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Abstract

Statistical Learning for Unimpaired Flow Prediction in Ungauged Basins

All science is the search for unity in hidden likeness (Bronowski, 1988). There are two

practical reasons to approximate processes that produce such hidden likeness: (1) prediction

for interpolation or extrapolation to unknown (often future) situations; and (2) inference

to understand how variables are connected or how change in one a�ects others. Statistical

learning tools aid prediction and at times inference. In recent years, rapidly growing comput-

ing power, the advent of machine learning algorithms, and more user-friendly programming

languages (e.g., R and Python) support applying statistical learning methods to broader

societal problems.

This dissertation develops statistical learning models, generally simpler than mechanistic

models, to predict unimpaired �ows of California basins from available data. Unimpaired

�ow is the �ow produced by the basin in its current state, but without human-created or op-

erated water storage, diversion, or return �ows (California Department of Water Resources,

Bay-Delta O�ce, 2016). The models predict unimpaired �ows for ungauged basins, an Inter-

national Association of Hydrological Sciences �grand challenge� in hydrology. In Predicting

Ungauged Basins (PUB), the models learn from information at gauged points on a river and

extrapolate to ungauged locations.

Several issues arise in this prediction problem: (1) How we view hydrology and how we

de�ne observational units determine how data is pre-processed for statistical learning meth-

ods. So, one issue is in deciding the organization of the data (e.g., aggregate vs. incremental

basins). Such data transformation or pre-processing is explored in Chapter 2. (2) Often,

water resources problems are not concerned with accurately predicting the expectation (or

mean) of a distribution but require better estimates of extreme values of the distribution

(e.g., �oods and droughts). Solving this problem involves de�ning asymmetric loss functions,

which is presented in Chapter 3. (3) Hydrologic observations have inherent dependencies and

correlation structure; gauge data are structured in time and space, and rivers form a network

of �ows that feed into one another (i.e., temporal, spatial, and hierarchical autocorrelation).

These characteristics require careful construction of resampling techniques for model error
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estimation, which is discussed in Chapter 4. (4) Non-stationarity due to climate change may

require adjustments to statistical models, especially for long-term decision-making. Chapter

5 compares unimpaired �ow predictions from a statistical model that uses climate variables

representing future hydrology to projections from climate models.

These issues make Predicting Ungauged Basins (PUB) a non-trivial problem for statis-

tical learning methods operating with no a priori knowledge of the system. Compared to

physical or semi-physical models, statistical learning models learn from the data itself, with

no assumptions on underlying processes. Their advantages lie in their fast and easy develop-

ment, simplicity of use, lesser data requirements, good performance, and �exibility in model

structure and parameter speci�cations. In the past two decades, more sophisticated statis-

tical learning models have been applied to rainfall-runo� modeling. However, with these

methods, there are issues such as the danger of over�tting, their lack of justi�cation outside

the range of underlying data sets, complexity in model structure, and limitations from the

nature of the algorithms deployed.

Keywords: predicting ungauged basins (PUB); rainfall-runo� modeling; asymmetric loss

functions; structured data; blocked resampling methods; climate change; water resources;

hydrology; statistical learning.
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Chapter 1

Introduction & Literature Review

Life must be lived forwards, but it can only be understood backwards.

Sören Kierkegaard, �The Journals of Sören Kierkegaard�, 1844

1.1 Introduction
Our ability to extract insights from large diverse data sets has rapidly improved with

growing computing power and sophisticated algorithms. The �eld of statistical learning has
emerged as a framework that ranges from simple linear regression to complex algorithmic
methods (James, Witten, Hastie, & Tibshirani, 2013). A main contribution of this �eld is the
development of modeling techniques that allow for the semi-automatic creation of complex
models, with many interacting predictor variables, which are not over�t, and predict well.

These developments allow for more accurate and �exible empirical models to manage
complex systems. For example, in hydrology, runo� formation processes are highly variable,
non-linear, and spatially heterogeneous, which are a challenge for predicting processes such
as stream�ow (Dooge, 1986). The International Association of Hydrological Sciences (IAHS)
dubbed the 2003-2012 years the decade on Predictions in Ungauged Basins (PUB) (Sivapalan
et al., 2003). The PUB initiative has aimed the scienti�c community, in a coordinated
manner, towards achieving major advances in thydrologic predictions for ungauged basins
(Figure 1.1).

Predicting and forecasting hydrology at ungauged sites promotes better management
of water and the environment (Sivapalan et al., 2003). Hydrologic estimation is impor-
tant for managing river basins; integrating economic, social and environmental perspectives
(Sivapalan, 2003); �ood protection; water supply and drought management; solving water
quality issues (Hrachowitz et al., 2013); and they can serve as inputs for other models.

1.2 Terms & De�nitions
This dissertation investigates the relationships between the response variable, unim-

paired �ow, and various predictor variables, climate and basin characteristics. Unimpaired
�ow is the �ow produced by the basin in its current state, but without human created or op-
erated water storage, diversion, or return �ows (California Department of Water Resources,

2



(a) PUB Problem (b) PUB Schematic

Figure 1.1: The predicting ungauged basins (PUB) problem. This dissertation focuses on
predicting unimpaired �ows at ungauged locations from other gauges on the network. Pre-
dictor variables include climate and basin characteristics.

Figure 1.2: Calculating unimpaired �ow. Unimpaired �ow is calculated by adding back in
diversions, subtracting imports, accounting for change in storage and evaporation caused by
the reservoir.

Bay-Delta O�ce, 2016). Unimpaired �ow is mostly used where dams have changed the nat-
ural �ow regime and is calculated by a simple accounting of water in the system (Figure 1.2
and Equation 1.1),

quf = qout − qimp + qdiv + ∆S + qevap (1.1)

where quf is unimpaired �ow, qout is observed gauge data, qimp is imported �ows, qdiv is
diverted �ows, ∆S is the change in storage, and qevap is the evaporation out of the system.

In contrast, natural �ow is the runo� produced by a basin in its pre-development state
prior to human alterations (Po� et al., 1997). The di�erences between unimpaired �ow

3



Figure 1.3: The di�erent classes of hydrologic models. The hydrologic modeling �eld has
been moving from total a priori ignorance to total a priori knowledge of the system. With the
increase in computing power and the development of statistical learning methods, hydrologist
can now re-visit predicting hydrologic conditions with purely stochastic methods.

and natural �ow are usually driven by e�ects of levees, upland land use, wetlands, and
groundwater. This study is only concerned with unimpaired �ow; its models were built with
unimpaired �ow data from the California Data Exchange Center (CDEC) and predictor
variables from various sources discussed in Appendix A.

1.3 Literature Review

1.3.1 Hydrologic Modeling

Hydrologic models for PUB can be classi�ed as mechanistic (physical process-based,
causal) or empirical (statistical, purely stochastic) (Guisan & Zimmermann, 2000) (Figure
1.3). Each approach strikes a di�erent balance between generality, realism, cost, and pre-
cision for better understanding, predicting, and managing natural resources (Levins, 1966;
Klemes, 1982). However, all modeling techniques assume that the past is a reasonable guide
to the future, and that data from one basin is useful for understanding hydrologic responses
at another basin (Sivapalan, 2003).

Hydrologists have used both mechanistic and empirical models to represent complex
runo� processes; since the mid-19th century, with the employment of the rational method,
empirical relationships have been used in rainfall-runo� modeling (Beven, 2011). Engineers
developed the rational method in response to problems in which the design discharge was of
major concern (i.e., urban sewer, land reclamation drainage systems, and reservoir spillway
design) (Todini, 1988). This method, based on the concept of concentration time, calculates
runo� by simply multiplying a runo� coe�cient by rainfall intensity and the basin's drainage
area. It is applicable only to small or mountainous catchments where the rainfall duration
normally exceeds the basin's concentration time�the time needed for the entire basin
area's precipitation to reach the basin's outlet as discharge.

To address more complexities in rainfall duration, basin size, and non-uniform character-
istics, other methods emerged. In the 1930s, the unit hydrograph method was developed
(Sherman, 1932). In the 1950s, mathematical techniques such as Z, Laplace or Fourier trans-
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forms led to the derivation of response functions from the analysis of input and output data
(Dooge, 1973). In the 1960s, grander approaches emerged to model physical processes of
the hydrologic cycle. Models increased in complexity over time and often lacked realistic
parameter estimates, leading researchers to other ambitious mechanistic modeling e�orts
(Todini, 1988). These models require considerable �eld input data collection and calibration
to obtain basin-speci�c parameters (Singh & Frevert, 2005). Unfortunately, as mechanistic
models increase in complexity, it is unclear if hydrologic predictions improve commensurately
(Beven, 2011).

Our incomplete understanding of the process (Hrachowitz et al., 2013), poor understand-
ing of where water goes when it rains, what �ow paths it takes to the stream, and the age
of the water that emerges in the channel (Sivapalan, 2003) make PUB a di�cult problem to
model. Moreover, spatio-temporal heterogeneity of climate and basin characteristics create
uniqueness-of-place and time issues, and there is a lack of agreement on suitable regional-
ization techniques for this problem (Hrachowitz et al., 2013).

