative
(Analyst to
Decision Maker
to Analyst to
Decision Maker
etc.)

Interactive Surrogate Worth
Trade-Off;
Geoffrion-Dyer-Feinberg;
Sequential Proxy
Optimization; Tchebycheff;
Step; Reference Point;
GUESS; Satisficing
Trade-Off; Light Beam
Search; Reference Direction
Approach; NIMBUS;
Others

Single
solution

Source: Cohon (1978), Deb (2001), Miettinen (1999), and Collette and Siarry (2003).

Multi-objective evolutionary algorithms are particularly well suited for problems that
are non-linear and where traditional methods would require impractical computa-
tion time. Common issues to practical multi-objective water quality optimization
problems include (Dorn and Ranjithan, 2003):

1. Multiple conflicting objectives,

2. Need for efficient solution algorithms to reduce simulation runs,

3. Techniques that can manage non-linear solution space, and

4. Accurate tradeoff results.

Other common difficulties using classical multi-objective optimization methods in-
clude (Deb, 2001):

1. Initial solution influences convergence to optimal solution,
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2. Search mechanisms that get “trapped” in local optima,

3. Non-robust optimization algorithms,

4. Inefficient discrete search space techniques, and

5. Inefficient use of parallel machine configuration.

These limitations suggest using alternative methods to solve multi-objective optimiza-
tion problems that avoid compromising the integrity of the objectives and provide the
desired optimal solution set.

Water resources and optimization studies using alternative optimization tech-
niques is a relatively new and growing field of research. Water resources optimization
applications can be solved by alternative techniques such as swarm-based (honey-bee
mating) (Haddad et al., 2006) or other heuristic approaches such as ant colony opti-
mization algorithms (Jalali et al., 2007). A technique called evolutionary or genetic
optimization for multi-objective and non-linear problems also circumvents traditional
optimization limitations. John Holland first conceived of evolutionary algorithms
(EA) in 1975 and David Shaffer completed the first application in 1984. In 1989
David Goldberg’s book on multi-objective evolutionary algorithms (MOEA) popu-
larized the technique and as a result, the early to mid 1990s were an active pursuit
of MOEA research (Deb, 2001).

Evolutionary algorithms stem from the idea that optimal solutions can be
found by evolving a population of solutions in a Darwinian manner. Thomas Bäck
(1996) explains that “evolutionary algorithms are a class of direct, probabilistic search
and optimization algorithms gleaned from the model of organic evolution.” In gen-
eral, a numerical evolutionary algorithm for multi-objective problems consists of a
random population of solutions that mate, reproduce and discourage poor solutions
in successive generations, with each generation of solutions converging on the Pareto
optimal front.

Evolutionary algorithms also can address non-linear search spaces. For exam-
ple, groundwater monitoring or remediation applications are well suited to multi-
objective evolutionary optimizations because they can involve many parties with
conflicting components as well as a non-linear search space. Reed and Devireddy
(2004) investigate a solution to groundwater monitoring for a polluted aquifer us-
ing a NSGA-II algorithm. Others such as Cedeño and Vemuri (1996) find optimal
remediation of a contaminated aquifer using the groundwater model SUTRA and a
multi-niche crowding algorithm.

Water pollution and control is also a theme in surface water optimization
applications. Multi-objective genetic algorithms have been used to evaluate water-
shed growth and water quality where urban land use and pollution were competing
objectives. Dorn and Ranjithan (2003) used a two objective genetic optimization al-
gorithm (NSGA-II) and a one-dimensional stream channel, fate and transport water
quality model. This investigation found how land use could be changed while still
maintaining a desired level of water quality and was further researched by Bekele
and Nicklow (2005). A similar study in the Tseng-Weng river basin in Taiwan used
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three objectives (using two sub-models) to maximize constituent assimilative capac-
ity of the river, minimize treatment cost and maximize the river flow for recreational
purposes (Chen and Chang, 1998). Multi-objective genetic evolutionary algorithm
techniques that improve the solution and computational speed are highly desired for
water resources problems. Reed and Devireddy (2004) report an increase in sim-
ulation efficiency by using e-dominance archiving and automatic parameterization
techniques.

Algorithms listed in Tables 1.2 and 1.3 identify non-elite and elite multi-
objective evolutionary programs based on information presented in Deb (2001). Evo-
lutionary algorithm evaluations by Zitzler et al. (2001) suggest Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001) and the Non-dominated Sorted
Genetic Algorithm II (NSGA-II) (Deb et al., 2002) out perform other algorithms
yielding the most accurate results. Dorn and Ranjithan (2003) also found that the
NSGA-II was more efficient than a Hybrid GA/local search algorithm by an order of
magnitude. NSGA-II also was insensitive to a random seed selection and small pop-
ulation pools (Dorn and Ranjithan, 2003). Preliminary results indicate that NSGA
using elitism and SPEA perform comparably, the advantage being the elitism tech-
nique (Zitzler et al., 2001).

Table 1.2: Non-Elitist Multi-Objective Evolutionary Algorithms
Abbreviation Non-Elitist Multi-Objective Evolutionary Algorithms

VEGA Vector Evaluated Genetic Algorithm
VOES Vector-Optimized Evolution Strategy
WBGA Weight-Based Genetic Algorithm
- Random Weighted Genetic Algorithm
- Multiple Objective Genetic Algorithm
NSGA Non-Dominated Sorting Genetic Algorithm
NPGA Niched-Pareto Genetic Algorithm
- Predator-Prey Evolution Strategy

Source: Deb (2001).

Table 1.3: Elitist Multi-Objective Evolutionary Algorithms
Abbreviation Elitist Multi-Objective Evolutionary Algorithms

- Rudolph’s Elitist Multi-Objective Evolutionary Algorithm
NSGA-II Elitist Non-Dominated Sorting Genetic Algorithm
DPGA Distance-Based Pareto Genetic Algorithm
SPEA (2) Strength Pareto Evolutionary Algorithm
TDGA Thermodynamical Genetic Algorithm
PAES Pareto-Archived Evolution Strategy
- Multi-Objective Messy Genetic Algorithm

Source: Deb (2001).
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2. FOLSOM RESERVOIR

In the foothills of California’s Sierra Nevada range, at the base of the American River
watershed (4,908 km2), is Folsom Reservoir (as shown in Figure 2.1). The major
tributaries, North and South Forks of the American River, supply water to the reser-
voir year round. Holding back the 1.2 billion m3 capacity reservoir is the main dam,
a 427 m (1,400 ft) long gravity dam constructed of concrete, with earth embank-
ments on either side. Lake Natoma located 11 river km (7 miles) downstream from
Folsom Reservoir functions as a single reservoir that re-regulates Folsom Reservoir
hydropower releases and supplies water to the Nimbus Fish Hatchery (U.S. Bureau of
Reclamation, 2004). Further downstream past the City of Sacramento, the American
River confluences with the Sacramento River and flows through California’s Central
Valley to the Sacramento-San Joaquin Delta. Prior to the confluence, at river km 15
(mile 9.4), is the Watt Avenue Bridge landmark along the American River and is an
important location for temperature regulation discussed later in the report.

Nearly 40% of the runoff received by Folsom reservoir is snowmelt which usu-
ally peaks in April or May (U.S. Bureau of Reclamation, 2004). Observations at
nearby weather stations (from Sacramento Executive Airport) provide an insight to
the climate which significantly influences reservoir conditions (Table 2.1) (NOAA
National Climatic Data Center, 2005). The trends reveal hot, clear, sunny, and dry
conditions in the summer months while the winter months are cooler, cloudier, and
wetter.

Although development throughout modern history along the American River
and riparian corridor has disturbed aquatic habitat and fisheries, they remain an
integral part of the local ecosystem. Two species, the Central Valley Steelhead (On-
corhynchus mykiss) and the Fall-run Chinook salmon (Oncorhynchus tschawytscha)
are important fishery populations on the American River. Sensitive periods for these
fish species are times of reproduction, egg incubation and juvenile rearing. Adult
Steelhead arrive to spawn late fall to spring. Juvenile Steelhead reside in the lower
American River for a year or more before migrating to the ocean between late winter
and early summer. The Nimbus Fish Hatchery is also essential to sustaining this
species; Steelhead counts of returning adults indicate that nearly all originated from
the facility (U.S. Bureau of Reclamation, 2004b). Similarly, Fall-run Chinook salmon
spawn and rear juveniles. However, as observed on the Columbia River, the Chinook
are particularly sensitive to temperature (Sauter et al., 2001). On the American River,
late October or early November begins typical spawning and incubation periods for
the salmon (Reclamation, 2004).
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Figure 2.1: Area Map of the American River Watershed and Folsom Reservoir

2.1 History of Folsom Reservoir

The City of Sacramento, situated just south of the lower American River and east
of the Sacramento River, is in an area where topography and sedimentation from
hydraulic mining contributed to frequent flooding. Sacramento’s early permanent
structures were inundated frequently as far back as the 1850’s. The creation of the
Reclamation and Swampland Act of 1861, the Green Act of 1868, and motions for
valley-wide flood control planning in the 1880’s attest to early attempts to tame
and control floodwaters (Hundley, 2001). Other early interests on the American
River, particularly industry, appeared in the early 1860’s. Horatio Gates Livermore
conceived and built the original Folsom Dam and power canal in 1893 to support his
logging business. His sons carried on their father’s legacy and constructed the first
electric powered saw mill in the United States. Later the Livermore brothers and the
General Electric Company built the longest hydroelectric high voltage transmission
line in the world (at the time), in 1895, from Folsom to Sacramento (Linenberger,
2002).
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Table 2.1: Mean Observed Climate Data for Sacramento Executive Airport, Califor-
nia

Month Clear
Days
(Mean)

Sunshine
(As a
% of
possible
days)

Daily
Max.
temp.
32.2◦C or
higher
(Mean)

Ave.
wind
speed
(km/hr)

Ave.
Relative
Humidity
(Morn
and
After)

Precip.
0.25 mm
or more
(Mean
no. of
days)

No. of
Years

49 46 55 55 19 66

Jan 7 48 0 11.1 91/71 10
Feb 8 65 0 11.7 89/61 9
Mar 10 74 0 13.5 86/52 9
Apr 12 82 * 13.8 83/44 5
May 17 90 5 14.4 83/38 3
Jun 22 94 12 15.4 78/32 1
Jul 27 97 22 14.3 77/30 *
Aug 26 96 19 13.5 78/29 *
Sep 24 93 13 11.9 77/31 1
Oct 19 86 3 10.3 80/37 3
Nov 10 66 0 9.7 87/56 7
Dec 8 49 0 10.3 89/68 9
Annual 188 78 74 12.6 83/46 58

Note: An asterick (*) indicates a vaule greater than zero, but less than 0.5.
Source: NOAA National Climatic Data Center (2005).

At the turn of the twentieth century, California’s water resource requirements
were identified and quantified. Edward Hyatt, State Engineer, devised the California
“Central Valley Plan” amidst the Great Depression of the 1930’s and a severe drought
in California from 1929 to 1935. The plan called for hydroelectric power generation
and fresh water to repel saline waters from the Sacramento-San Joaquin Delta area.
The plan was designed to benefit agriculture, urban and industrial users and to create
jobs for the unemployed. In 1933 the Central Valley Project Act became a federal
project, due to unsuccessful financing by the state (Hundley, 2001).

Nearly a century after the first planned flood protection for the region, the
United States Army Corps of Engineers completed construction of Folsom dam and
reservoir in 1956. The primary purpose of the facility was to alleviate flood damages
to the Sacramento area. By the 1950’s the Sacramento area was a major center for
agriculture, industry and urban settlement and had water demands on the reservoir
much greater than flood control. Ultimately, operation of Folsom Reservoir became
the responsibility of the United States Bureau of Reclamation (Reclamation) and by
default an integral part of the California Central Valley Project (CVP) serving water
supply to both agricultural and urban users (Reclamation, 2004).

Stream channel obstructions, habitat degradation and over fishing are common
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reasons given for California’s declining anadromous fishery populations (Hartman et
al., 2000). In response to greater concerns for declining anadromous fish populations
in California and on the American River, the Nimbus Fish Hatchery was authorized
and built in 1955 downstream from Folsom Reservoir. Despite efforts to maintain
sustainable fishery populations, two American River fish populations continued to
dwindle; the Central Valley Steelhead a threatened species at the federal level and
a species of “special concern” at the state level and the Fall-run Chinook salmon (a
candidate of the endangered species list) (USFWS, 2003). The Endangered Species
Act (ESA) of 1978, one of the strictest regulatory protection laws for endangered and
threatened species, provides enforceable habitat protection by fishery management
agencies. The ESA also protects quantity and quality of water to aquatic populations
including temperature of water in the lower American River (Reclamation, 2004).