Without a unifying approach, and considering the increasing availability of environmental
data, in the past two decades, more sophisticated statistical learning models have been
applied to rainfall-runo� modeling. In juxtaposition with physical or semi-physical models,
machine learning models learn from the data itself, with no (or few) assumptions about
underlying processes. Appendix B de�nes terms and concepts used in statistical learning.

1.3.2 Statistical Learning

Arti�cial intelligence has gone through the ages of speculation (1940s), dawn, business,
and bulldozer (Winston, 2010). In the bulldozer age, with seemingly unlimited computing
capacity, machines process more abundant data much like a bulldozer processes soil. Re-
cent advances in reinforcement learning, one-hot learning (where machines learn from the
�rst example), learning in sparse spaces, and the integration of thinking, perception, and
action (rather than viewing them separately) are moving us away from the bulldozer era
(Winston, 2010). The application of these newer techniques to water resources problems is
slow. Appendix C presents a brief history of statistical learning.

The taxonomy presented in Figure 1.4 can help guide users through a discovery process.
Its goal is for the user to be able to identify a statistical model or method of interest with-
out prior knowledge of its existence. Here, we have grouped statistical learning and data
analysis methods into seven categories: supervised machine learning, regression family, time
series analysis, geostatistics, multi-variate analysis, unsupervised machine learning, and other
methods. Supervised machine learning methods are more generally used for predicting
a variable in the past where no equation is needed to represent the model. In contrast, the
regression family of methods are used when the purpose is more inference than prediction,
and equations-or more speci�cally the coe�cients of variables in the equations-are of interest.
Time series analysis is most suited to prediction problems where the time component is
of interest (e.g., problem of extrapolating to the future), as opposed to geostatistics, which
is mainly concerned with the spatial component of the data. Pattern recognition, multi-
variate analysis, and unsupervised machine learning methods �nd natural groupings
in the data. Other methods handle networks, text, patterns caused by latent factors, and
relationships between variables. Lastly, in descriptive methods, measures of centrality
(e.g., mean and median), measures of position (e.g., quantiles), measures of spread (e.g.,
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range, standard deviation, and quantiles), and the distributions of variables are some ways
to describe data.

Because of the nature of the data civil and environmental engineers come to contact
with, this taxonomy was more re�ned for regression type problems. Other taxonomies have
emphasized combinatorics and probability theory (i.e., the theoretical foundations of statis-
tics) (Chiou, 2008; bioquest.org, 2011). We categorized statistical methods into two broad
categories of prediction and inference while others immediately branch into more categories:
estimation, exploration, prediction, decisions (hypothesis), uncertainties, and descriptive
categories (bioquest.org, 2011). Some taxonomies list many methods without distinguishing
between them (gogeometry.com, 2017; Brownlee, 2020). Also, unlike this taxonomy, it is
popular to put data visualization into a separate category (Covington, Hill, & Bru�, 2012;
Chiou, 2008). Altogether, in statistical learning, method or model selection is iterative and
should follow the generate-and-test approach. So, any guide to model selection is only a
heuristic, meaning as a general rule it will recommend appropriate methods, but also may
fail or mislead.

The hydroinformatics literature shows that the techniques presented in the heuristic guide
are aiding civil engineers in �elds like: (1) hydrology: e.g., rainfall-runo� modeling and model
calibration; (2) hydraulics: e.g., water levels and �ows in channels, reservoirs, and aquifers;
(3) environmental water quality: e.g., temperature and chemical concentrations; (4) urban
water supply: e.g., water demand and water distribution networks; and (5) general data
cleaning and anomaly detection. The following sections discuss models suitable to the PUB
problem.

1.3.3 Suitable Statistical Modeling for Hydrologic Data

Precipitation feeding into a stream must satisfy soil moisture de�cits along its �ow path
before it produces runo�. In other words, the soil needs to ��ll� to a threshold before it
can �spill� to become runo� (Spence & Woo, 2006). So, threshold behavior is frequently
discussed as in�uencing local, hillslope and catchment scale runo� generation processes (Zehe
& Sivapalan, 2008). This physical phenomenon may be why most successful machine learning
studies in rainfall-runo� modeling use arti�cial neural networks (e.g., Minns & Hall, 1996;
Dawson & Wilby, 1998; Tokar & Johnson, 1999; Hsu, Gupta, Gao, Sorooshian, & Imam,
2002; Hu, Wu, & Zhang, 2007; Abrahart, Heppenstall, & See, 2007; Govindaraju & Rao,
2013).

In arti�cial neural networks, at each node, the weighted sum of all inputs are passed
through a non-linear activation function. Much like the neurons in our brains, there is a
threshold that determines if the neuron will ��re.� Recent state-of-the-art technology in
neural networks show that Long Short-Term Memory (LSTM) networks o�er unprecedented
accuracy for prediction in ungauged basins (Kratzert et al., 2019). LSTMs are a special type
of recurrent neural networks capable of learning long-term dependencies in sequence (e.g.,
time series) prediction problems.

The same threshold e�ect can be replicated with tree based algorithms where models
are built with a series of binary splits on the predictor variables (e.g., Iorgulescu & Beven,
2004; Galelli & Castelletti, 2013; Magnuson-Skeels, 2016; Worland, Farmer, & Kiang, 2018).
Studies which have fairly small data sets su�er when forming the test/train or calibration/-
validation split. Usually, in these studies data for one whole basin is not held out when
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Figure 1.4: Heuristic guide for data analysis. We can group statistical learning methods
into seven main categories: (a) supervised machine learning, (b) regression family, (c) time
series analysis, geostatistics, (d) multi-variate analysis, unsupervised machine learning, and
(e) other methods. Blue text is repeated top-level information that is o� screen.
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training; in other words, the models can learn from a partial record of the basin of interest.
Although this approach seems to be accepted for rainfall-runo� modeling in the current lit-
erature, it does not comply by the test set requirements in the PUB problem�where no data
from the basin in the test set are available to the model. When data sets are large (e.g.,
studies done on the GAGESII data set, a massive USGS hydrologic data set), this problem
is less pronounced. Some studies employ a random test/train split which is not appropri-
ate when the dataset has internal correlations. We discuss this concept further in Chapter
4. These studies also employ a pre-modeling split on the dataset by classifying basins as
�impaired� vs. �reference.� This imposes a subjective top split in the data and homogenizes
basins in the study; the reference or unimpaired basins are usually smaller headwater basins
with low �ows. As such, and as expected, these models fail to accurately predict �ows when
extrapolating to basins lower in the network, with higher �ows, since the model was denied
such information.

More recently, studies have turned to support vector machines (SVM) (Asefa, Kem-
blowski, McKee, & Khalil, 2006; Lin, Cheng, & Chau, 2006), which initially were only applied
to classi�cation problems and have now been modi�ed to accommodate regression problems
(e.g., applications in �ood forecasting: Han, Chan, & Zhu, 2007; Yu, Liong, & Babovic,
2004; Bray & Han, 2004). Such studies show that advances are putting SVMs generally on
par with arti�cial neural networks in terms of model performance. However, application of
SVMs in time-series regression are still in their infancy; one study showed a peculiar behavior
of SVMs where lighter rainfall would generate unrealistic hydrographs that would increase
to an equilibrium point rather than having the characteristic skewed bell shape (Han et al.,
2007). This contradicts the physical principle that less rainfall cannot generate more �ow.

The di�culty in modeling lower �ows is not unique to SVMs. Other modeling tech-
niques (e.g., linear and generalized linear models) su�er from the same problem given that
the response, unimpaired �ow, is a semi-continuous variable. Semi-continuous data take
non-negative values but have a substantial proportion of values at zero. The modeling of
such �clumped-at-zero� or �zero-in�ated� data is challenging (Min & Agresti, 2002). Several
methods have been developed to address this issue:

� Censored regression models: A censored regression, or Tobit, model assumes that
data comes from a single underlying Normal distribution, but that negative values are
censored and stacked on zero (Tobin, 1958).

� Two-part models: As opposed to the Tobit model that allows the same underlying
stochastic process to determine whether the response is zero or positive as well as
the value of a positive response, two-part models allow the two components to have
di�erent parameters. Without assuming an underlying distribution, Duan, Manning,
Morris, and Newhouse (1983) proposed a two-part model that uses two equations to
separate the modeling into two stages. The �rst stage refers to whether the response
outcome is positive (e.g., a binomial model). Conditional on its being positive, the
second stage refers to its level (e.g., linear model).

� Compound Poisson exponential dispersion models: A model that uses a single distri-
bution from the exponential dispersion family (i.e., Tweedie distribution) to analyze
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semi-continuous data. Distributions in this family have a given range of shape param-
eters (1 < α < 2) which de�ne a point mass at zero and a skewed positive distribution
for positive values.

As Min and Agresti (2002) explain, other modeling methods exist for the problem of
in�ated zeros or other in�ated boundaries (e.g., ordinal threshold, �nite mixture, Neyman
type A models). Unfortunately, these methods may require groupings that necessitate infor-
mation loss, may overestimate the number of components when there is a lack of model �t,
or employ methods where the mathematical and inferential advantages associated with the
family of distributions are not available and are simply di�cult to �t. As such, we will not
discuss them here.