At present, increasing numbers of reservoir operators must respond to new
requirements and multiple objectives (WCD, 2000). Reclamation operates Folsom
Reservoir to “provide conservation of water in the American River for flood control,
fish and wildlife protection, recreation, protection of the [Sacramento-San Joaquin]
Delta from intrusion of saline ocean water, irrigation, and [municipal and industrial]
water supplies, and hydroelectric power generation” (Reclamation, 2004). Although
complex and conflicting objectives are necessary to maintain a balance of the natural
resources used in the American River watershed or other areas, they create a challenge
for efficient reservoir operation.

2.2 Folsom Reservoir Operations

The timing, quality and quantity of releases from Folsom Reservoir are influenced
both locally and as far away as the Sacramento-San Joaquin Delta. A total of ap-
proximately 0.6165 BCM (billion cubic meters) (500 TAF) of water per year is drawn
from Folsom Reservoir to meet water demands in the CVP system (Reclamation,
2005). Local water demands on the lower American River are subject to contracts
and water right requirements of urban and agricultural users in nearby Sacramento
and neighboring areas. The “Water Forum” established by interested parties within
the American River watershed, specify demands on the system given specific hy-
drologic conditions (California Department of Water Resources, 2005). Regulatory
requirements such as the State Water Resources Control Board (SWRCB) Decision
839 and the federal Central Valley Project Improvement Act (CVPIA) Section 3406
(b)(2), specify minimum allowable flows in the lower American River. Water sports
and facilities at Folsom Reservoir, downstream at Lake Natoma, and on the lower
American River also are present. Recreation at these facilities depends on reservoir
water levels and flows for activities such as boating, rafting, and fishing (Reclama-
tion, 2004). More geographically distant policy regulations like the revised SWRCB
Decision 1641 specify Sacramento-San Joaquin Delta water quality and could require
Folsom Reservoir to release water to meet these requirements (SWRCB, 2000).

Two seasons dominate the operation of Folsom Reservoir, the wet season from
October to May and the dry season from June through September. The highest an-
nual storage volume occurs in the spring months where rainfall and snowmelt inflows
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are high and reservoir releases are low. Increasing reservoir releases and thermal
stratification begin in late May and early June. Increased solar radiation and low-
volume warm inflow in the summer could cause the epilimnion to reach temperatures
of 21◦C. Metalimnion and hypolimnion temperatures typically range between 12◦C –
21◦C and 9◦C – 11◦C respectively. Empirical evidence show warmer summer inflows
minimally mix with the hypolimnion thermal layer (Yaworsky, 2005). In summer, the
“cold pool” storage is most affected by diffusion of heat from warmer stratification
layers.

Folsom Dam has three general outlet structure types: hydropower penstock,
spillway gates, and flood outlet works (Table 2.2). The Folsom power plant can gener-
ate a maximum of 215 MW from three penstocks by releasing a total of approximately
245 m3/sec (Reclamation, 2004). Each penstock tower has some flexibility of opening
shutters at different elevations as indicated in Figure 2.2, known as the temperature
control device (TCD) which became fully functional in 2004. These outlets, con-
trolled by reservoir operators, can blend water from varying temperatures. Spillway
gates at the top of the dam structure are used to prevent water from overtopping the
reservoir or can release warm water from the top of the reservoir to conserve cooler
water for later in the year. Eight flood outlet works are also located lower in the dam
structure. Flood outlets have a total release of up to approximately 900 m3/sec. The
flood outlet works are typically used when an imminent reservoir flooding threat is
present, but also can be used for temperature control by releasing cooler water from
deeper locations within the reservoir.

Table 2.2: Folsom Dam Outlet Information
Quantity Outlet Location Elevation (m msl) Approximate

Maximum Flow
Rate (m3/s)

8 Spillway Radial
Gates

127 16,000

Penstock, All
Shutters Closed

122

Penstock, Upper
Shutters Open

111

Penstock, Middle
Shutters Open

103
3

Penstock, Lower
Shutters Open

87

245

4 Upper (Tier) River
Flood Outlets

84 457

4 Lower (Tier) River
Flood Outlets

64 457

Folsom Reservoir operators reserve releases from the reservoir for irrigation,
urban demands, and hydroelectric power during the dry season. However, riparian
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Figure 2.2: Folsom Reservoir Outlets and Temperature Control Device Schematic

and fish hatchery habitat uses are sensitive to water temperature during the same
period, the early summer through fall. Reclamations operation criterion specifies that
within available resources and capabilities, they will meet objectives set by NOAA
Fisheries and target a daily average temperature of 18.3◦C (65◦F) . This temperature
target is 31.2 km downstream of the reservoir between Nimbus Dam and the Watt
Avenue Bridge and is in effect June 1 to November 30 (Reclamation, 2004). The
temperature objective is to protect endangered fisheries and the rearing of juvenile
steelhead from temperature related stress and predators (Reclamation, 2004b). Man-
agement consideration also is given to the reservoir “cold water pool” to use later
in the year for fall-run Chinook salmon. Between November and December reservoir
release temperature management is usually no longer needed because the lake mixes
and thermally de-stratifies. This annual event coincides with the months of cooler air
temperatures and the lowest storage volumes (the result of summer supply use and
preparation for winter precipitation and flooding) (Washburn, 2005).

During the wet season the reservoir is managed to operate within flood control
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levels determined by the United States Army Corps of Engineers (USACE) and the
Sacramento Flood Control Agency (SAFCO) (Reclamation, 2004). Flood control
constraints are not imposed June through November. However, in the fall, Folsom
Reservoir is targeted for 0.43 billion m3 of storage in preparation for winter floods
(Washburn, 2005).
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3. FOLSOM RESERVOIR MANAGEMENT DECISIONS

Past investigations of Folsom Reservoir focus on optimal power generation and op-
timal multi-reservoir and multi-use operation (Mariño and Mohammadi, 1983; Mo-
hammadi and Mariño, 1984; Mohammadi and Mariño, 1984a). These and additional
challenges exist for Folsom reservoir operators. Operators determine the release poli-
cies for hydropower generation, water supply delivery and manage for periods of
temperature dependent environmental releases. Optimally, the desired temperature
water is sent through the penstock to generate hydropower as well. In June, Recla-
mation reservoir operators prepare the summer through fall release strategy. Current
reservoir operation is planned using expert judgment and trial and error modeling
to supply water demands and meet fishery requirements for the temperature control
period through the fall. These proposed release strategies are reviewed at monthly
meetings by Reclamation operators, temperature modeling experts, fisheries biol-
ogists and interested community members (Yaworsky, 2005). Adjustments to the
release schedule are made and updated monthly to factor in biological conditions.

In early summer, Reclamation operators prepare for temperature management
through the fall knowing a few initial conditions. Initial conditions known in June
are: (1) reservoir storage volume and (2) the reservoir temperature profile. Uncer-
tain parameters are inflow and outflow volumes, meteorological conditions, inflow
temperatures, and reservoir release withdrawal configurations (Reclamation, 2004b).
Estimated parameters, such as inflows and water demands are forecasted monthly for
an annual period and are updated each month by Reclamation (Reclamation, 2004).

An actual operation is discussed below to illustrate reservoir release configu-
rations. The initial condition of Folsom Reservoir for June 2001, a dry year, was an
elevation of 135 m msl and a storage volume of 858 million m3 (for comparison, June
2005, a wetter year, had an elevation of 142 m msl and 1.18 BCM of storage). The
temperature control device at Folsom Reservoir allows for the adjustment of release
elevations to the hydropower penstocks and attempts to manage the temperature
downstream of the reservoir. Reclamation’s operators initially released water from
the upper-most penstock configuration (see middle graphic in Figure 3.1). This pulled
water from the upper portion of the reservoir for release downstream. As anticipated,
summer solar radiation increased the temperature in the reservoir (top graphic in
Figure 3.1) and by mid-July the upper inlets were closed and the middle level of the
penstocks were used to pull water from a lower elevation in the reservoir. At the end
of August a mixed release configuration was used to blend water from the middle
and lower penstock inlets. The penstock inlets were re-configured once more in mid-
September to manage release temperatures using the lower penstock openings. The
last dry season operational configuration was in early November where hydropower
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generation was bypassed and the lower river outlet was used to send cooler water
downstream.

Daily minimum and maximum temperatures recorded at Watt Avenue Bridge
are illustrated in the lower graphic in Figure 3.1. As is shown in this example, the
daily maximum and minimum temperatures at Watt Avenue Bridge exceeded the
temperature target of 18.3◦C. Lower reservoir storage and warmer conditions seem
likely to have contributed to this outcome. The operation change at the lower river
outlet in early November released water from lower in reservoir and had a significant
effect on stream temperature at the Watt Avenue Bridge.
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4. MODEL FORMULATION AND DEVELOPMENT

Two separate modeling components were configured and integrated to find and ana-
lyze reservoir release decisions to meet three specific objectives. First, a water quality
model simulates and predicts water temperature within the reservoir. The second
model is a reservoir operations optimization routine which searches for an optimal
set of reservoir release solutions to best fulfill the combination of the three objectives:
water supply delivery, hydropower generation and downstream temperature control.
The formulation and development of each model is described below.

4.1 Dynamic Lake Model (DLM)

Reservoir water temperature is estimated by simulating lake dynamics given pre-
scribed release quantities and release depths. The UC Davis Dynamic Lake Model
(DLM), a one-dimensional hydrodynamic simulation with vertically distributed tem-
perature and water quality parameters, is used to estimate water temperatures of
lakes or reservoirs. This model also features advanced reservoir inflow dynamics that
improve the plunging and intrusion of inflows into the reservoir (Fleenor, 2001).

DLM simulates reservoir temperature profiles using stream inflows, meteoro-
logical inputs, such as solar, wind, air temperature and precipitation, and reservoir
releases from specified depths at the dam outlets. The temperature model is orga-
nized with dynamically adjusted vertical Lagrangian layers. Parameterized processes
such as heat, mass and momentum fluxes and mixing are linked to the layer structure.
Specific discussions of the DLM assumptions and physical processes are available in
Fleenor, 2001, Fleenor, 2005 and Imberger and Paterson, 1981. Both spatial and time
discretizations are dynamically adjusted to suit the systems response to changes as
small as 3 centimeters and as short as 15 minutes. The default output time step is
daily and layers are dynamically separated or joined as required during the simula-
tion. Simulation results reveal reservoir temperature contours through time or daily
temperature profiles.

General assumptions of the DLM model were investigated and found accept-
able for application to Folsom Reservoir. ArcMap c©Geographic Information System
(GIS) was used to determine the spatial dimensions of the reservoir and upstream
inflow components, as shown in Figure 4.1. The reservoir body is represented as a
uniform plan-view rectangular area (6.1 km long by 5.5 km wide) with eight sub-units
describing both the North and South Forks of the American River flowing into Folsom
Reservoir.