This thesis develops Linear Multivariate Regression (LM) as a �rst pass model, followed
by Generalized Linear Regression (GLM) with the Tweedie distribution, Random Forest
(RF), and Neural Network (NN) models.

1.4 Limitations & Assumptions of Statistical Modeling
Many hydrologists are skeptical of statistical modeling. Klemes (1982) warns modelers

of the general limitations of empirical modeling, some of which are discussed here.
In search of �better calculus�, the modeler may be in danger of over�tting�regarding

noise in the data as information (Klemes, 1982). Resampling methods, when correctly
applied, can illuminate di�erences between training and testing set performances (Friedman,
Hastie, & Tibshirani, 2001).

Furthermore, empirical models must be regarded as interpolation formulas, and so,
lack justi�cation outside the range of underlying data sets (Klemes, 1982). The models in
this study were �tted with data on the California Sierra Nevada mountainous basins, and
some coastal, and southern California basins (Figure A.1). These training data sets mostly
span the same hydrologic region (i.e., the United States Geological Survey Region No. 18).
As such, the model may perform poorly for basins outside this spatial range where other
hydrologic processes may dominate. We can expect this from observing the spatial variability
(characterized by the annual coe�cient of variation) in precipitation across the United States
(Figure 1.5; Dettinger et al., 2011).

In addition to concerns with spatial extrapolation, there is the issue of temporal extrap-
olation. Climate change brings non-stationarity in environmental variables like precipita-
tion and temperature. Empirical models for �ow should not be used to extrapolate beyond
the limits of the variables the model observes or it will risk large errors. However, many
advances in time series analysis can include non-stationarity in data; one can reduce the
process to a stationary one (i.e., trend seasonality and noise can be decomposed) or consider
these processes as stochastic.

Another downside is complexity in model structure, especially in ensemble statis-
tical learning methods, sometimes referred to as black-box models. If inference, or model
parameters, are of interest, complex models introduce challenges. Dimensionality reduction
methods (e.g., principle component analysis, partial least squares) and regularization tech-
niques in regression (e.g., ridge, lasso, and elastic net) can help reduce the number of model
parameters, and systematically produce simpler models (Friedman et al., 2001).
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Figure 1.5: Annual coe�cient of variation in total precipitation from 1951-2008 in the United
States. Reprinted from Dettinger et al., 2011.

The essential arbitrariness in the selection of the form of an empirical model is
another drawback (Klemes, 1982). Most studies report using one modeling method, which
perhaps suggests that researchers are not employing more than one modeling method. De-
ploying di�erent models can provide insights into the system by revealing the sensitivity
of results to the algorithms employed. Therefore, application and comparison of di�erent
machine learning models to the PUB problem was considered in this study.

Lastly, some limitations are caused by the nature of the algorithms deployed. For
example, regression-based random forest models make predictions by averaging predictions
made by multiple regression trees. Therefore, the ensemble model limits its predictions to
the range seen in the training data; predictions do not extrapolate to ranges not seen in the
training data. In fact, averaging dampens the density function when we compare observed
to predicted data. This is especially problematic where the extreme tails of the distribution
(i.e., �oods and droughts) are of interest. Another example is that of the SVMs mentioned
before that seem to perform poorly with low rainfall data.

1.5 Conclusion
Generally, in statistical learning, applications lag behind advances in theory; the appli-

cation of statistical learning theory to water resource problems is still in the bulldozer era.
So, most models are computationally expensive. In the past two decades, in hydrology, sta-
tistical learning methods have been applied to modeling rainfall-runo� processes, predicting
stream�ow temperatures, sediment and nutrient loadings, forecasting the groundwater heads
in an aquifer, or water demand, among many other problems.

This chapter's main contribution is a heuristic guide to empirical model selection. Like
a �owchart, it guides in selecting methods tailored to general purposes and limitations of
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various empirical modeling approaches. This guide should help in selecting from range of
methods available for a problem at hand and give some comparative insights on these diverse
methods. As a heuristic it works in most cases, but it is not comprehensive or applicable to
all problems.

In some cases, a wide range of empirical models can be employed, suggesting that no one
single modeling method is best across all locations, timescales, and problems. Also, despite
their limitations discussed in this chapter, these methods are much easier, faster, and less
expensive to apply and study than mechanistic models. They are well suited to dynamic,
non-linear, and sometimes noisy data, especially when underlying physical processes are
complex or not fully understood. In addition, the purpose of modeling is often to inform
decision makers with adequate timing. For example, models need to be run during and
just before �ood events. Real-time applications require rapid computation, which statistical
methods are well suited to. The merits of statistical learning techniques, as a subset of
empirical models, motivate their study in this dissertation.

1.6 Thesis Structure
This dissertation follows steps outlined in Figure 1.6. Chapter 2 compares two di�erent

data transformations that re�ect our view of hydrology: (1) each basin is a separate function
that transforms its inputs (precipitation and snow) into runo� (or unimpaired stream �ow),
or (2) basins are interconnected, and overlapping where one �ows into another. Chapter 3 ex-
plores the e�ect of the loss functions on model estimates. Loss functions re�ect the modeling
objective. Chapter 4 compares di�erent resampling methods for test error approximation.
Chapter 5 estimates future hydrology with climate changed data. Chapter 6 discusses model
improvement strategies.

Because model development is an iterative process, one can argue a di�erent order to the
chapters in this dissertation. However, we recommend reading them in the order they were
presented here as it closely mimics the order of decisions made in modeling: pre-processing
data, de�ning an modeling objective, validating/testing the model, and using the model in
di�erent, maybe unintended, ways.
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Figure 1.6: Statistical learning steps and thesis structure. Adapted from Brownlee, 2014;
Ingle, 2017. Each chapter of this dissertation discusses a unique step.
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Chapter 2

Data Transformations: Two Views on

Hydrologic Processes

Science is what we know, and philosophy is what we don't know.

Bertrand Russell, �Unpopular Essays�, 1950

Summary
There are three distinct model types in hydrologic modeling: process-based, statistical,

and theoretical. This dissertation develops statistical models (i.e., linear multivariate regres-
sion (LM), generalized linear regression (GLM), random forest (RF), and Neural Network
(NN) models) with a typical least squares loss function. Loss functions are discussed in
Chapter 3. The models are trained to predict calculated monthly unimpaired �ows in 67
California basins, and their results are compared to a process-based model.

In hydrology, there are two ways of de�ning basins: �aggregate� and �incremental.� Ag-
gregate basins are basins where all the land that contributes to runo� at an outlet or a
gauge is included within the basin boundary, and incremental basins are non-overlapping
segments of the basin between two gauges. Most studies in the literature use the aggregate
method, since it requires no pre-processing of the gauge data. This chapter compares these
two views on hydrology and shows that the NN model with the incremental basin approach
performed the best in the NSE criterion. The best overall error (Bias-Corrected Coe�cient of
Determination, bR2=0.92, Nash-Sutcli�e E�ciency, NSE=0.97) re�ects the model's ability
to represent monthly variations in �ow.

The test set error from �leave one group out� (LOGO) cross-validation shows that model
quality in predicting unimpaired �ow is variable in space. LOGO cross validation and other
resampling strategies are discussed in Chapter 4. A comparison of di�erent models concludes
that the incremental basin approach to hydrologic modeling provides increasing bene�ts as
the outlet of interest moves further downstream in the gauge network.
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2.1 Introduction
Unimpaired �ows can be presented in two fundamentally di�erent ways: (1) aggregate:

we can imagine each basin as a separate function that transforms its inputs (precipitation and
snow) into runo� (or unimpaired �ow). Flows for these basins are simply the observed gauge
values (Figure 2.1a); or (2) incremental: we can imagine the basins as interconnected and
overlapping. One stream �ows into another, like in a network, and so, some basins overlap.
Here, �incremental� basins are segments of basins that do not overlap. Flows for these basins
are the amount not observed by gauges above the outlet of interest (Figure 2.1b). Therefore,
when modeling with incremental �ows, network information is preserved.

In both methods, regardless of how we draw the boundaries, basin characteristics are
lumped. Therefore, this concept is similar to the concept of Hydrologic Response Units�
the basic computational units assumed to be homogeneous in hydrologic response. Much
like HRUs, incremental basins are smaller than the aggregate basin and can be dubbed
�sub-basin� size.

This chapter compares these two types of data pre-processing: aggregate and incremental
basins. Each data transformation re�ects a way of viewing hydrologic basins and processes as
independent or connected in a network. Throughout the dissertation, �hierarchies� determine
the relative location of the gauges in the network. For example, hierarchies of 1 are gauges
that do not have any gauges above them, hierarchies of 2 have one gauge above them, and
so on. In this dissertation, hierarchies are di�erent from the Strahler stream order ; here, the
gauges determine the hierarchy within the network, whereas all branches of a stream can
have a Strahler stream order number regardless of whether they are gauged.

2.2 Methods

2.2.1 Model Types and Loss Functions

The choice of a suitable model relies on striking a balance between three desirable model
properties: generality, reality, and precision (Guisan & Zimmermann, 2000). Generally,
only any two out of these three properties can be improved simultaneously, while the third
property must be sacri�ced (Levins, 1966). This trade-o� leads to at least two distinct
models: process-based, statistical. Model selection should not solely rely on performance
or �t statistics (precision); some models better re�ect physical foundations in hydrology
(reality) or are useful for a wider range of basins (generality). This dissertation develops
di�erent statistical models and compares the results to a process-based model (Table 2.1).

Linear Multivariate Regression Models

In 1805, Adrien Marie Legendre introduced the least squares method of estimating pa-
rameters as an appendix to his book on the paths of comets. A few years later, Carl Freidrich
Gauss also published the method (Stigler, 1981). The method became widespread with its
application to linear regression and curve �tting.

Linear Multivariate Regression models (LM) are customarily made of systematic and ran-
dom error components, where the errors are usually assumed to have a Normal distribution
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(a) Aggregate Basins

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Incremental Basins

Figure 2.1: A basin's hydrologic response can be interpreted in two fundamentally di�erent
ways: (a) aggregate basins, where each basin's response is a function of all the land above
the outlet that drains to it, or (b) incremental basins, where each piece of land below an
outlet incrementally alters the observed �ows from gauges above it.

(Equation 2.1).

Y ∼ N(µ, σ2): random

µ = Xβ: systematic
(2.1)

Given the model, the �tted values can be estimated by Equation 2.2.

Y sim
i = β0 + β1X1i + β2X2i + · · ·+ βiXki (2.2)

The unknown parameters in Equation 2.2 are: β0 (the overall mean) and βk (the re-
gression coe�cients). To �nd the best �t, much like simple linear regression, we need to
estimate the unknown parameters by minimizing a loss function, customarily the residual
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Table 2.1: Model types and their parameters.

Model
Type

R package Parameters de�ned in model
formulation

Parameters selected
through cross validation

LM stats not applicable not applicable

GLM stats family=Tweedie var.power=1.1
statmod link.power=0

maxit=1000

RF randomForest ntree=500 mtry=20
sampsize=length(training set)
nodesize=5

NN keras batch_size=25 epochs=100
tensor�ow validation_split=0.2

sum of squares (RSS) (Equation 2.3).

RSS =
n∑
i=1

e2
i

=
n∑
i=1

(Y obs
i − ysimi )2

=
n∑
i=1

(Y obs
i − β0 + β1X1i + β2X2i + · · ·+ βiXki)

(2.3)

The lm() function in R constructs LMs. They are easy to understand and interpret,
which makes them a great �rst cut at predictive modeling. However, they oversimplify reality
(hydrologic processes are not linear) and lack precision or predictive ability (as demonstrated
by poor goodness-of-�t measures). Another major �aw is that a linear predictor can give
predictions that are physically impossible (e.g., negative �ows). In PUB modeling, the
variance cannot be considered constant since there is a boundary on the response. These
shortcomings can be overcome with generalized linear models.

Generalized Linear Regression Models

In 1972, Nelder and Wedderburn introduced Generalized Linear Regression models
(GLM). This work allowed for a uni�ed �tting procedure, despite the type of error distribu-
tion, based on likelihood (Nelder & Wedderburn, 1972). Therefore, unlike LMs, GLMs can
accommodate non-Normal distributions of error. However, except for Normal distributions,
most other distributions do not have a closed-form solution.

In GLMs, the linear model is related to the response variable via a link function. This
function allows the magnitude of the variance of each measurement to be a function of its
predicted value. Therefore, a GLMs components are (Equation 2.4):

Y ∼ P (µ, φ): random

g(µ) = Xβ: systematic
(2.4)
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Where P is the distribution of random errors, and g(µ) is the link function. P and g can
be speci�ed by the user.

The glm() function in R constructs GLMs. The GLMs developed here are characterized
by the Tweedie distribution, since the outcome (i.e., unimpaired �ow) is continuous, non-
negative, skewed, and unbalanced with exact zeros. Tweedie distributions are a special case of
exponential dispersion models where the variance function is a power function (Equation 2.5),
and the link, or the function used to explain how the expectation of the outcome is related to
the linear predictor can be speci�ed in terms of Box-Cox transformations (Jorgensen, 1997).

var(Y ) = V (µ)φ = µαφ (2.5)

The power, alpha, can be set by the user, or determined through cross-validation. Special
cases include Normal (α=0), Poisson (α=1), Gamma (α=2), and inverse-Gaussian (α=3)
GLMs . Here, we set the power α to be 1.1-found through cross-validation. The link g can
be speci�ed as log or identity. Here, we used the log link.

Therefore, the above model assumes that yi ∼ Tweedieα(µi, φ) where

var(Yi) = µ1.1
i φ

and

log(µi) = β0 + β1X1i + β2X2i + · · ·+ βiXki

The regression coe�cients, βj, were estimated by maximum likelihood. The dispersion
parameter, φ, was estimated using the RSS otherwise called the Pearson estimator.

Both LMs and GLMs are parametric models. For prediction purposes, non-parametric
methods have potential to out-perform parametric methods, since their form is shaped by
the data and not �xed a priori (James et al., 2013). Therefore, next, we consider a non-
parametric modeling method, random forests.

Tree Building Algorithms

Classi�cation and Regression Trees (CARTs) involve stratifying or segmenting the predic-
tor space, into a several regions, using a series of if-then statements. At each internal node in
the tree, a test is made to one of the inputs. Depending on the outcome of the test (or split
rule), the algorithm goes to either the left or the right sub-branch of the tree. Eventually the
algorithm arrives at a terminal branch, which is the prediction. The prediction for a given
observation is the mean or the mode of the training observations in the region to which it
belongs (Breiman, Friedman, Stone, & Olshen, 1984).

In essence, each tree is a series of split rules. The split rule is found using a greedy
top-down search for recursively splitting of the data into binary partitions. It is greedy,
because, the split rule at each internal node is selected to maximize the homogeneity of
its child nodes, without consideration of nodes further down the tree, yielding only locally
optimal trees (Grubinger, Zeileis, Pfei�er, et al., 2011). For regression trees, the mean of all
the observation points that fall within a branch is considered the prediction of that branch
in the tree. The best tree is one which has the minimum test set error rate usually calculated
by the RSS.
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Since trees have a �nite number of terminal nodes; CARTs are pruned based on a com-
plexity parameter, α. The predictions of these methods are discrete, and therefore, not
particularly suited to modeling a continuous variable. In addition, CARTs su�er from high
variance; trees grown on di�erent subsets of the training set will produce di�erent predic-
tions. This phenomenon is a major drawback of CARTs. Methods such as bagging (Breiman,
1996), random forests (Breiman, 2001), boosting (Friedman, 2001) and bumping (Grubinger,
Kobel, & Pfei�er, 2010) attempt to improve the prediction accuracy of trees with the idea
that combining and averaging trees reduces variance.

A Random Forest (RF) consists of an assemblage of unpruned CART models and is
essentially a weighted neighborhood scheme (Equation 2.6). Each CART model in a RF is
di�erent because it is grown using: (1) a new training set: in each bootstrapped training set,
about one-third of the instances are left out; and (2) random feature selection: each time a
split in a tree is considered, a random sample of predictors is chosen as split candidates from
the full set of predictors.

ŷ =
1

m

m∑
j=1

n∑
i=1

Wj(xi, x
′) yi =

n∑
i=1

 1

m

m∑
j=1

Wj(xi, x
′)

 yi (2.6)

Using a random selection of features to split each node de-correlates the trees. Suppose
there is one very strong predictor in the dataset, along with other moderately strong predic-
tors. Then, in the collection of trees, most or all trees will use this strong predictor in the
top split. Consequently, all trees will look quite similar. So, predictions from the trees will
be highly correlated. However, forcing each split to consider only a subset of the predictors
makes the resulting trees less variable and more reliable (James et al., 2013). This strategy
introduces some randomness that improves the accuracy of the predictions of the trees as a
whole and yields error rates that are robust with respect to noise (Breiman, 2001).

The randomForest() function in the randomForest library (Liaw & Wiener, 2002b)
constructs RF models. This function takes in the following tuning parameters:

mtry or number of split features: In RFs, internal estimates monitor error, strength, and
correlation, which are used to show the response to increasing the number of features used
in the splitting. Here, this parameter was set to 20 out of the full 25 predictor variables
available (found through cross-validation).

ntree or number of trees to grow: The generalization error of a forest of trees depends on
the strength of the individual trees in the forest and the correlation between them (Breiman,
2001). This error converges to a limit as the number of trees in the forest increases. Here,
the number of trees was kept at the default 500.

sampsize or sample size: In RFs, trees are built on a bootstrap sample of the training
data, a sample equal in size to the original dataset, but selected with replacement. Therefore,
some observations are not selected, and others are selected more than once. Here, the sample
size was kept at the default value, the length of the training set.

maxnodes or maximum terminal nodes: Using the maximum number of terminal nodes,
the user can �prune� the trees back to a smaller version. The default value was used, which
is a function of nodesize or the allowed minimum number of observations in each node. The
default value for nodesize is 5.
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(a) Two Layer Dense Network (b) Operations of a Neuron

Figure 2.2: The anatomy of a neural network. (a) From left to right, the �rst layer is the
layer in which inputs are entered, then an internal layer (called a hidden layer), and a �nal
output layer. (b) At each node simple calculations are carried out: �rst, a weighted sum of
all the inputs is calculated. An optional bias term can be added here. Then, an activation
function maps the total value onto a number between 0 and 1. If the value is above the
threshold value the neuron is considered active. Once the process is repeated for all the
hidden layers, the last values obtained determine the output.