Five outlet locations were implemented in the model. The upper-most out-
let delivers water to the penstock for hydropower generation without blending water
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Figure 4.1: Folsom Reservoir and Plan View of DLM Configuration

from lower elevations. Next, three outlets represent the upper, middle and lower
temperature control device inlets to the penstock and a fifth outlet represents the low
elevation river outlet which bypasses hydropower generation. Inflow temperature,
inflow and outflow, climatic, and cloud cover data were retrieved from the Bureau of
Reclamation (Reclamation), California Data Exchange Center (CDEC), California Ir-
rigation Management Information System (CIMIS) and the National Weather Service
(NWS) respectively. Physical and biological model input data is listed Table 4.1 and
Table 4.2. Meteorological data inputs (Table 4.3) include short wave and long wave
radiation, air temperature, relative humidity, wind speed and precipitation. Long
wave radiation data were unavailable, but were estimated based on the fraction of
cloud cover in the sky and simulated water surface temperature.
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Table 4.1: DLM Physical Input Parameters
DLM
Parameter

Units Calibration
Period

Testing
Period

Data Source

Outlet
Structure
Configuration

Elevation (m) Constant Constant Reclamation

Folsom
Reservoir and
Channel
Geometry

Length (m) Constant Constant ArcGIS
(Reclamation
MPGIS)

Reservoir
Volume

m3 at 1.5 m
intervals

Constant Constant Reclamation

Temperature
Multiplier

Growth,
respiration,
and Death

Constant Constant Calibrated

Light
attenuation

Background/m Constant Constant Calibrated

Table 4.2: DLM Biological Input Parameters
DLM Pa-
rameter

Units Calibration
Period

Testing
Period

Data Source

Algal Growth Maximum
growth rate/d

Constant Constant Calibrated

Algal
Respiratory

Maximum
respiratory
rate/d

Constant Constant Calibrated

Algal
Mortality
Maximum

mortality
rate/d

Constant Constant Calibrated

4.2 DLM Calibration and Testing

DLM was calibrated for Folsom Reservoir on a daily time step for six months (June 1st
through November 30th) in the year of 2001. DLM was found to be most sensitive to
maximum layer thickness, light attenuation and algal growth parameters. However,
calibrated parameters were found to be within typical ranges. The six month period
corresponds to the warm and dry climate period with the greatest thermal activity.
This is also the time when reservoir operators design temperature dependent release
strategies. The Bureau of Reclamation collects Folsom lake vertical temperature
profile records for six locations at 1.5 m depth increments approximately twice a
month. Temperature profiles collected at the dam location were used to calibrate
the model from June 1, 2001 to November 30, 2001 using corresponding input data.
Eleven observed temperature profiles were compared to the simulated data in 2001
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(Appendix E). Calibrated results produced an average overestimation of temperature
by 0.37◦C. Maximum and minimum over and under estimation are 4.83◦C and 3.44◦C
respectively for any one simulated and observed comparison. The root mean square
error (RMSE) for the calibration period is 1.29◦C where 6% of the compared data
deviates above 1◦C and 2% of the compared data deviates above 2◦C. The average
difference between simulated and observed reservoir elevation is 0.05 m and a RMSE
of 0.12 m.

The DLM model calibration was tested using observed temperature profile
data June 1, 2005 through November 31, 2005. Again, eleven observed profiles were
compared to simulated data (Appendix E). The testing results revealed an average
overestimation of temperature by 0.18◦C and a RMSE of 1.37◦C. The model deviated
the most during periods of suspected algal blooms in the summer and at the end of
November when the reservoir de-stratified.

4.3 Multi-Objective Optimization Formulation

Each year temperature related reservoir operations are planned in preparation for the
early summer through fall, or until management for downstream temperature is no
longer possible. This planning process is described generally, as it could be applied at
locations with similar objectives and constraints. The reservoir temperature opera-
tion plan involves input from several parties with multiple and sometimes conflicting
objectives. The agency managing water supply is concerned with meeting their re-
sponsibility to deliver to water purveyors and meeting water flow or quality standards
downstream. Wildlife and fisheries agencies are concerned with their responsibility
to manage aquatic habitat and populations, especially those which are threatened or
endangered. Power agencies are also concerned about their responsibility to provide
power generation when customers need electricity. Other interests, such as recreation,
are also important for most reservoir systems, but are not addressed here to simplify
the number of objectives in the problem. The collective responsibilities or objectives
of water supply, fishery and power agencies are linked together by one resource. The
challenge is to supply sufficient information to decision makers to manage the re-
source, ideally in an optimal fashion. The difficultly of this problem are the conflicts
between the parties responsibilities. Three potential conflicts exist:

1. Water supply (which is warm in the summer months) is released to meet water
demands at the same time fish are sensitive to the water temperature

2. Releasing cool water from deep in the reservoir could provide the desired stream
temperature but also could potentially circumvent power generation

3. Releasing more water than the water demand may increase hydropower gener-
ation, but it may exhaust the cold water available for later stream temperature
maintenance

Several pieces of information are essential to planning for a six month (June through
November) reservoir release plan including: initial storage volume, initial reservoir
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temperature profile, estimated water demands and requirements, meteorology, pre-
cipitation, reservoir inflow, and river temperature targets.

A set of solutions which meet the water supply, wildlife and fishery, and power
agencies requirements for Folsom Reservoir is presented as a multi-objective optimiza-
tion problem. The optimization is designed to search for a set of optimal reservoir
release policies in a six-month (June 1st through November 30th) period. The optimal
release policy is based on three objectives:

1. minimizing deviations of water delivery demand target (volume)

2. maximizing hydropower generation (energy), and

3. minimizing the deviation of the water temperature target (days of violation).

An additional advantage of the Folsom Reservoir facility is the flexibility to blend
water from different elevations in the reservoir resulting in a more desirable release
temperature but also a more complex release plan. The mathematical representa-
tion of the multi-objective optimization is presented as a constrained optimization
problem:

Minimize Z (xij) = [z1 (xij) , z2 (xij) , z3 (xij)] ,∀ij ∈ Ω (4.1)

Where:

z1 (xij) =
T∑

t=1

(−Pt) (4.2)

z2 (xij) =
T∑

t=1

∣∣∣∣∣
(

Dt −
N∑

j=1

xij

)∣∣∣∣∣ (4.3)

z3 (xij) =
T∑

t=1

|(C −Wt)| (4.4)

Subject to:
Pt = φ (xij) (4.5)

Wt = φ (xij) (4.6)

0 ≤ xij ≤ Q (4.7)

The main objective function,Z (xij) in (4.1), is the minimization of decision
variable vector xij. The decision variable vector xij is the quantity of water released
in month i at an outlet location j, where the total number of outlets, N in equation
(4.3), for all values of i and j in the feasible region Ω. Also, the time step, t, is in
days where the total number of days is T .

The first objective, z1 (xij) in (4.2), maximizes the hydropower generation.
The relationship between the decision variable and hydropower generation, Pt in
(4.5) is represented by the general variable φ.

The second objective, z2 (xij) in (4.3), minimizes the sum of the absolute dif-
ferences of the monthly delivery forecast. The delivery forecast, Dt, is an expected
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volume of water to meet municipal, industrial, agricultural and environmental re-
quirements each month. This serves as a restraint on water storage to manage the
cold water assets and minimizes delivery shortages.

The third objective, z3 (xij) in (4.4), minimizes the sum of the degree days
exceeding the reservoir release temperature target. The objective is the absolute
difference between the target temperature, C, and the simulated temperature repre-
sented as Wt (equation (4.6)). The generalized variable φ in (4.6) is found, in this
application, using the DLM model. Equation (4.7) is a non-negativity constraint that
prevents negative outflow and flow from exceeding a maximum value of Q.

The number of decision variables, xij, varies for the application depending on
the storage elevation in the reservoir. The number of decision variables is the number
of outlet elevations capable of releasing water multiplied by the desired interval to
modify the reservoir release configuration. By increasing both the inlet locations and
the configuration interval, the number of decision variables increases and can affect
computational time.

A genetic algorithm is used to perform the multiple objective optimizations
described above. An overview of the evolutionary algorithm and the non-dominated
sorted genetic algorithm, NSGA-II, used to solve this problem is presented in Ap-
pendix A. The optimization consists of a series of modules which include population
initialization, sort, crowding distance, selection, crossover and mutation (Deb et al.,
2002).

The following describe details specific to this application of the NSGA-II al-
gorithm. First the population size is selected by the user and initialized by random
generation. The individuals or decision variables of the population are also bound
by user specified constraints (Appendix C). Next, the initialized population fitness
is calculated based on the objective functions. The population is then sorted by a
non-dominated sorting method. The notation below follows that of Deb et al. (2002).
The non-dominated sort begins with the first individuals of the population stored in
a set called P 1 where the individuals are the solutions or decision variables of the
objective functions. Subsequent individuals, p, are compared with individuals q of
set P 1. When p dominates, or out performs the fitness of an individual in P 1 then
q is removed from P 1. If the individual p is dominated by a member q in P 1, the
individual has no consequence on the sort and is ignored. If the individual p is not
dominated, then p is added to the set P 1. P 1 is the so called “non-dominated” so-
lution set after all individuals in the population are checked (Deb et al., 2002). The
following excerpt from Deb et al. (2002) describes the sort mathematically:

“P 1 = find non-dominated front (P )
P 1 = {1} include first member in P 1

for each p ∈ P ∧ p 6∈ P 1 take one solution at a time
P 1 = P 1 ∪ {p} include p in P 1 temporarily
for each q ∈ P 1 ∧ q 6= p compare p with other members of P 1

if p ≺ q, then P 1 = P 1

{q} if p dominates a member of P 1, delete it
else if q ≺ p, then P 1 = P 1 {p} if p is dominated by other members of P 1, do not
include p in P 1”
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Prior to selecting the next generation of individuals, the selection process
depends on both crowding distance and sort. Following the non-dominated sort,
the crowding distance of the individuals is calculated. The crowding distance is
defined as the “Euclidian distance between each individual in a [Pareto] front based
on their m objectives in the m dimensional hyper space” (Seshadri, 2005). The
number of objectives, m, will have a corresponding number of Pareto optimal fronts
and individuals for each front. The first and last individual of each sorted Pareto
front is assigned an infinite crowding distance and all others are initialized to zero.
For the remaining individuals, in equation (4.8) the crowding is calculated as based
on Deb et al. (2002):

I (i)distance = I (i)distance + (I (i + 1) .m− I (i− 1) .m) (4.8)

Where I (i) distance is the sorted individual of objective m and I (i) .m is the
value of the mth objective function of the ith individual in I.

The next generations of individuals are selected, as previously noted, based on
sorted rank and crowding distance. The NSGA-II selection uses a binary tournament
selection with a crowded-comparison-operator to choose a well spread population
of individuals. The partial order crowded-comparison-operator in equation (4.9) is
defined from Deb et al. (2002) as:

i ≺n jif (irank < jrank) or (irank = jrank) and (idistance > jdistance) (4.9)

Where irank and jrank are an individual’s rank from the non-dominated sort
and idistance and jdistance are the crowding distance from either the same or differing
m Pareto fronts. The next step in the process calls for genetic operations to mix and
morph the individual solutions for the offspring population. This is accomplished by
two methods: (1) simulated binary crossover and (2) polynomial mutation. Both are
described in an excerpt from Seshadri (2005):

“Simulated Binary Crossover:

c1,k =
1

2
[(1− βk) pl,k + (1 + βk) p2,k] (4.10)

c2,k =
1

2
[(1 + βk) pl,k + (1− βk) p2,k] (4.11)

Where ci,k is the ith child with kth component, pi,k is the selected parent and
βk (≥) is a sample from a random number generated having the density:

p (β) =
1

2
(ηc + 1) βηc , if0 ≤ β ≤ 1 (4.12)

p (β) =
1

2
(ηc + 1) βηc , if0 ≤ β ≤ 1 (4.13)

This distribution can be obtained from a uniformly sampled random number
u between (0,1). ηc is the distribution index for crossover (this determines how well
spread the children will be from their parents). That is:
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β (u) = (2u)
1

(η+1) (4.14)

β (u) =
1

[2 (1− u)]
1

(η+1)

(4.15)

Polynomial Mutation

ck = pk +
(
pu

k − pl
k

)
δk (4.16)

Where ck is the child and pk is the parent with pu
k being the upper bound

(the decision space upper bound and lower bound for that particular component) on
the parent component, pl

k is the lower bound and δk is [a] small variation which is
calculated from a polynomial distribution by using:

δk = (2rk)
1

ηm+1 − 1, ifrk < 0.5 (4.17)

δk = 1− [2 (1− rk)]
1

ηm+1 − 1, ifrk < 0.5 (4.18)

rk is an uniformly sampled random number between (0,1) and ηm is [the]
mutation distribution index.”