Like LMs, RFs also typically use the RSS loss function to �nd the optimal split value.
Loss functions are examined in Chapter 3.

Neural Networks

In 1951, Marvin Minsky and graduate student Dean Edmonds built the �rst neural
network (NN) machine. This machine was a randomly connected network of capacitors that
have a �nite amount of memory and time to keep or remember that memory. The memory
holds the probability that a signal will come in one input and another signal will come out
of the output. This machine, modeled after the Hebbian theory of learning in the human
brain, was one of the �rst pioneering attempts at arti�cial intelligence. Shortly after, in
1957, Frank Rosenblatt invents the perceptron, the �rst neural network for computers.

Figure 2.2 shows the components of a neural network: the layers, nodes, activation
function, and output layer transformations. Deep learning refers to neural networks with
a higher number of hidden layers than the typical two layer fully connected network that is
depicted in Figure 2.2a.

In training the model, a backward propagation of errors or backpropagation is used to
establish the weights in Figure 2.2b. This method calculates the gradient of the error function
with respect to the neural network's weights starting from the �nal layer and propagating
backwards through the network. Since the error depends on the weighted sum and the
weighted sum depends on the weight, the chain rule is used to estimate the error function's

23



partial derivative with respect to the weights (Equation 2.7).

∂E

∂wkij
=

∂E

∂akj
∗ ∂a

k
j

∂wkij
(2.7)

where E is the loss function, wkij is the weight for node j in layer k for incoming node i, akj
is product sum plus bias (activation) for node j in layer k.

Google's TensorFlow, and its accompanying application programming interface (API)
Keras, allow for an easy application of neural networks with the following �exible parameters:

activation: The activation function determines whether a neuron will be activated.
Here, we use the default Recti�ed Linear Unit (ReLU) function that is an activation function
de�ned as the positive part of its argument also known as a ramp function.

layer_dense(units=1): The units in the �nal layer de�ne the number of outputs per
observation. Here, we want one prediction per observation. Otherwise, we would have to
average the predictions.

epochs: In batch training, the number of epochs is the number of times all training
vectors are used to update the weights. The number of epochs determines the length of the
training time. Here, we used 100 epochs since the weights typically stabilized before this
number.

batch_size: Batch size determines the number of training examples in one forward
or backward pass. The smaller the batch the less accurate the estimate of the gradient.
However, minibatch methods reduce memory space needs and increase training e�ciency as
compared to using the entire sample. Here, we used 25 observations per training.

validation_split: The validation split helps automate the evaluation of the model's
performance. Here, it was set to 0.2. However, since the data set was manually divided into
testing and training sets, it was not necessary and the results from this test are not reported.

optimizer: Set to �rmsprop�, the optimizer searches for the optimal node weights. The
RMSprop optimizer is similar to the gradient descent algorithm withmomentum. Momen-
tum restricts the oscillation in one direction. Therefore, by increasing the learning rate, the
algorithm takes larger steps in one direction to converge faster.

loss: Loss de�nes the error function and enables modelers to write custom loss functions.
Here, we used keras::loss_mean_squared_error.

2.2.2 Test Set Error Approximation

Blocking cross-validation is used to approximate the test set error. All data for the basin
to be modeled is left out of the training data and becomes the test set (i.e., leave one group
out cross validation). Therefore, the training data is the data from all the other basins. This
process was repeated for all basins in the study, and so, for model evaluation, one LM, GLM,
RF, and NN model exists for each basin. Chapter 4 examines resampling methods. In all
other chapters, the errors reported are test set errors.

With the developed model's predictions and the observations in the test set, we can
calculate the desired model goodness-of-�t: Bias-Corrected Coe�cient of Determination
(bR2) and Nash-Sutcli�e E�ciency factor (NSE) (Equations 2.8, 2.9, and 2.10). See appendix
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D for more model measures-of-�t.
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(
Y sim
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)2


2

R2 ∈ [0, 1] (2.8)

R2 is insensitive to additive and proportional di�erences between model simulation and
observations. One can simply show that for a non-zero value of β0 and β1, if the predictions
follow a linear form, Y sim = β0 + β1Y

obs, the R2 equals one (Legates & McCabe Jr, 1999).
Therefore, for a proper model assessment, it is recommended that the slope of the predicted
vs. observed graph be reported or systematically included as in Equation 2.9.

bR2 =

{
|b|R2 for b ≤ 1

|b|−1R2 for b > 1 bR2 ∈ [0, 1]
(2.9)

By weighting R2, under and over predictions are quanti�ed together with the model
dynamics, which results in a more comprehensive re�ection of model results.

Another commonly used model goodness-of-�t is the Nash-Sutcli�e E�ciency factor
(Equation D.11).

NSE = 1−
∑n

i=1

(
Y sim
i − Y obs

i

)2∑n
i=1

(
Y obs
i − Y obs

)2 = 1− RSS

V ar(Y obs)
NSE ∈ (−∞, 1] (2.10)

A Nash-Sutcli�e e�ciency factor of less than zero indicates that the mean value of the
observed time series would have been a better predictor than the model. Like the bR2,
the largest disadvantage of the Nash-Sutcli�e e�ciency factor is the di�erences between
observed and predicted values are calculated as squared values. As a result, larger values
in a time series are strongly overestimated whereas lower values are neglected (Legates &
McCabe Jr, 1999). For the quanti�cation of runo� predictions, this leads to an overestimation
of the model performance during peak �ows and underestimation during low �ow conditions
(Krause, Boyle, & Bäse, 2005).

2.2.3 Post-Processing

In post-processing, all model predictions are modi�ed to be comparable to original gauge
�ows; all incremental basins are back-transformed into aggregate forms. In other words, the
steps used in pre-processing are reversed to fairly compare goodness-of-�t across all models.

2.3 Results

2.3.1 Model Evaluation

Figure 2.3 shows predicted versus observed unimpaired �ows, in the test set, for each
model type, in order of increasing NSE. A perfect model would follow the y = x line. The
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regression line shows a tendency for the LM and RF aggregate and incremental models to
underpredict and for the GLM aggregate and incremental models to slightly overpredict
unimpaired �ows. Underpredicting �ows are generally bad in times of �oods and overpre-
dicting �ows are generally bad in times of droughts, each misleading managers in damaging
ways. The NN out-performs other models and is somewhat insensitive to the input data
pre-processing.

Figure 2.4 shows how each model scores as to the bR2 and NSE. In the LM and GLM
the incremental modeling method performs better than the aggregate. In the RF and NN,
their performances are very similar.

In the NSE, the NN incremental model has the best performance, so, we abandon further
comparative analysis across model types and examine the spatial distribution of this model's
performance.

2.3.2 Spatial Distribution of Errors

Figures 2.6 and 2.7 show the bR2 values for the 67 basins in this study. As expected,
the model's ability to predict unimpaired �ow varies across California. The model performs
better at larger basins lower in the network (i.e., have a higher hierarchy). This could be due
to: (1) basins with higher hierarchies generally have larger �ows and less variability (A.5),
and the model is trained with a squared error loss that penalizes large errors more harshly;
or (2) there is substantial value in having a gauge or �ow information upstream. In other
words, the decline in error is due to modeling with incremental basins.

Figures 2.8 and 2.9 show that when there is no �ow information upstream (i.e., hierar-
chy=1) there is not much di�erence in the performance of incremental and aggregate models.
However, when we increase information from upstream gauges (i.e., hierarchy=2,3,4, and 5)
the NN incremental model can perform much better than the NN aggregate model. Even
though the data set is smaller in the basins lower in the network, we can conclude that, the
model is performing better at these basins due to information upstream and not just due to
its higher �ows and the loss function.

2.3.3 Benchmarking

Next, we compared the test set NSE of the NN models with that of the Basin Character-
ization Model (BCM), for basins that overlap the two studies (Figure 2.10). The BCM is a
process-based model that calculates the hydrologic inputs and outputs of a speci�c landscape
area; using climate data inputs a simple accounting solves the water balance for each cell.
Model calculations include potential evapotranspiration, snow, excess water moving through
the soil pro�le, actual evapotranspiration, and climatic water de�cit�the di�erence between
potential and actual evapotranspiration. Post-processing calculations are made to estimate
base�ow, stream�ow, and potential recharge to the groundwater system for watersheds (Flint
& Flint, 2014).

The comparison in Figure 2.10 shows that the NN in both aggregate and incremental
methods out-perform the BCM in most basins.

A model with higher predictive accuracy can produce more reliable information about
the mechanism producing the underlying data, and weak predictive accuracy can lead to
questionable conclusions (Breiman et al., 2001). Therefore, given a �good� model, interpre-
tation methods can give more reliable insights into what would otherwise be a black-box
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Figure 2.3: Predicted vs. observed results for models trained on aggregate and incremental
data. Incremental (or networked) data leads to better model performance for most model
types. The LMs generally underpredicts unimpaired �ows and are a bad �t for lower order
basins. The GLMs slightly overpredict unimpaired �ows, but have a better �t. The RF
generally underpredicts unimpaired �ows and as a non-parametric model, has a better �t
compared to the previous parametric models mentioned. The NN out-performs all models
with an excellent �t for all �ows and basin hierarchies.

27



(a) bR2

(b) NSE

Figure 2.4: The goodness-of-�t of models trained on the two types of data (i.e., aggregate
and incremental) as measured by the Coe�cient-of-Determination (bR2) and Nash-Sutcli�e
E�ciency (NSE). The NN aggregate and incremental model provides the best model perfor-
mance in the bR2 and NSE respectively.

model. With the model measures of �t in mind, the following sections discuss two popular
interpretability methods: variable importance and partial dependence for the NN aggregate
model.

2.3.4 Variable Importance

It is often of interest to know how much the predictors in a �tted model in�uence the
predictions.

In LMs and GLMs, the absolute value of the t-statistic is commonly used as a measure
of variable importance (VI) although a score is assigned to each term in the model, rather
than to each feature.

RFs and gradient boosted decision trees have a natural way of quantifying the importance
or relative in�uence of each feature. In these models the data is sampled at each node. This
sampling creates a leftover out-of-bag (OOB) data used to construct validation-set errors for
each tree. To calculate VI, each predictor is randomly shu�ed in the OOB data and the
error is computed again. If a variable is important, then the validation error will increase
when it is perturbed in the OOB data. The di�erence in the two errors is recorded and
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Figure 2.5: Residual error densities for aggregate and incremental models by model type.
All models have a tendency to predict to the mean due to the MSE loss function. GLM,
RF, and NN more accurately predict the frequency of ��oods� (i.e. the right side tail). All
models, to varying extents, fail to predict the frequency of �droughts� (i.e. the left side tail).
LM is the least sensitive to the data transformation. In other models, the aggregate method
better re�ects the observed probability distribution compared to the incremental.
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(a) NN Incremental (b) Basin Hierarchies

Figure 2.6: The spatial distribution of errors in the NN incremental model. (a) The bR2 �t
is not random and its higher values follow a line down the middle of California. This pattern
coincides with higher basin hierarchies. (b) The basins are not evenly distributed between
the hierarchies; the lower the hierarchy number the more basins in this study. Altogether,
the lower the basin is in the network, the better the model performs.

(a) NN Aggregate (b) NN Incremental

Figure 2.7: The aggregate and incremental basins perform very similarly when there is no
information upstream (i.e., hierarchy=1). However, when we introduce information upstream
(i.e., hierarchy=2,3,4, and 5, which follows a line down the middle of California), incremental
basins can perform much better than the aggregate.
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Figure 2.8: Basin bR2 performance grouped by hierarchies for the NN model. The lower a
basin is in the network, the better the incremental models perform compared to the aggregate.
For example, the YRS basin (lowest in the network) has a bR2= 0.97 in the incremental model
but a 0.72 in the aggregate.
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Figure 2.9: Basin bR2 performance for the NN model. The incremental and aggregate basins
perform very similarly when there is no information upstream (i.e., hierarchy=1). However,
when we introduce information upstream (i.e., hierarchy=2,3,4, and 5) the incremental basins
can perform much better than the aggregate.

averaged across all trees in the forest.
In NNs, two popular methods for constructing VI scores are the Garson algorithm

(Garson, 1991), later modi�ed by Goh (1995), and the Olden algorithm (Olden, Joy,
& Death, 2004). In both algorithms, the basis of the importance scores is the network's
connection weights.

If an algorithm does not have a natural way of calculating VI, or if the object is to
compare VI across di�erent model types, model-agnostic approaches are used. Model-
agnostic interpretability separates interpretation from the model. One such method
is permutation, a method popularized by Breiman (2001). The underlying principle in
permutation methods is: if the values of an important feature is shu�ed in the training data,
the training performance would degrade, since permuting the values of a feature e�ectively
destroys any relationship between that feature and the response variable.

The vip library constructs VI scores and plots for many types of supervised learning
algorithms using model-speci�c and model-agnostic approaches. Here, we used the permute
method and a user de�ned prediction function to manually block training and testing data by
basins (i.e., the BBG method described in Chapter 4). The number of perturbations (nsim)
was kept at the default, 1, to avoid long processing times. However, higher nsim values and
averaging results can reduce the error introduced by the randomness in the permutation
procedure.
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(a) Full x-axis range.

(b) Truncated x-axis range.

Figure 2.10: Model goodness-of-�t comparisons with the Basin Characterization Model. The
NN in both aggregate and incremental methods out-perform the BCM in eight of ten basins.
The models in this study are especially weak in predicting MKW unimpaired �ows, possibly,
due to its very short length of record (only two years or 24 observations) compared to other
basins (typically 32 years or 393 observations).
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Figure 2.11: Scaled mean variable importance. A basin's drainage area and precipitation
are the most important variables in predicting monthly unimpaired �ow regardless of model
type.

Figure 2.11 shows that a basin's drainage area and precipitation are the most important
variables in predicting monthly unimpaired �ow regardless of model type. Next are lagged
precipitation and temperature variables, the snow variable manually calculated from precip-
itation and temperature, and the mean elevation of the basin. Other variables do not have
signi�cant e�ects on the model performance especially in the NNs.

As the addition of variables brings new information to models like the GLM, and improves
their performance, the NN prefers extra layers in its network. The trend in the development
of NNs has been to develop deeper networks, rather than wider ones, to improve model
performance. The advantage of multiple layers is that they can learn features at various
levels of abstraction (Antognini, 2016). For example, if you train a deep convolutional neural
network to predict daily unimpaired �ow, you may �nd that the �rst layer will train itself to
recognize very basic things like the e�ects of drainage area and precipitation on the target.
The next layer will train itself to recognize classi�cations and higher-order interactions like
the di�erent hydrologic regimes that may govern smaller headwater basins as opposed to
larger ones, or that antecedent conditions can change the target. The �exibility in the depth
of a NN means NNs can learn information from fewer variables.

Here, the presence of all predictor variables in the model can be justi�ed with knowledge
of hydrological processes. However, if this was not the case, Stein's paradox can describe an
unavoidable issue. In estimation theory, Stein's paradox is a phenomenon that appears when
three or more parameters are estimated simultaneously. In this case, a combined estimator
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exists that is more accurate on average (i.e., has a lower MSE) than any method that handles
the parameters separately (Efron & Morris, 1977). It implies that we can produce a better
estimation of a parameter by simultaneously using three unrelated measurements. This
occurs because the cost of a bad estimate in one component of the vector is compensated by
a better estimate in another component. Since we do not know which parameter's estimate is
improving, the best way to approach a given estimation problem is to make sure all predictor
variables have been chosen with sound scienti�c reasoning.

2.3.5 Partial Dependence

Another model-agnostic interpretability method for quantifying feature importance is the
partial dependence plot (PDP) and individual conditional expectation (ICE) curves.
When constructing a PDP for a particular feature, the values of every observation in that
feature is replaced with one unique observation. Then, the predicted values are averaged.
This is repeated for each unique observation and the observation and predicted value pairs
are plotted to become a PDP.

PDPs are valuable for understanding the relationships uncovered by complex models.
However, they can be misleading in the presence of substantial interaction e�ects (Goldstein,
Kapelner, Bleich, & Pitkin, 2015), which can be addressed with individual conditional ex-
pectation (ICE) curves. ICE plots display one line per observation that shows how the
observation's prediction changes when a feature changes. The values for a line can be com-
puted by replacing the feature's value with values from a grid, keeping all other feature the
same, and making predictions with the model for these newly created instances. The result
is a set of points for an instance with the feature values from the grid and their respective
predictions. Consequently, the PDP for a predictor of interest can be obtained by averaging
the corresponding ICE curves across all observations (Greenwell, Boehmke, & McCarthy,
2018).

Figure 2.12 shows the ICE curves for a few predictors in the YRS basin (the basin lowest
in the network) as an example. Increasing drainage area, precipitation, and snow increases
the unimpaired �ow prediction. Interestingly, the same happens for temperature. Elevation
and other variables with low VI scores (like % sand) have �at ICE curves showing their little
in�uence over the predictions at any level (high or low percentages).

2.4 Conclusion
Incremental basin modeling provides an easy way to include network information in

statistical models and the results show its value for modeling hydrology with parametric
models, especially those with few parameters like LM and GLM. As the results showed, the
LM and GLM prefer the incremental modeling approach, whereas the RF and the NN are
somewhat insensitive to it.