Finally, the next generation of individuals is created by joining the offspring
with the current generation based on their performance. The next generation is known
as the elitist population and is again sorted for non-dominance. All selected offspring
are joined to the current population. If the combined set exceeds the number of
members in the population then individuals are removed based on crowding distance
until the population has been reached. This new set of offspring becomes the next
parent generation which repeats the entire process of sorting, calculation of crowding
distance, selection, crossover, and mutation until the maximum number of user defined
generations is met (Deb et al., 2002).
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Table 4.3: DLM Hydroloby and Meteorology Input Parameters
DLM Pa-
rameter

Units Calibration
Period

Testing Period Data
Source

River Inflows m3/s June 1, 2001 –
November 30,
2001

June 1, 2005 –
November 30,
2005

CDEC (FOL)

Reservoir
Outflows

m3/s Same as above Same as above CDEC (FOL)
and
Reclamation

River Inflow
Temperature

◦C
(average
daily)

Same as above Same as above Reclamation

Folsom
Temperature
Profiles at
Dam

◦C (on
average
1.5 m
intervals)

11 profiles
(approx.2 per
month) June 1,
2001 –
November 30,
2001

11 profiles
(approx. 2 per
month) June 1,
2005 –
November 30,
2005

Reclamation

Short Wave
Radiation

Watts/m2

(daily)
June 1, 2001 –
November 30,
2001

June 1, 2005 –
November 30,
2005

CIMIS (Davis
2001 and Fair
Oaks 2005)*

Cloud Cover Percent
cover
(daily)

Same as above Same as above NWS

Air
Temperature

◦C
(average
daily)

Same as above Same as above CIMIS (Fair
Oaks)

Relative
Humidity

Percent
(average
daily)

Same as above Same as above CIMIS (Fair
Oaks)

Wind Speed m/s Same as above Same as above CDEC (FLD)
Precipitation mm

(daily)
Same as above Same as above CIMIS (Fair

Oaks)

* Note: June 1, 2001 – November 30, 2001 data was considered suspect due to
inconsistencies in comparison with other local data and data was replaced with the
CIMIS Davis station data.



26

5. MODEL APPLICATION

The optimization problem as formulated suggests optimal multi-objective reservoir
release policy solutions for a six month period from June 1st through November 30th
to meet water delivery, in-stream temperature, and hydropower objectives. The de-
sired outcomes are a set of solutions that describe optimal reservoir release policies
for the set of the described objective functions. Tradeoffs of the objectives also are
desired to evaluate the potential costs to each agencys objective. Although the pre-
sented mathematical formulation could be solved by various optimization methods, it
is solved here using an evolutionary algorithm because of its advantage for non-linear
objective functions (Deb, 2001).

The presented problem is solved by using linked simulation-optimization mod-
els. Reservoir dynamics and outflow temperature are found using the DLM model and
are iteratively used within the genetic optimization algorithm. Figure 5.1 illustrates
the flow of data from the optimization routine to the reservoir simulation model. The
population of “solutions” generated by the genetic algorithm is the volume and loca-
tions of flow released from the reservoir and passed to the DLM model where outflow
temperatures are calculated. In the optimization program, the user has control of the
population size and the number of generations or iterations.

5.1 Model Assumptions and Inputs

The solutions to the multi-objective reservoir problem are best appreciated by under-
standing the assumptions, input data, and initial conditions. A series of assumptions
and data inputs were made to simplify the Folsom Reservoir system. These appli-
cation assumptions are made in addition to assumptions for both the temperature
simulation and optimization models. A summary of application assumptions, input
data and initial conditions are listed in Appendix C.

Rather than generating synthetic data to represent environmental conditions,
historical data was used. Selecting the initial conditions and historical period deter-
mine the level of difficulty for the problem. Two time periods were chosen to test the
optimization, one that challenged the algorithm’s decision making ability and another
less complex period for comparison. Two six month periods, June – November in year
2001 and 2005, were selected. The winter and spring of 2000 – 2001 was drier than
normal resulting in lower reservoir storages in the beginning of June. In contrast,
2005 was wetter than normal which resulted in higher reservoir storage in June.

For both time periods, the total number of days, T in equation (4.2) is 183,
beginning June 1 and ending November 30. Although thermal lake stratification is
typical for both time periods as seen in Figure 5.2, low initial storage and warmer
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Figure 5.1: Multi-Objective Optimization Program Flowchart
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reservoir water temperatures exacerbated meeting year 2001 downstream temperature
control standard.

Figure 5.2: June 1st Observed Folsom Reservoir Vertical Temperature Profiles in Year
2001 and 2005

The meteorological conditions for both 2001 and 2005 appear to have similar
magnitude and frequency of events. Sunny and warm (Figure 5.3 and Figure 5.4) days
with moderate wind and little precipitation (Figure 5.5 and Figure 5.6) are typical in
the summer. Also typical for both years is cooler air temperature starting in the early
fall with some precipitation, Figure 5.6, (and increased relative humidity as seen in
Figure 5.4) beginning in the late fall.

Although meteorological conditions are surprisingly similar between the two
years June though November, the water-year hydrology and water temperature is
markedly different. In general, tributary inflows for both years are lower in the
summer months and increase quickly in response to precipitation events in the fall.
Year 2001 inflows from the North Fork and South Fork of the American River are
shown in Figure 5.7. This year combined flows peaked at 55 m3/sec in June. The
2001 combined average flows for this period were 22 m3/sec and averaged 17◦C. In
contrast, June of 2005 was preceded with a larger quantity of snow pack than the
spring of 2001 which resulted in relatively high snow-melt runoff (Figure 5.8). Year
2005 yielded combined peak inflows of 319 m3/sec in June and an average of 75 m3/sec
with cooler water temperatures averaging 15◦C for the entire period.

Meteorology inputs, hydrology inputs, and water demand from the reservoir
are uncertain six months previous. However, in this application it is assumed that
similar historic years would yield similar conditions. The two application simulations
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Figure 5.3: Meteorological Input Data June – November 2001 and 2005: Short Wave
Radiation and Percent of Sky Not Covered By Clouds

use historical meteorological and hydrologic data from water year 2001 and 2005. An
investigation of input uncertainty on optimization results is left for future study.

Another input to the model is the assumed quantity of water to deliver. This
is determined by a projection of demand on the system by the agency operating the
reservoir. Reclamation routinely forecasts demands each month for a twelve-month
outlook. These forecasted demands are assumed to sufficiently estimate the actual
deliveries, or outflow released from Folsom Reservoir. A monthly delivery forecast (Dt

in equation (4.3)) from June to November is generated in June using a 90% exceedance
hydrology forecast. Figure 5.9 shows the 90% delivery forecast and compares it to
actual deliveries made in June 2001 for the months June through November 2001.
A similar comparison is made for year 2005 in Figure 5.10. The year 2001 release
forecast has a maximum release difference of 11% (a volume of 8 103 m3) in November
and year 2005 has a maximum difference in June of 17% (a volume of 72 103 m3) in
June.

Several assumptions were made to simplify the release of water from the reser-
voir to meet demands downstream. In reality, municipal water is served from Folsom
Reservoir from selective withdrawal in the lake upstream from the dam outlet works.
Here it is assumed the release is made at the outlet works and delivered. The outlet
temperature apparatus at Folsom Reservoir requires operators to manually adjust the
temperature shutters on the penstock. The adjustments to the outlet configuration
in the model are assumed limited to once per month. This approximates the fre-
quency of historical temperature shutter operations (Washburn, 2005). The number
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Figure 5.4: Meteorological Input Data June – November 2001 and 2005: Air Tem-
perature and Relative Humidity

of reservoir outlet elevations, N in equation (4.3), is seven: spillway gates, all pen-
stock shutters closed, upper penstock, middle penstock, lower penstock, upper tier
river outlet, and lower tier river outlet (for application, if the initial storage of the
reservoir is lower than the upper most outlet elevations, then the total number of
outlet elevations for use is less). In addition, a minimum of 8.2 m of head above the
penstock opening is an operational restriction for power generation and is relaxed to
zero for this application.

Downstream temperature at the Watt Avenue Bridge control location is not
explicitly modeled. Instead, the release temperature target C in equation (4.4) is
15.5◦C, which is used as a surrogate temperature in lieu of calculating the tempera-
ture flux downstream from the reservoir to the control point. This is a conservative
assumption compared to historical release quantity and temperature relationship data
used by Reclamation (Yaworsky, 2005).

Several assumptions also are made for hydropower generation. Equations (5.1)
through (5.4) describe the hydropower calculation at Folsom Reservoir:

R = 10A−B log(Cxij)+D log(Cxij)
2

(5.1)

G = HE −R (5.2)

e = FG−K (5.3)

Pt = exijL (5.4)



31

Figure 5.5: Meteorological Input Data June – November 2001 and 2005: Wind Speed

The variable R in equation (5.1) represents the “tail race” elevation increase
(feet) as a function of flow out of the penstocks. The reservoir elevation, H (meters)
is converted to feet with constant E, less the tail race, R, and yields G, the gross
head (feet) in equation (5.2). Equation (5.3) is the calibrated efficiency, e, of the
hydropower unit given G, the gross head. Equation (5.4) is the hydropower gener-
ated per month, Pt (kilowatt hours) as a function of outflow, xij , and efficiency, e.
Equations (5.1) – (5.4) constants are listed in Table 5.1.

Table 5.1: Hydropower Equation Constants
Constant Variable Value

A 2.11
B 0.04
C 2446.60
D 0.05
E 3.28
F 0.93
K 16.28
L 1.98

Maximum outflow from any outlet elevation Q equation (5.7), is 18,000 103

m3/month. This is physically unrealistic for the lower tier river outlet but is left
unconstrained for the genetic algorithm to explore this alternative. However, artificial
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Figure 5.6: Meteorological Input Data June – November 2001 and 2005: Precipitation

constraints are imposed to avoid an infeasible reservoir temperature simulation by
using undesirable fitness values. For example, if total releases for the six month
period exceed 2,500 103 m3, then a poor fitness value is assigned to the solution set
and the reservoir temperature model is not run.

For all year 2001 optimizations, four outlets were used (upper, middle, lower
penstock shutters, and the lower tier river outlet) because the reservoir’s initial storage
conditions were lower than the upper most outlets. Year 2005 optimizations use five
outlet locations, (all penstock shutters closed, upper, middle and lower penstock
shutters, and the lower tier river outlet). For the six month planning horizon in year
2001 there are 24 decision variables determining the volume of outflow and location
of release from the reservoir. In year 2005 there are 30 decision variables.

Due to the many decision variables and the desire to reduce optimization run
time, a set of population initialization seeds were developed for both years 2001 and
2005. The seed population consists of decision policy sets tailored specifically for this
application. The following seeds are used in this application:

1. The historical water supply delivery, hydropower and temperature control con-
figuration.

2. The remaining population is determined by randomly selected release volumes
for n-1 outlets each month. Outlet n, also randomly selected, equals the differ-
ence between the sum of all n-1 outlets minus the six-month target delivery.

The historical release configuration is used to determine whether it is a non-dominated



33

Figure 5.7: North Fork and South Fork American River Inflow and Temperature into
Folsom Reservoir, June – November 2001

solution and the custom random seed procedure (also presented in Appendix E)
attempts to minimize the delivery target deviation.

Parameter values in the genetic algorithm optimization routine resulted from
trial and error experience. Populations of 100 and 200 individuals and the number of
generations between 100 and 1500 were tested. Results use a population of 100 and
1500 generations, smaller numbers of individuals and generations yielded solutions
sets with spreads which were either too sparse or too wide, respectively. Table 5.2,
Table 5.3, and Table 5.4 compares the model performance with historical operation
performance. The differences in the year 2001 simulation are in part due to the
bypass of hydropower in November. The simulated monthly decision time step did
not accurately capture the historical lower tier river outlet operation which began
mid-November. This result underestimates actual hydropower generation and aids in
reducing the number of days in which the temperature target was exceeded. Down-
stream heating in-stream is also suspected to increase the number of days exceeding
the temperature target, despite the conservative target release from the reservoir. Ad-
ditional simulation performance information is presented in the sensitivity analysis,
Section 6.1.

Several factors within the NSGA-II optimization algorithm influence the progress
and final result of the solution set. These assumptions regard sorting, crowding dis-
tance designation, selection, crossover, and mutation. The NSGA-II uses the non-
dominated sort method described in Section 4.3. No controls exist for the user to
adjust the non-dominated sort. Following the sort, the crowding distance method is
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Figure 5.8: North Fork and South Fork American River Inflow and Temperature into
Folsom Reservoir, June – November 2005

Table 5.2: Comparison of Historical and Simulated Hydropower Performance
Water Total Hydropower (GWh)
Year Historical Simulated

2001 152 110
2005 354 354

based on the assumption of an infinite crowding distance assigned to the boundary
individuals. This affects the spread of the solution as suggested by Seshadri (2006).
The parent individuals to produce offspring are selected using a binary tournament
selection. This is based on the size of the mating pool which is assumed equal to half
the initial population pool. Also assumed is the size of the tournament for the selec-
tion process, here it is two competing groups. From the selected parents, offspring
are created based on the crossover of the parents traits. Crossover in this version of
the NSGA-II algorithm is based on only the real-coded genetic algorithm rather than
binary-coded. The crossover uses both the simulated binary crossover and polyno-
mial crossover techniques. The parameters ηc (crossover distribution index) and ηm

(mutation distribution index), as described in section 4.3, have a value of 20 for both.
The sensitivity of the solution to these parameters is discussed in section 6.1.