On this data set, and according to the performance ratings provided by Moriasi et al.
(2007), the GLM and RF provide a �good� prediction for unimpaired �ows, and the NN
provides a �very good� one (Table 2.2). The RF might perform well due to the nature of
non-parametric methods where the model form is determined by the data and prediction
becomes easier. The NN performed the best possibly due to its learning by abstraction and
its ability to mimic threshold behaviors in hydrology. The results from the NN models show
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Figure 2.12: Individual conditional expectation (ICE) curves and their averages (partial
dependence) for the YRS basin. The �atness of the ICE curves show the in�uence of the
predictor variable in predicting unimpaired �ow. For example, increasing the precipitation
that falls on the basin increases the amount of unimpaired �ows predicted by the model.
However, increasing the % sand for each observation does not have an e�ect on unimpaired
�ow predictions at any level (low or high percentages).
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why these methods are so popular in hydroinformatics.

Table 2.2: Model performance ratings. Criteria are given by Moriasi et al., 2007 (Appendix
D).

Model Aggregate Incremental

LM Unsatisfactory, NSE=0.44 Satisfactory, NSE=0.62

GLM Unsatisfactory, NSE=0.49 Satisfactory, NSE=0.63

RF Good, NSE=0.73 Good, NSE=0.70

NN Very Good, NSE=0.94 Very Good, NSE=0.97

In another experiment, the models were trained on their cumulative �ows and cumulative
rainfall. Given that snow-melt driven hydrology dominates the Sierra-Nevada basins, and
processing the data to its cumulative forms would have given the model a �memory� e�ect,
we repeated the experiment in this chapter with cumulative values. However, surprisingly,
none of the models provided satisfactory results, and so, we have omitted those results from
this chapter.

The next chapter explores one �aw pointed out here: the squared loss function forcing
better predictions at �ood levels at the expense of drought level data. Models are trained
and compared using di�erent asymmetric loss functions to penalize the under predicting of
�oods and overpredicting of droughts at a higher cost (i.e., forcing the model to reach the
peaks and valleys of the hydrograph).
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Chapter 3

New Loss Functions: Comparing

Asymmetric and Symmetric losses in

Evaluating Error

Maybe all one can do is hope to end up with the right regrets.

Arthur Miller, �The Ride Down Mount Morgan�, 1991

Summary
In statistical learning, the loss function is a translation of an informal philosophical mod-

eling objective into the formal language of mathematics (Hennig & Kutlukaya, 2007). Some
measures of �t have already been established and are common in hydrologic modeling (e.g.,
Mean Squared Error [MSE], Nash-Sutcli�e E�ciency [NSE]). However, these loss functions
are all symmetric. The MSE is the loss function of choice in most modeling e�orts, because
it is mathematically easier to implement (di�erentiable) and is the default loss in many
functions imported from libraries.

Symmetric functions produce the same loss when underpredicting and overpredicting of
the same absolute error. However, an asymmetric loss function applies a di�erent penalty
to the di�erent directions of loss. This feature allows an asymmetric loss function to force
the model to overpredict unimpaired �ows in times of �oods and underpredict them in
droughts rather than the less desirable opposite. This approach leads water managers to
more conservative decisions, since the models predict more extreme �oods and droughts.

This chapter uses six loss functions. Four are symmetric: Mean Squared Error (MSE),
Log Hyperbolic Cosine (LOGCOSH), Mean Absolute Error (MAE), Mean Squared Percent-
age Error (MSPE); and two are asymmetric: Mean Weighted Least Squares Error (WLSE)
and Linear Exponential Error (LINEXE). We present the results obtained by a NN model
with a LOGO cross-validation resampling scheme. A visual comparison of the model �ts
shows that the asymmetric functions, with appropriate nuisance parameter estimates, can
force better �ts at the peaks and valleys of a hydrograph.
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3.1 Introduction

3.1.1 Loss Functions in Statistical Learning

Typical loss functions in statistical learning are the `1-norm and `2-norm (Equations 3.1
and 3.2). The `2-norm is the familiar objective function in simple least-squares regression, a
convex function, emphasizing points distant from the bulk of the data.

`1(yi, f̂(xi)) = ||yi − f̂(xi)||1 =
∣∣∣yi − f̂(xi)

∣∣∣ (3.1)

`2(yi, f̂(xi)) = ||yi − f̂(xi)||22 =
(
yi − f̂(xi)

)2

(3.2)

Risk, or cost, is de�ned as the expectation of the loss function. For example, the risk of
overpredicting the severity of a drought can be de�ned as how much it was overpredicted on
average. This distance can be de�ned as the absolute value of the di�erence or the di�erence
squared as in Equations 3.3 and 3.4, the empirical risks associated with the `1-norm and
`2-norm. The expectation of the `2-norm will produce a model that regresses to the mean,
and the `1-norm regresses to the median. That is, the `2-norm is more sensitive to outliers
than the `1-norm. Using either norm implies that the modeler is more concerned with a
conservative measure of centrality rather than getting predictions closer to the extremes of
the distribution. Asymmetric loss functions discussed later can address this issue.

L1(yi, f̂(xi)) = E
[
`1(yi, f̂(xi))

]
=

1

n

n∑
i=1

∣∣∣yi − f̂(xi)
∣∣∣ (3.3)

L2(yi, f̂(xi)) = E
[
`2(yi, f̂(xi))

]
=

1

n

n∑
i=1

(yi − f̂(xi))
2 (3.4)

As an aside, regret is the di�erence between the consequences of a sub-optimal decision
and the optimal decision. Often, in reinforcement learning, the objective is to minimize
total regret, which is equivalent to maximizing the highest accumulated reward (Sutton
& Barto, 2018). For example, maybe overpredicting the severity of a drought this year
will lead to better management of resources and fewer regrets in later years. To avoid
developing a mathematical representation for regret, we will proceed with the much simpler
risk-minimization framework (Equation 3.5).

f̂(xi) = argmin
f̃

E
[
L(y, f̃(x))

]
(3.5)
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3.1.2 Loss Functions in Hydrologic Modeling

In practice, the loss function for a chosen statistical learning method is the translation of
a informal philosophical modeling objective into the formal language of mathematics (Hennig
& Kutlukaya, 2007). So, the choice of a loss function in estimation is somewhat subjective
and depends on the speci�c application of the model or the decisions being made when used.

Mechanistic models in hydrology simulate conditions based on available input parameters,
modeled processes, and calibration to speci�c locations. Measures of �t-the similarity of
the simulations to the observations-help in assessing model performance. Visual similarity is
recommended as the most fundamental approach to assessing model performance (i.e., the
plot of observed and simulated time series), and calculated measures of �t are recommended
next as an objective assessment (Krause et al., 2005). In addition to model performance
estimation, these measures can help guide better �ts of simulations to observations in model
calibration or �nuisance� parameter estimation.

Some measures of �t have already been established and are common in hydrologic mod-
eling: the Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square
Error (RMSE), normalized RMSE (nRMSE), RMSE standard deviation ratio (RSR), Rela-
tive Standard Deviation (RSD), Relative Mean (RMU), Percent Bias (PBIAS), Coe�cient
of Determination (R2), Nash-Sutcli�e E�ciency (NSE), Index of Agreement (d), Modi�ed
NSE, Modi�ed d, Relative NSE, Relative d, King-Gupta E�ciency (KGE), and Volumetric
E�ciency (VE). Appendix D presents their equations, strengths, and weaknesses.

The following is a discussion on the characteristics of the loss function in its application
to hydrologic prediction:

(1) Symmetric vs. Asymmetric: In symmetric functions, underpredicting produces
the same loss as overpredicting of the same absolute error. However, a conservative loss
function applies a di�erent penalty to the di�erent directions of loss (overpredicting vs.
underpredicting). So, an asymmetric loss function can force the model to over predict the
unimpaired �ows in times of �oods and under predict them in droughts rather than the less
desirable opposite. This approach requires the labeling of all instances of the data as either
a peak (�ood), or valley (drought) point. Therefore, we need a labeling mechanism (i.e., a
classi�cation model) before �tting the predictive regression model.

Great care should be taken not to introduce �data leakage� or the inclusion of information
from the response variable into the training of the predictive model; the classi�cation model
will have to either be trained on the predictor variables only, or use a portion of the data
that is set aside for the rest of the study.

Once all observations are classi�ed, we de�ne di�erent loss functions for each peak and
valley section. Such loss functions can be de�ned as linear exponential (LINEX) loss if
smoothness is desired (Equation 3.6 and Figure 3.1). However, current subgradient-based
and derivative-free methods of optimization in convex programming can easily handle non-
di�erentiability at the origin of the loss function. Many asymmetric loss functions in machine
learning have a simple kink in them. They are otherwise entirely di�erentiable (Equation
3.7 and Figure 3.2).

LINEX(yi, f̂(xi)) = eφ(yi−f̂(xi)) − φ(yi − f̂(xi))− 1, φ ∈ R (3.6)
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(a) Desired asymmetricity in peaks and valleys (b) Asymmetric loss de�ned with LINEXE

Figure 3.1: Asymmetric loss functions de�ne di�erent losses to overpredicting and underpre-
dicting a value. A positive φ de�nes the LINEXE needed for drought cases and a negative
φ for �ood cases.

(a) Floods (b) Droughts

Figure 3.2: An asymmetric weighted absolute value loss function can de�ne di�erent slopes
to overpredicting and underpredicting a value.