The optimization and simulation model was run using an Intel Pentium D 930,
3.0 GHz dual processor with 2 Gb of RAM on a desktop personal computer system.
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in

Figure 5.9: Comparison Between the 2001 Historical and 90% Exceedance Forecast
(Created in June) for Folsom Reservoir Outflow Volume June – November

Table 5.3: Comparison of Historical and Simulated Delivery Deviation Performance
Water Delivery Deviation (103 m3)
Year Historical Simulated

2001 0 0
2005 0 0

The software used to run the optimization and simulation package was MatLab c©.
The NSGA-II, C code (Deb et al., 2002) was ported to MatLab c©and tested by Se-
shadri (2006). The NSGA-II MatLab c©code, calls evaluate objective.m, and was mod-
ified for the Folsom Reservoir problem (Appendix G). The DLM model FORTRAN
77 executable was called dynamically from NSGA-II to simulate reservoir outflow
temperatures. The results were prepared and post-processed using MatLab c©and R.
Average model execution time of the DLM simulation run with a spatial discretiza-
tion of 5 m is 2.15 seconds. An optimization execution time with a population of
100 individuals and 750 generations is 44.8 hours (1.8 days). Optimizations with a
population of 100 individuals and 1500 generations require 93.8 hours (3.9 days) of
runtime. A parallel processing system could significantly improve run time.
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Figure 5.10: Comparison Between the 2005 Historical and 90% Exceedance Forecast
(Created in June) for Folsom Reservoir Outflow Volume June – Novem-
ber

Table 5.4: Comparison of Historical and Simulated Temperature Exceedance Perfor-
mance

Water Temperature Exceedance (days)
Year Historical Simulated

2001 122 85
2005 2 2

5.2 Model Results and Discussion

Optimal reservoir releases were found to maximize hydropower, minimize delivery
target deviations and minimize temperature target exceedance for two years, 2001
and 2005. Year 2001 has more challenging operating conditions with less initial
storage volume and warmer reservoir temperatures. In contrast, year 2005 is less
difficult to operate, with more favorable storage and temperature conditions. Both
results consist of non-dominated optimal sets of 100 population solutions run for 1500
generations. Evaluations of the results examine both the performance, the fitness of
the objectives, and the corresponding decision variables or reservoir release policies
for each year.
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5.2.1 Scenario 1: Year 2001 Results

The performance of year 2001 non-dominated solution set is presented in Table 5.5.
Although, the statistics presented do not represent the performance of a single release
policy set, it summarizes an individual objective performance within its range. The
performance ranges (Table 5.5) also reveal some generalizations of the non-dominated
solution set. This problem constrains the total quantity of release of the target
delivery to plus or minus a volume of 100 103 m3 but does not constrain the month
of delivery. Delivery deviation under- and over-release water from Folsom Reservoir,
indicating a benefit to either total hydropower generation or the temperature target
objectives. All non-dominated solutions exceeded the temperature target for at least
13 days and up to a maximum of 128 days (out of 183 days). In addition, the spread
of the solutions may also indicate of the range of total hydropower; a range of optimal
solutions from 111 to 164 GWh.

Table 5.5: Year 2001 Non-Dominated Solution Performance Ranges
Objective Total

Hydropower
Generation
(GWh)

Delivery Target
Deviation (103

m3)

Temperature
Target Exceeded
(days)

Minimum 111 102 13
Maximum 164 97 128
Mean 145 21 55
Median 148 30 52

More specific examination of the objective performance describes the possible
performance tradeoffs. Tradeoffs are presented to quantify the relationships between
all objectives in the non-dominated set. Figures 5.11 – 5.13 depict the comparisons
amongst the objectives. Trends in temperature target and delivery deviation (Figure
5.11) indicate there is no tradeoff trend, despite an advantage to foregoing releases
below the delivery target or releasing more water above the delivery target for either
hydropower or temperature. If there were no advantage for other objectives, the
delivery target deviation would be zero for all individuals of the population. There is
also tradeoff relationship between total hydropower released and temperature target
exceeded shown in Figure 5.12. The tradeoff for the entire performance range is well
described with an exponential curve:

y = 0.37e0.0334x (5.5)

Where x GWh of energy result in y days of temperature exceedance (R2 of
0.77). One such example is the least number of days the temperature target is ex-
ceeded, 13 days, with near zero delivery target deviation, but at a cost to hydropower,
only 119 GWh generated.

The lack relationship between total hydropower generation and delivery target
deviation, as it appears in Figure 5.13, reveal no tradeoff. Hydropower generation in
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many of the release decision solution sets is a function of delivery. The only exception
occurs when a release bypasses the turbines through the lower tier river outlet. The
release policies are explored further in the decision variable evaluation below.

Figure 5.11: Year 2001 June – November Temperature Target Exceedance and De-
livery Target Deviation Tradeoffs

Release decisions for Folsom Reservoir specify the quantity of release from each
outlet elevation and for each month, June through November. An optimization such
as this provides insight as to what kind of tradeoff to one or more of the objectives
may be desirable in advance. Year 2001 is an example where releases were made from
the lower tier river outlet which bypassed hydropower generation. The simulation
and optimization results provide a suite of release decisions for a variety of objective
performance combinations also including hydropower bypass.

Figure 5.14 depicts all of the release decision combinations from the non-
dominated solution set for year 2001. First note there are only four release outlet
elevations, (1) upper penstock, (2) middle penstock, (3) lower penstock, and (4) lower
tier river outlet. The information is displayed in terms of total hydropower generation
and was arbitrarily selected; results for delivery target deviation and temperature
target deviation are similar. The release decisions frequently use the upper penstock
in June and July. The middle penstock peaks for nearly all of the range of hydropower
solutions in August. The lower penstock is used in September generally for lower
hydropower generation solutions. The lower tier river outlet releases for the last
months of the simulation, October and November, reducing hydropower generation.

A range of non-dominated release decisions specific to year 2001 events and
conditions are shown in Figure 5.15. This illustrates release volumes and locations
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Figure 5.12: Year 2001 June – November Total Hydropower and Temperature Target
Exceedance Tradeoffs

for the six month period that represent a high, mid and low range of the objective
performances. All except one set (high delivery deviation) show a blending of releases
in each month. Some of the low hydropower solutions also blend a small quantity of
water from the lower penstock or river outlet. The 2001 historical release configuration
was not found as a non-dominated solution, but a very similar variation was (see low
performance for the temperature exceedance). The high performance range, on the
other extreme, releases water for total hydropower generation from the upper and
middle shutter outlets. In the mid range, or the compromised solution, the non-
dominated result for the delivery deviation and hydropower generation is a nearly
exclusive release of water in August from the middle outlet. Figure 5.16 illustrates
a statistical analysis of the 100 individuals in the population by outlet location and
month. The graphic shows the first and third quartiles (variants of each), the median
and the upper and lower whiskers, and approximates the 95% confidence interval
highlighted in yellow (Hornik, 2006). The solutions appear to blend from multiple
outlets especially in September and November. Releases in September, historically
from the lower and middle outlet, are found with greater range of frequency in the
upper and lower outlets. This is also true in November where the non-dominated
solutions release from all outlets rather than exclusively from the lower and river
outlets.

In summary, year 2001 non-dominated decision variable results show some
advantage to over-release and under-release for either hydropower or temperature
benefit. In addition, the tradeoff between hydropower generation and temperature
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Figure 5.13: Year 2001 June – November Total Hydropower and Delivery Target De-
viation Tradeoffs

appears non-linear. As additional total hydropower is generated, the days of temper-
ature exceedance exponentially increases. The non-dominated release configurations
indicate that blending from multiple locations is beneficial for year 2001 conditions.
There also appear to be no generalized tradeoffs between delivery deviation and hy-
dropower delivery (due to hydropower bypass) and delivery deviation and temperature
exceedance.

5.2.2 Scenario 2: Year 2005 Results

For comparison, year 2005 results are presented to demonstrate the effect of different
initial conditions on Folsom Reservoir operations. Median performance for year 2005
objectives are 355 GWh of total hydropower generation, a delivery target deviation
of 95 103 m3, and 43 days that exceed the temperature target (Table 5.6). Again,
these are statistical values that do not represent any one particular set of release deci-
sions. Other range of performance statistics are also listed in Table 5.6. The delivery
deviation range does not span zero in this scenario and indicates either benefits to
hydropower generation or the temperature target only while delivering more water
than the delivery target. In year 2005 the initial reservoir volume was greater (1.18
billion m3 in year 2005 compared with 858 million m3 in year 2001) and projected
releases were higher (55,517 103 m3 in year 2005 compared with 28,271 103 m3 in year
2001) hence the potential for greater hydropower generation than year 2001.

Year 2005 tradeoffs are shown in Figure 5.17, Figure 5.18, and Figure 5.19.
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Figure 5.14: Year 2001 Non-Dominated Total Hydropower Solutions by Reservoir
Outlet Release Location

Figure 5.17 illustrates the performance relationship between temperature target ex-
ceedance and delivery target deviation. This scenario’s non-dominated solution set
has no advantage to release less water than the delivery target. However, there is
no general trend in the tradeoff associated with temperature exceedance and water
delivery deviation. The objective results for delivery target deviation, with a few
exceptions, are either near 100 103 m3 or 0 m3.

The relationship between total hydropower generation and temperature target
exceedance is shown in Figure 5.18. With a few exceptions, the tradeoff between
hydropower and temperature target days is undefined. A maximum of approximately
356 GWh of hydropower can be generated for the entire range of temperature exceeded
days. The historical configuration of releases is a non-dominated solution and the
objective performance is located where the temperature exceeded is 2 days and the
total hydropower generated is 354 GWh. Each of the 11 solutions with less than
approximately 356 GWh of hydropower generation and coincidently are near zero
delivery target deviation, release from the lower tier river outlet.

There also is a trend between delivery target deviation and total hydropower
generation (Figure 5.19). The relationship between the two occurs at two locations,
one along the zero delivery deviation and the other again along the maximum total
hydropower generation of approximately 356 GWh. Despite the trend, there is no
generalized tradeoff between the two objectives. However, the solution set is sparsely
populated with objective performances between the zero and 50 103 m3 delivery target
deviations. This bias favors the hydropower objective and may indicate a solution
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Figure 5.15: Year 2001 Release Policies (From Low to High Performance Fitness Left
to Right)

requiring a greater number of generations or a greater population.
Figure 5.20 represents all of the non-dominated release decisions for year 2005

with respect to temperature target exceeded. In year 2005 the reservoir volume was
greater than in year 2001 and an additional outlet elevation (all shutter penstock
outlet) was available. These non-dominated solutions indicate that use of each out-
let elevation was beneficial for one or more objectives. The lower tier river outlet
is exercised more frequently when the temperature target exceedance is above 50
days. However, for comparison, the historical release operation from Folsom Reser-
voir in year 2005 did not use the lower tier river outlet to bypass hydroelectric power
generation.

The range of release decisions are again examined by illustrating the minimum,
mid-range and maximum objective performances (Figure 5.21). Each configuration
uses a blended release rather than a single release location and sometimes from more
than two locations. By comparing the mid and high range temperature target ex-
ceeded objective, the release configurations are similar except for October. For the
high range configuration, the October releases from all shutter locations yielded a
higher temperature exceedance, despite the use of the lower tier river outlet ear-
lier in the season. Further analyses of the release decisions quantify the discussed
relationships.

A complementary statistical analysis of the year 2005 release configurations is
also presented in Figure 5.22. Observations describe both the quantity and timing of
releases from the non-dominated solution set, as described previously, with the first
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Figure 5.16: Year 2001 Evaluation of Monthly Release by Outlet

and third quartile (variants), median and 95% confidence interval. June has the least
variation in the quantity of release and interestingly from all shutters, upper, middle
and lower outlets. September also has surprising results; blending from a wide variety
of all shutter and middle outlets. October and November are also using three and
four outlets, respectively, to blend temperatures. In addition, the lower river outlet
is almost never used with the exception of some outliers and intuitively should be the
case considering the historical releases were capable of a low number of temperature
target exceedance without bypassing hydropower using the lower tier river outlet.

In summary, year 2005 non-dominated decision variable results appear to bias
the hydropower objective. More solutions tend to maximize the delivery deviation
constraint of 100 103 m3 rather than exploring the solutions near the zero delivery
deviation. The year 2005 solutions, however, indicate no advantage from releasing
less water than the delivery target, unlike the year 2001 solutions. Also, the non-
dominated release configurations more frequently blend from two or more locations
rather than one. No generalized tradeoff curve is associated with the year 2005
solution set amongst any of the objectives.
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Table 5.6: Year 2005 Non-Dominated Solution Performance Ranges
Objective Total Hy-

dropower Gener-
ation (GWh)

Delivery Target
Deviation (103

m3)

Temperature
Target Exceeded
(days)

Minimum 256 0 2
Maximum 356 99 74
Mean 350 80 41
Median 355 95 43

Figure 5.17: Year 2005 June – November Temperature Target Exceedance and De-
livery Target Deviation Tradeoffs
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Figure 5.18: Year 2005 June – November Total Hydropower and Temperature Target
Exceedance Tradeoffs

Figure 5.19: Year 2005 June – November Total Hydropower and Delivery Target De-
viation Tradeoffs
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Figure 5.20: Year 2005 Non-Dominated Total Hydropower Solutions by Reservoir
Outlet Release Location

Figure 5.21: Year 2005 Release Policies (From Low to High Performance Fitness Left
to Right)
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Figure 5.22: Year 2005 Evaluation of Monthly Release by Outlet
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6. SENSITIVITY ANALYSIS

Sensitivity results indicate areas of further investigation or model refinement and pro-
vide insight into the performance of the linked modeling packages. The parameters
examined complement the presented results and can supplement decision making.
The first analysis evaluated DLM sensitivity using root mean square error (RMSE)
for the temperature simulations compared to eleven field observations. The second
analysis examined several key parameters that influence the development of the op-
timal solution set from the NSGA-II model. These were also investigated based on
comparisons of the range of objective function performance metrics (due to the po-
tentially unique solution sets from the random selection processes).

6.1 DLM Sensitivity

This sensitivity analysis explored a select set of parameters used in the calibration of
the DLM and were quantified using RMSE. The equation for the temperature RMSE
is:

RMSE =

√∑N
i=1

[
(t∗i − ti)

2]
N

(6.1)

where for a set of observations t∗i is the observed temperature at a specific
elevation i, ti is the simulation temperature for a given elevation, and N is the total
number of observations. The RMSE quantifies the error between the observed tem-
perature and the simulated temperature within the reservoir in a given time period.

The temperature simulation sensitivity analysis examines parameters listed
in Table 6.1. In addition, an evaluation is made to examine responses at different
elevations within the reservoir and by field observation to determine both spatial and
seasonal variability. Ranges of variability were selected based on suggested literature
values for parameters (Fleenor, 2005).

Both the spatial discretization and light attenuation in Figure 6.1 appear most
sensitive to parameter variation. This indicates that as the minimum spatial dis-
cretization is increased the vertical densities are less refined and yield less accurate
temperature profiles. The temporal discretization of the DLM model is dynamically
adjusted and reported daily by default, therefore no parameter was available to ex-
plore shorter time steps. Light attenuation, also illustrated in Figure 6.1, appears
most sensitive at 0.2 m or less. The sediment drag and Kelvin-Helmholz billowing
coefficients seem to be less responsive to parameter variation in the ranges explored.

The remaining sensitivity parameters, shear efficiency coefficient, unsteady ef-
fects coefficient, wind stirring coefficient and convective overturn coefficient examined
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Table 6.1: Base DLM Simulation Model Parameter Values
Parameter Value Units

Spatial discretization 1 meters
Light attenuation 0.50 meters
Sediment drag coefficient 0.02 Unitless
Kelvin-Helmholz billowing coefficient 0.30 Unitless
Shear efficiency coefficient 0.20 Unitless
Unsteady effects coefficient 0.51 Unitless
Wind stirring coefficient 1.23 Unitless
Convective overturn coefficient 0.10 Unitless

in Figure 6.2 remain relatively unchanged for the ranges tested. Figure 6.3 examines
the spatial location RMSE and indicates the greatest temperature deviation from
observed is at 25 m above the bottom of the reservoir. This corresponds to the lowest
temperature shutter location. The greatest seasonal error, in Figure 6.4, appears to
be in late October 2001 and late November 2001. Weak stratification in the reservoir
might prevent the simulation from accurately capturing the physical process during
November.

6.2 NSGA-II Sensitivity

A similar evaluation was completed to assess the sensitivity of results to optimization
algorithm parameters. The algorithm performance was evaluated using metrics which
measure (1) the proximity of the non-dominated solution set to an optimal solution,
(2) the spacing of the solutions or decisions, and (3) the full spread of the solution
set. These metrics shown below were evaluated using the year 2001 application.

The Euclidean distance between a solution and the Pareto optimal solution is
found using the Generational Distance (GD) metric in equation (6.2) (Van Veldhuizen,
1999). Although the true Pareto optimal solution (P*) unavailable for the application,
a surrogate solution is used to compare with alternative solutions (see Table 6.2 for
more details). The distance evaluation, d in equation (6.3), compares the objective
solution distance between fm and the closest Pareto optimal solution fm*.

GD =

(∑|Q|
i=1 dp

i

) 1
p

|Q|
(6.2)

di =
|P ∗|
min
k=1

√√√√ m∑
m=1

(
f

(i)
m − f

∗(k)
m

)2

(6.3)

Where:
GD = Generational Distance
Q = solution set
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Figure 6.1: DLM 2001 Sensitivity Tests: Model Parameters and Physical Coefficients

P ∗ = Pareto optimal solution set
p= objectives
d = Euclidean distance between solutions in set Q and nearest member of P ∗

f = objective function value from solution set Q
f ∗= objective function value from solution set P ∗

i = member of Q
k = member of P ∗

m = objective function

Solution spacing, introduced by Schott (1995), is found using equation (6.4)
and measures the relative distance between consecutive solutions and describes the
diversity of the solution set. Unlike equation (6.2), this metric uses neighboring non-
dominated solutions within the same solution set for comparison and not the Pareto
solution in equation (6.5).

S =

√√√√ 1

|Q|

|Q|∑
i=1

(
di − d

)2
(6.4)

di = min
k∈Q∧k 6=i

M∑
m=1

∣∣f i
m − fk

m

∣∣ (6.5)
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Figure 6.2: DLM 2001 Sensitivity Tests: Physical Coefficients

d =

|Q|∑
i=1

di

|Q|
(6.6)

Where:
S = spacing metric
Q = solution set
d = relative distance measure between consecutive solutions
d = mean distance measure
f = objective function value from solution set Q
i = member Q
k = all other solutions of Q not equal to i
m = objective function

The solution set’s maximum spread is also calculated by quantifying the length
of the hyper-cube diagonal in three-dimensional space (equation (6.7)) (Zitzler, 2000).

D =

√
1

M

(
|Q|

max
i=1

f i
m −

|Q|
min
i=1

)2

(6.7)

Where:
D = spread metric
Q = solution set
f = objective function value from solution set Q
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Figure 6.3: DLM 2001 Sensitivity Tests: RMSE by Location

i = memeber of Q
m = objective function
M = number of objectives

The NSGA-II sensitivity evaluation listed in Table 6.2 illustrates the compara-
tive performance of the non-dominated solutions. Solution values (f) were normalized
prior to evaluation to avoid large fluctuation in the comparison distances as recom-
mended (Deb, 2001). In lieu of the Pareto optimal solution set, a base sensitivity run
was selected for year 2001 scenario using twenty-four decision variables. All sensitivity
runs include a population of 100 individuals, 450 generations, crossover probability
of 90% and mutation probability of 1 in 24 (unless modified for evaluation). The
performance of the objectives with a smaller population appear to have the greatest
absolute change in the generational distance (or deviation from the base solution) of
0.211. The least change in the generational distance metric is with a run with the
greatest number of generations (0.085). The best performance in spread from the
base, a decrease of 2%, is also the run with the greatest number of generations. The
best performance of spacing (a decrease of 40% from the base) is observed with the
increase of tournament contestants. Other parameters such as crossover pool size,
distribution and mutation index appear to have some sensitivity on the performance
metrics, however all solution sets are influenced by the random generation of the ini-
tial population set and are susceptible to non-unique solutions. Additional sensitivity
analysis could fix the entire initial population to eliminate this source of variability.

The Figure 6.5, Figure 6.6, and Figure 6.7 illustrate the progression of the
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Figure 6.4: DLM 2001 Sensitivity Tests: RMSE by Season

objective function performance as the algorithm seeks the optimal solution set. The
generational, spacing, and spread metrics seem to fluctuate around a mean value of
0.130, 0.103, and 5.99 respectively. Despite the anticipation that metrics would ex-
hibit a stronger trend as the generations increased, it appears the objective functions
performances are somewhat consistent over each successive generation. The sensitiv-
ity to the crowding distance infinite boundary assumption, seed parameters, crossover
probability, mutation probability, and non-dominated decision diversity were not ex-
amined and is left for future investigation.

6.3 Model Limitations

Although models are used to gain insight into the complex nature of natural and
anthropogenic systems, they are imperfect replications of reality. Several simulation
model, optimization model, and the application limitations are identified. These
limitations influence the solutions presented and are discussed to provide greater
insight for interpreting the results.

6.3.1 Simulation and Optimization Model Limitations

Simulation models such as DLM used to predict reservoir and release temperatures
have limitations in two general areas, assumptions made to simplify the physical pro-
cesses and representative inputs to the system. The DLM model is based on the
assumption of one-dimensionality. This could cause problems if horizontal convection
in the lateral and longitudinal occurs more rapidly than the vertical advection. In
addition, the vertical density estimation may break down if subjected to conditions
outside of the range of calibration. This is due to imperfect knowledge of the processes
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Table 6.2: NSGA-II Sensitivity Analysis Performance Metrics
Parameter Base Variation Generational

Distance
Spacing Spread

Base N/A N/A 0.00 0.103 6.396
Population 100 50 0.211 0.180 6.121
Population 100 200 0.120 0.110 6.008
Tournament
(contes-
tants)

2 4 0.100 0.066 6.048

Crossover
pool size

50 75 0.089 0.097 6.054

Crossover
distribution
index

20 10 0.124 0.102 6.131

Mutation in-
dex

20 10 0.118 0.094 6.112

Generation 450 1-1000 0.085-.176 0.072-
0.195

5.80-6.25

that drive the vertical interactions. Two additional areas of suspected limitation are
time periods when reservoir overturn occurs (weak stratification) and when biological
processes occur. The former may occur when the Wedderburn number and the Lake
Number are small and may invalidate the one-dimensionality assumption usually dur-
ing the winter season (Fleenor, 2005), and may have happened in the 2001 November
simulation. The latter issue may be because this simulation did not describe a com-
prehensive nutrient analysis for biological growth. Simulated epilimnion temperature
deviation to historical in July for both the 2001 and 2005 time periods is suspected
to have insufficient algal bloom information. Other process limitations, not discussed
here, seemed to have less significant effects on the reservoir temperature simulation,
but are nevertheless limitations of the model.

Available input information also limits model accuracy. For this application
of the DLM, data was nearly complete for both the 2001 and the 2005 time frames.
With the exception of long wave radiation (percent of sky not covered by clouds was
used instead) all data sources were collected at the desired time step or were corre-
lated using regression relationships (see Appendix F for input details). Evolutionary
algorithms are promising tools to use for difficult real world problems, but they also
have limitations. A practical limitation of applying evolutionary algorithms for envi-
ronmental engineering applications is run time. Evolutionary algorithm optimization
solutions typically require thousands of simulations which can be a time consuming
complex models. Other limitations can include the calibration of selection, cross-over
or mutation parameters. This also adds to the number of simulation executions be-
cause these parameter values can not be chosen a priori (Dorn and Ranjithan, 2003).

Another limitation to multi-objective optimization using an evolutionary algo-



55

Figure 6.5: NSGA-II Generational Distance Sensitivity

rithm is the assumption of the accuracy of the Pareto optimal front. Veldhuizen and
Lamont (2000) point out for real world application, a Pareto solution may or may not
be optimal due to the limitations of the number of objective functions chosen and the
finite computational capabilities of computers. Nevertheless, practitioners routinely
make this assumption to accept the model output as the true Pareto optimal.

Several aspects of multi-objective optimization evolutionary solution tech-
niques also make their use a challenge. Deb (2001) identifies several issues that
should be considered and researched in more depth. One issue is the communication
of results. This is especially problematic with more than two objectives. Difficulties
may also occur with convergence, diversity of solution set, convexity, discontinuity,
and non-uniformity. Also (Deb, 2001), constrained problems have a narrower spread
of solutions. Depending on the niching scheme or search method, decision variable
or objective space, some algorithms may not reveal all desired solution information.
In addition, having more than two objectives may be problematic if populations only
generate an elite solution and prevent diverse new solutions in future generations
(Deb, 2001).

6.3.2 Application Specific Limitations

The results of this application to Folsom Reservoir are also limited by simplifications
and are discussed in each of the three objective categories, water supply delivery,
hydropower generation, and downstream temperature control. First, optimization
release decisions for water supply delivery are evaluated based on the total six month
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Figure 6.6: NSGA-II Spacing (Schott) Sensitivity

delivery quantity, not the monthly quantity targeted. This could affect delivery obli-
gations and the thermal stratification of the reservoir if water is not released as
forecasted. Because no criteria constrains the specific month in which water is re-
leased from the reservoir it is conceivable that a perfect evaluation could be reached
by releasing all the water in only a few months and not at all in others. However, a
cost to water supply delivery could be a benefit to downstream temperature control,
as is seen in the year 2001 scenario. In addition, the municipal delivery assumption
may affect the quantity of water available at specific thermoclines, and depends on
the particular temperature pumped by the municipality. Last, modifications to the
release configuration are allowed only at the beginning of each of the six months, on
occasion mid-month modification may be desired and may limit the flexibility of the
downstream temperature control. The greatest impacts on the water supply delivery
objective seem to be related to such timing issues.

The second objective, hydropower generation is evaluated based only on energy
maximization, no target energy is specified. Due to this assumption, the generation
of hydropower will tend to drive the location of release, i.e. from the penstock rather
then the river outlet. In addition, the simulation of hydropower does not consider
the subtleties of the generation process such as peaking generation, maintenance, and
seasonal price variations. This could affect the total power generated reported in the
optimal solution set.

The downstream temperature control objective, the third and last objective,
is limited by a target temperature rather than a simulated downstream temperature.
Although the target release temperature is conservative, it is conceivable that cooler
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Figure 6.7: NSGA-II Spread Sensitivity

reservoir release locations are prematurely used leading to premature depletion of
cold water at higher shutter elevations. This limitation could artificially reduce hy-
dropower generation, or maintain the downstream river temperature at a cooler than
optimal temperature.
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7. CONCLUSIONS AND RECOMMENDATIONS

The information presented demonstrates the linkage of a temperature model, sim-
ulating reservoir and release temperatures, and a multiple objective optimization
algorithm for reservoir release decision analysis. The Folsom Reservoir model devel-
opment and analysis aimed to capture two areas overlooked:

1. reservoir evaluation from a multiple objective perspective resulting in a set of
optimal solutions and

2. quantification of the associated tradeoffs.

It is anticipated that water management, power generation, and wildlife and fishery
agencies are interested in the tradeoffs eatimated with multi-objective optimization
for resource management decision making. Recommendations are also offered for
further study to address some of the imperfections and simplifications of the model
development.

7.1 Conclusions

The coupled temperature simulation and multi-objective optimization results pre-
sented demonstrate:

1. Initial reservoir conditions and year type influences (for year 2001 and year 2005)
yield different non-dominated release policies for the months June-November.

2. For the year 2001 conditions, a generalized tradeoff was found between hy-
dropower generation and temperature target exceedance. Temperature tar-
get exceedance days increase exponentially as hydropower generation increases,
from use of the lower river outlets which bypass the turbines.

3. For the year 2001 conditions, there is some advantage to forego delivery target
release, but not for the year 2005 conditions.

4. For both years 2001 and 2005 conditions, multiple outlet blending policies ap-
pear to be desirable for the June – November period.

5. The year 2001 historical release configuration was not a non-dominated solution,
however the year 2005 was.

6. The temperature simulation is most sensitive to spatial discretization and light
attenuation.
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7. The temperature simulation tradeoff for increased accuracy using the finer spa-
tial discretization is increased computation time.

7.2 Recommendations for Future Study

The models and results could be further refined to enhance results interpretation or
decision making by incorporating the following recommendations:

1. Perform uncertainty analysis on key sets of inputs that appear to have influence
on the water temperature, such as Monte Carlo analysis on initial reservoir
conditions, water supply demands, solar radiation, etc. Both year 2001 and
2005 appear to have similar metrological and precipitation inputs. However,
recent studies (California Department of Water Resources, 2006) have indicated
future conditions may differ. This information could assist in the assessment of
reservoir release decisions for uncertain future climatic conditions.

2. Refine the performance evaluators of the optimization based on the deviation
of water supply delivery per month instead of six month period to address the
timing of water supply delivery.

3. Evaluate the performance of the optimization based on a variable temperature
target downstream or hydropower target. Fishery agencies may have year type
or biological influences that may alter the fixed temperature target of 15.5◦C.
Hydropower could also be specified as a target or hydropower revenue maxi-
mization rather than a global energy maximization.

4. Enhance the detail of meeting the downstream temperature. This would include
a simulation of the temperature as it travels downstream from the reservoir to
the temperature control point at Watt Avenue Bridge.

5. Refine the performance of the DLM model particularly in July and November
when biological activity and reservoir de-stratification is suspected.

6. Increase the release and location decision variables to simulate a TCD capable
of automation (with daily alterations) and with more shutter openings.

7. Refine the municipal water supply delivery from Folsom Reservoir with a dy-
namic temperature dependent withdraw.

8. Incorporate and define criteria for additional objectives such as recreation or
hydropower revenue. Hydropower peaking, seasonal demand, and varying prices
may favor hydropower earlier in the season rather then an objective with uni-
form priority over the six month period as presented here.

9. Investigate in further detail the sensitivity of the optimization parameters.
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A. EVOLUTIONARY ALGORITHMS AND NON-DOMINATED SORTED
GENETIC ALGORITHM (NSGA-II) OVERVIEW

The following excerpt is an overview of evolutionary algorithms and the NSGA-II
algorithm (Field and Lund, 2006):

Pareto optimality is the fundamental reason to seek a set of solutions in multi-
objective optimization. Pareto optimal or non-inferior “fronts” are objective vectors
in which no component can be improved without diminishing the status of at least
one other component. This means a Pareto optimal front set of solutions are the best
set for one or more conflicting objectives over a wide range of decision alternatives.
Two spaces are formed to determine a Pareto optimal solution, the decision space and
objective space (Deb, 2001). Decision space represents all decision variables of the
optimization that satisfy the constraints of the multi-objective problem. Objective
space represents all solutions of the objective function in the m-dimensional space of m
objectives. The best solution of a multi-objective problem resides within the objective
space, called the Pareto optimal or non-dominated set as described by Miettinen
(1999): “A objective vector z* ∈ Z is Pareto optimal if there does not exist another
objective vector z ∈ Z such that zi ≤ zi* for all i − 1, . . . , k and zj < zj* for
at least one index j; or equivalently, z* is Pareto optimal if the decision vector
corresponding to it is Pareto optimal.” In application, the final solution is selected
from the non-dominated set by decision makers, informed of trade-offs among the
system’s objectives by the model results. Discussions on local and global optimality,
tests and proofs are left to Miettinen (1999) and Deb (2001).

NSGA-II is an elitist multi-objective evolutionary algorithm which seeks Pareto
optimal objective function fronts. A pool of solutions are “selectively bred”, in a set
number of generations, for the desired objectives. The algorithm has four procedures
(Deb, 2001):

1. compare parent and offspring populations

2. select the next parent generation

3. a crowding-sort procedure

4. generate next offspring generation

The algorithm is initialized with a randomly selected set of decision variables as a
parent population. The first offspring population is generated using genetic operators
(selection, crossover and mutation) based on members from the parent population.
The fitness of each member (evaluation of the objective functions) is then calculated.
Then both the parent and offspring population are joined and sorted. This sort is
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based on non-dominance, where the fitness of a superior member is ranked higher than
those whose fitness can be outperformed by another member. This step provides a
direct opportunity for the parent’s traits to compete for a spot in the next generation.
The best members, or the elite, are given priority positions in the next generation
which prevents performance degradation of the population. If elite members do not
fill all available positions in the next generation, the remainders are selected based
on non-dominance criteria and proximity. Crowded solutions prevent the discovery
of multiple optima solutions, solutions that are close in proximity are discouraged by
selecting more evenly dispersed solutions for the next generation. This sequence of
filtering solutions is terminated after a specified number of generations, yielding the
Pareto optimal fronts (Deb, 2000).
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B. DLM CALIBRATION AND TESTING: RESERVOIR PROFILES

DLM Calibration was performed June 1, 2001 through November 30, 2001 for Folsom
Reservoir using eleven recorded temperature profiles measured at Folsom Dam. The
blue open circles, in Figures B1 through B6, represent observed temperature points
at a corresponding depth in the reservoir. The red solid line represents the DLM
simulated temperature. Figure B.1, Figure B.2, and Figure B.3 illustrate the perfor-
mance of the calibration of the model comparing recorded and simulated temperature
profiles beginning in June 2001 and ending in November 2001. Figure B.4, Figure
B.5, and Figure B.6 illustrate the testing of the calibrated DLM model from June 1,
2005 to November 30, 2005.

Figure B.1: DLM Calibration Temperature Profiles for Folsom Reservoir June 2001
through July 2001
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Figure B.2: DLM Calibration Temperature Profiles for Folsom Reservoir August 2001
through October 2001
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Figure B.3: DLM Calibration Temperature Profiles for Folsom Reservoir November
2001
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Figure B.4: DLM Testing Temperature Profiles for Folsom Reservoir June 2005
through July 2005
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Figure B.5: DLM Testing Temperature Profiles for Folsom Reservoir August 2005
through September 2005
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Figure B.6: DLM Testing Temperature Profiles for Folsom Reservoir October 2005
through November 2005
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C. MODEL INPUTS AND APPLICATION ASSUMPTIONS

Table C.1: DLM Parameter Details Part 1
Category Type Units Description Range Source

Initial Con-
ditions

Reservoir
Volume

m3 Historical volume (
2001: 858 million m3

and 2005: 1.18
billion m3)

1-Jun CDEC (FLD
Station)

Initial Con-
ditions

Reservoir
Eleva-
tion

m Historical elevation
(2001: 134 m msl
and 2005: 142 m
msl)

1-Jun CDEC (FLD
Station)

Initial Con-
ditions

Reservoir
Temper-
ature
Profile

◦C Historical vertical
reservoir
temperatures
recorded at Folsom
Dam.

1-Jun
at 1.5
m in-
tervals

(Yaworsky,
2005)

Meteorology Short
Wave
Radia-
tion

kJ/m2 Historical data. 1-Jun
to 30-
Nov

CIMIS (Davis
Station)

Meteorology Cloud
Cover

Percent
of sky
not
cov-
ered
by
clouds

Historical data. Same
as
above

NWS
(Sacramento
Executive
Airport
WBAN:
23232)

Meteorology Air
Temper-
ature

◦C Historical data. Same
as
above

CIMIS (Fair
Oaks Station)

Meteorology Relative
Humid-
ity

Percent Historical data. Same
as
above

CIMIS (Fair
Oaks Station)
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Table C.2: DLM Parameter Details Part 2
Category Type Units Description Range Source

Meteorology Wind Speed m/s Historical data. Same
as
above

CDEC
(FLD
Station)

Meteorology Precipitation mm Historical data. Same
as
above

CIMIS
(Fair Oaks
Station)

Hydrology Upper
American
River
Inflows

m3/day Calculated
historical Folsom
inflow data (from
CDEC station:
FOL) is
disaggregated to the
North Fork and
South Fork of the
American River
based on flow
relationships from
1967-1978 excluding
year 1977.
Information
provided by
Reclamation
(statistical fitness
was unavailable).

Same
as
above

CDEC
(FOL
Station)
and
(Yaworsky,
2005)

Temperature Upper
American
River
Inflow Tem-
perature

◦C Historical data.
Missing data on the
South Fork of the
American River is
found using a
correlation with the
North Fork based
on data from
1999-2001.
Correlation
relationship has a
R2 value of 0.95.

Same
as
above

(Yaworsky,
2005)



75

Table C.3: DLM Parameter Details Part 3
Category Type Units Description Range

Water De-
mands

Total
Folsom
Reservoir
water
demands

m3/day A six month 90% hydrology
exceedance forecast is used to
estimate water demands. Total
monthly demand is
disaggregated to a constant
flow for all days in the month.
Municipal water supply (which
is also temperature selective) is
assumed to exit the dam outlet
works rather than from within
the reservoir to simplify the
problem. Municipal demands
are included in the monthly
demand forecast. Estimated
requirements for downstream
regulatory standards such as
minimum in-stream flows and
Sacramento-San Joaquin Bay
Delta water quality
requirements are also included
in the monthly demand
forecast.

June-
November

Operation Temperature
Shutter
Configura-
tion

per
month

Due to initial reservoir volume
conditions, four outlets are
assumed available: upper,
middle, and lower penstock
shutters, and the lower tier
river outlet. Outlet
adjustments are assumed once
per month.

Same as
above
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Table C.4: DLM Parameter Details Part 4
Category Type Units Description Range Source

Operation Hydropower
Generation

kWh Hydropower
generation is
assumed when
water flows through
any of the upper,
middle, or lower
penstock shutters.
Hydropower is not
generated when
water is released
from the lower tier
river outlet. No
adjustment is made
for potential
operational or
maintenance
generation outages.

Same as
above

Regulatory
Constraints

River tem-
perature at
Watt
Bridge

◦C The reservoir target
release temperature
is 15.5 ◦C.

Constants (Yaworsky,
2005)

Spatial Dis-
cretization

Maximum
Vertical
Layer
Depth

m A coarse
discretization (2
meters) was used to
expedite run time.
Discretization
sensitivity was
verified.

Constants

Biological
Parameters

Algal
related
parameters

Various Values were
calibrated (within
the range of
literature reported
values).

Constants
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Table C.5: NSGA-II Parameter Details
Type Units Description Source

Population
Size

Numbers of individu-
als

100 User specified

Generations Numbers of
iterations

1500 User specified

Decision
Variable
Constraints

m3 0-5000 m3 User specified

Sort NA Non-Dominated Sort (Deb et al., 2002)
Crowding
Distance

NA Euclidian distance
between individuals
on the Pareto front,
based on all
objectives

(Deb et al., 2002)

Selection NA Tournament
Selection = 2. Pool
Size = initial
population/2

(Deb et al., 2002)

Crossover
probability

Percent 90 (Seshadri, 2006)

Crossover in-
dex

NA Simulated Binary
Crossover,ηc = 20

(Seshadri, 2006)

Mutation
probability

Percent 1/decision variables (Seshadri, 2006)

Mutation in-
dex

NA Polynomial
Mutation, Uniformly
Distributed ηm = 20

(Deb et al., 2002)



78

D. NSGA-II/DLM LINKAGE AND OBJECTIVE CODE (MATLAB)

function f = evaluate objective(x,problem)

% Function to evaluate the objective functions for
% the given input vector x. x has the decision
% variables

switch problem
case 1
f = [ ];
%% Case one not used
case 2
f = [ ];
tstep1 = 6; % is equal to release changes in 6 months
tstep2 = 30; % days per month
tstep3 = 31; % days per month.
lastday = 2005334;
dvar = 30;
targ =[1.857223554,0.935462284,0.848322242,
0.709667446,0.616704804,0.584303828]; %2005
xout=reshape(x(1:dvar),tstep1,5);
lastsim=load(’folsom.txt’);

%%Folsom Temperature Optimization
% find scores for each separate objective function
for i=1:tstep1
if(i<=1) %June
out=repmat(xout(i,:)*10000,[tstep3 1]);
elseif(i == 2 || i == 3 || i == 5) % July,Aug, Oct
outx=repmat(xout(i,:)*10000,[tstep3 1]);
out=vertcat(out,outx);
else %Sept, Nov
outx=repmat(xout(i,:)*10000,[tstep2 1]);
out=vertcat(out,outx);
end
end

jdays=[2005151:lastday]’;
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%if flow is greater than max, give it a bad score and
%don’t run the WQ simulation
maxflow =(5.5516)*10000; % m∧3
sumout=sum(xout’,1)*10000;
allsum = sum(sumout);
overflow = abs(allsum - maxflow);
if(overflow > 100)
f(1) = 10000; %power
f(2) = 400; %target temp
f(3) = 10000; %water delivery
else
outflow= horzcat(jdays,out);
%write out text file, input to external program
dlmwrite(’folsom.out’,outflow,’delimiter’, ’
t’,’precision’,’%7.0f’);
%type folsom.out;
timenow = fix(clock);
if(timenow(1,5)== 59)
pause(61);
end
!DLM WQ3 0.exe
% Read in results from DLM
sim=load(’folsom.txt’);
[row, col]=size(sim);
[rowa, cola]=size(lastsim);
if row==rowa & col==cola & sim==lastsim
%Re-run with a finer resolution
%Artificially replace with a bad solution
copyfile(’folsom artif.txt’,’folsom.txt’);
profile = ’folsom2005151.pro’;
protemp = ’savefolsom2005151.pro’;
profine = ’finefolsom2005151.pro’;
copyfile(profine,profile);
!DLM WQ3 0.exe
% Read in results from DLM
sim=load(’folsom.txt’);
[row, col]=size(sim);
copyfile(protemp,profile);
end
jday=sim(1:row,1);
selev=sim(1:row,2);
stemp=sim(1:row,3);
lastsim = sim;
alldays = [152:333]’;
[row, col]=size(alldays);
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for i=1:row
send = find(jday==alldays(i,1),1,’last’);
ie(i,1)=send;
end
[row, col]=size(ie);
for i=1:row
elev(i,1)=sim(ie(i),2);
end
% don’t use outlet that does not generate power
outf=outflow(:,2:5);
outftot = sum(outf’);
[row, col]=size(outftot);
ot = outftot(2:col-1)’;

elev= (elev+60.96)*3.280; %convert from m to ft msl
%convert from 10∧3 m∧3 to cfs
outcfs = (ot*1000)/(86400*0.028317);
for i=1:row
if(outcfs(i)<0.0001)
tr(i:1) = 0;
else
tr(i:1)=10∧(2.113508-0.035579*log10(outcfs(i)
/1000)+0.04750301*log10(outcfs(i)/1000)∧2);
end
end
tr=tr’; %tail race
gh=elev-tr; %gross head
ef=((0.92854*gh)-16.282)’; %efficiency kWh/acre-ft
kwh=ef*(outcfs*0.00198347*1000); %kilo watt hours
f(1) = -(kwh/1000000)*0.955; %power in GWh

outf=outflow(2:end-1,2:6);
outftot = sum(outf’)’;
target=15.5; %60 degree F

[row, col]=size(alldays);
for i=1:row
sbeg = find(jday==alldays(i,1),1,’first’);
send = find(jday==alldays(i,1),1,’last’);
is(i,1)=sbeg;
ie(i,1)=send;
end

[simrow, simcol]=size(sim);
for i=1:row
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in1=find(61.5 < sim(is(i):ie(i),2),1);
while(sim(in1+is(i)-1,2)>61)
in1 = in1-1;
end
if(in1 > 1) %if elevation is found then pull out temp
ind1=in1+is(i)-1;
otemp=sim(ind1,3);
ft(i,1)=(outflow(i,2)*otemp);

saveElev(i,1) = sim(ind1,2);
saveTemp(i,1) =otemp;
saveOutF(i,1) = outflow(i,2);
else
ft(i,1)=0;
outflow(i,2)=0;

saveElev(i,1) = sim(ind1,2);
saveTemp(i,1) =otemp;
saveOutF(i,1) = outflow(i,2);
end
in2=find(49.0 < sim(is(i):ie(i),2),1);
while(sim(in2+is(i)-1,2)>49)
in2 = in2-1;
end
if(in2 > 1) %if elevation is found then pull out temp
ind2=in2+is(i)-1;
otemp=sim(ind2,3);
ft(i,2)=(outflow(i,3)*otemp);

saveElev(i,2) = sim(ind2,2);
saveTemp(i,2) =otemp;
saveOutF(i,2) = outflow(i,3);
else
ft(i,2)=0;
outflow(i,3)=0;

saveElev(i,2) = sim(ind2,2);
saveTemp(i,2) =otemp;
saveOutF(i,2) = outflow(i,3);
end
in3=find(40.0 < sim(is(i):ie(i),2), 1);
while(sim(in3+is(i)-1,2)>40)
in3 = in3-1;
end
if(in3 > 1)
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ind3=in3+is(i)-1;
otemp=sim(ind3,3);
ft(i,3)=(outflow(i,4)*otemp);

saveElev(i,3) = sim(ind3,2);
saveTemp(i,3) =otemp;
saveOutF(i,3) = outflow(i,4);
else
ft(i,3)=0;
outflow(i,4)=0;

saveElev(i,3) = sim(ind3,2);
saveTemp(i,3) =otemp;
saveOutF(i,3) = outflow(i,4);
end

in4=find(24.0 < sim(is(i):ie(i),2), 1);
while(sim(in4+is(i)-1,2)>24)
in4 = in4-1;
end
if(in4 > 1)
ind4=in4+is(i)-1;
otemp=sim(ind4,3);
ft(i,4)=(outflow(i,5)*otemp);

saveElev(i,4) = sim(ind4,2);
saveTemp(i,4) =otemp;
saveOutF(i,4) = outflow(i,5);
else
ft(i,4)=0;
outflow(i,5)=0;
end
in5=find(4.0 < sim(is(i):ie(i),2),1);
if(in5 >1)
ind5=in5+is(i)-1;
otemp=sim(ind5,3);
ft(i,5)=(outflow(i,6)*otemp);

saveElev(i,5) = sim(ind5,2);
saveTemp(i,5) =otemp;
saveOutF(i,5) = outflow(i,6);
else
otemp=sim(simrow,3);
ft(i,5)=(outflow(i,6)*otemp);
outflow(i,6)=outflow(i,6);
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saveElev(i,5) = sim(in5,2);
saveTemp(i,5) =otemp;
saveOutF(i,5) = outflow(i,6);
end

oftest(i,1) = sum(outflow(i,2:6));
if(oftest(i) < 0.0001)
fintemp(i,1)=500;
else
fintemp(i,1)=sum(ft(i,:))
/sum(outflow(i,2:6));
end
end

degday = find(fintemp > target);
[over, under]=size(degday);
f(2)= over; %temperature target

[row, col]=size(targ);
totarg = 0.0;
for i=1:col
totarg = totarg+(abs(targ(i)
-sum(xout(i,:)’,1)));
end
f(3)=totarg; %delivery target
end
end
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E. MODIFIED RANDOM SEED GENERATOR CODE (MATLAB)

%Random Seed generator
for z=1:100
targ = [1.857223554,0.935462284,0.848322242,
0.709667446,0.616704804,0.584303828]’;
%outlets = 4;
outlets = 5;
%random numbers from 0 - 1
mon = rand(6,(outlets-1))*.5;
[row2, col2] = size(mon);
%random numbers from 1 - 4
a = 1;
b = outlets;
x = a + (b-a) * rand(1,6);
w = round(x);
[row, col] = size(x);
for i=1:6
diff(i) = targ(i)-sum(mon(i,:));
end
for i=1:col
count=1;
while diff(i)< 0 | count == 100
for j=1:col2
mon(i,j) = max(mon(i,j)+diff(i)/(outlets-1),0);
end
diff(i) = targ(i)-sum(mon(i,:));
if(abs(diff(i))< 0.0000001)
diff(i) = 0;
end
count = count+1;
end
end
for i=1:row2
p=1;
for j=1:outlets
if(w(i)== j)
mon2(i,j) = diff(i);
else
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mon2(i,j) = mon(i,p);
p=p+1;
end
end
end
seed(z,:) = reshape(mon2,1,(outlets*6));
end