Hinge(yi, f̂(xi)) = α ∗min(0, f̂(xi)− yi) + β ∗max(0, f̂(xi)− yi) (3.7)

The squared error loss penalizes larger errors more than smaller error; the function is
steeper in the tails than in the middle. To preserve this feature, we can combine the concepts
above and de�ne a weighted `2-norm (Equation 3.8).

Weighted Squared Error(yi, f̂(xi)) = α ∗
[
min

(
0, (f̂(xi)− yi)

)]2

+ β ∗
[
max

(
0, (f̂(xi)− yi)

)]2

(3.8)
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(2) Relative Errors vs. Absolute Errors: In hydrology, manual and automatic at-
tempts aimed at minimizing absolute errors often lead to �tting the higher portions of the
hydrograph (peak �ows) at the expense of the lower portions (base�ow) (Krause et al., 2005).
Relative errors are generally more important than absolute errors unless the goal is to esti-
mate water supply. For example, depending on the modeling purpose, a 100 TAF error in
1,800 TAF (monthly annual average of the Sacramento River) could be a less extreme error
than in 300 TAF (monthly annual average of the Trinity River). Relative error loss functions
or a simple log transformation of the data can help in this regard. We have used one relative
error loss function, the Mean Squared Percentage Error (MSPE), for illustrative purposes.

(3) Continuous vs. Stepwise: Although, most outcomes may follow a discontinuous
step function (e.g., a neuron �ring or not), many decisions in water resources (e.g., releases
from a reservoir) are continuous. Continuity and di�erentiability make the math more con-
venient. One major development in neural networks was doing away with the concept of
thresholds in the step function (representing the collective in�uence of all the inputs) and
replacing it with a smoother sigmoid function. As with neural networks, many optimiza-
tion algorithms require continuity and di�erentiability (e.g., gradient decent). However,
advances in these methods now allow for piece-wise di�erentiability in the loss function. To
make matters simple, we use continuous functions.

(4) Homogeneous vs. Heterogeneous (i.e., weighted based on geographic re-
gion): The cost of incorrectly managing a densely populated urban basin may be very dif-
ferent than a desert or a headwater basin; the importance of having accurate �ow estimates
is not completely homogeneous especially across a big and diverse region like California.
However, to avoid making those judgments, we use a single loss function across all regions.

3.2 Methods
Table 3.1 shows the loss functions used in the NN model.

Table 3.1: Loss functions used in NN model.

Type∗ Abb. Name Function

S MSE Mean Squared Error keras::loss_mean_squared_error()

S LOGCOSH Log Hyperbolic Cosine keras::loss_logcosh()

S MAE Mean Absolute Error keras::loss_mean_absolute_error()

S MSPE Mean Squared Percentage
Error

custom_metric (Appendix E)

A WLSE Mean Weighted Least
Squares Error

custom_metric (Appendix E)

A LINEXE Linear Exponential Error custom_metric (Appendix E)
∗ S: Symmetric; A: Asymmetric

In asymmetric loss functions, a simple classi�cation model is needed to label points as
�ood (�FLOOD�==1) and drought (�FLOOD�==0). For each basin, the mean precipitation
across the full record was designated a hard threshold; if the precipitation of a given month
fell below this value, that observation was designated a �drought� and if above, a ��ood�.
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Given this designation, we can apply di�erent losses to the prediction error at di�erent
locations in the hydrograph.

Another consideration had to be made for de�ning loss functions in keras. Losses in
keras can accept only two arguments: y_true and y_pred, which are the target tensor
and model output tensor, respectively. However, if we desire the loss to depend on other
tensors-as is the case with asymmetric losses-we are required to use function closures.
Here, the loss function takes in whatever arguments we desire and returns the function that
only depends on y_true and y_pred. Hence, the name wrappers. Code snippets in Appendix
E for the WLSE and LINEXE wrappers show how this is accomplished.

Also, since we now have labeled observations (�oods or droughts), we need this des-
ignation to line up with each y_true and y_pred correctly. Therefore, we can no longer
use minibatch training methods that scramble the data without signi�cantly changing the
scrambling algorithm to accommodate labels. The size of the minibatch is determined by
the validation split (e.g, 0.2) and only aids in speeding up the model training. To still make
accurate predictions without minibatch, we simply increased the training epochs from 100
to 1000. Note that in this case, shuffle=FALSE.

3.3 Results

3.3.1 Model Evaluation

Figure 3.3 shows the visual �t of the time series. As you scroll through the basins, you
can see the results from the asymmetric loss functions stretched in the y direction in contrast
with the symmetric functions. Therefore, the asymmetry introduced is having the intended
e�ect at the peaks and valleys of the hydrograph.

Figure 3.4 shows the predicted vs. observed data for models built with di�erent loss func-
tions. There is very little di�erence observed between the MSE, LOGCOSH and MAE meth-
ods. The LOGCOSH or log(cosh(x)) is approximately x2/2 for small x and abs(x)− log(2)
for large x. Therefore, the LOGCOSH works much like the MSE, but will be less a�ected
by occasional wildly incorrect predictions and in this regard is like the MAE. Therefore,
unsurprisingly the slope, β1, in the �tted linear equation for LOGCOSH falls in between
that of the MSE and MAE (0.909 < β1=0.919 < 0.959).

In addition, Figure 3.4 shows that the MSPE greatly underpredicts observations. Relative
loss functions put a heavier penalty on negative errors than on positive errors. In other words,
equal errors above the actual value result in a greater absolute percentage error than those
below the actual value (Makridakis, 1993). So, MSPE produces predictions that are biased
low.

In general, Figure 3.4 shows the asymmetric loss functions generally underpredict the
largest �oods but overpredict lower �ood values as shown in the higher values of the y-
intercept, β0, in the �tted linear equation (β0=29, 31 TAF > 10, 7, 8, 4 TAF).

Figure 3.5 shows the MSE perform the best in the bR2. This is expected since both
the MSE and bR2 metrics are calculating similar squared errors. As mentioned before, the
LOGCOSH in its mathematical formulation is similar to the MSE for small errors and the
MAE for large errors. Therefore, unsurprisingly, it performs similarly to the MSE and MAE
in the bR2. The two asymmetric losses perform similar to each other, which reassures us
that the form of the asymmetric function has less impact on model goodness-of-�t than it
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Figure 3.3: Visual �t. Generally, the asymmetric loss functions (i.e., LINEXE and WLSE)
try to �t the peaks more so than the other loss functions.
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Figure 3.4: Predicted vs. observed plot for di�erent loss functions.There is very little dif-
ference observed between the MSE, LOGCOSH and MAE methods. The MSPE greatly
underpredicts observations. The WLSE and LINEXE loss functions generally underpredict
the largest �oods but overpredict lower �ood values.
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Figure 3.5: bR2 performance for di�erent loss functions. Since both MSE and bR2 metrics
are calculating similar squared errors, the MSE performs the best in the bR2. Since the
LOGCOSH approximates x2/2 for small x and to abs(x) − log(2) for large x, it performs
similarly to the MSE and MAE measures. The two asymmetric losses perform similar to
each other, which reassures us that the form of the asymmetric function has less impact on
model goodness-of-�t than it being asymmetric. The MSPE performs poorly because of its
inherent bias towards lower predictions.

being asymmetric. The MSPE performs poorly because of its inherent bias towards lower
predictions.

Figure 3.6 shows the MSPE biased towards smaller predictions as there is a spike in
the density (in orange) at the lower values compared to the observations (in black). The
asymmetric losses predict larger �oods more often (LINEXE > WLSE > MSE), which was
their intended use. The MSE density (in dark blue) shows three peaks like the observations,
except the �oods get more pronounced. This shows the e�ects of having a squared error loss.
The MAE and LOGCOSH perform very similarly predicting more droughts than �oods. In
contrast, the WLSE predicts more �oods than droughts and the LINEXE predicts the most
amount of �oods. Therefore, MAE and LOGCOSH losses are suitable for models where
conservative drought management is concerned. The WLSE and LINEXE (with its �exible
parameters) are suitable for models where conservative �ood management is paramount.

Unsurprisingly, model residuals do not have a normal distribution (Figure 3.7). The
quantile-quantile plot is created by plotting two sets of quantiles against one another: one a
sample (e.g., model residuals) and one the theoretical Normal distribution. Here, the points
fall along a line in the middle of the graph, but curve o� in the extremities. This behavior
implies that model residuals have more extreme values than would be expected if they truly
came from a Normal distribution.

In general, these densities show the amount of control the modeler has on the probability
distribution of the predicted values when picking a loss function. This �exibility is especially
useful in risk-based decision making where the modeling aim is to accurately predict the
probability distribution particularly at its tails where high cost consequences may occur. A
more direct way of approaching the problem of predicting accurate densities is evaluating the
goodness of the density estimate by calculating the generalization log-loss (or log-likelihood
out-of-bag) and using conditional density estimation and probabilistic supervised learn-
ing methods. Models like Mixture Density Networks (MDN) not only predict the expected
value of a target, but also the underlying probability distribution (Gressmann, Király, Ma-
teen, & Oberhauser, 2018; Bishop, 1994).
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Figure 3.6: Probability densities of predictions and observations. The MSPE is biased
towards smaller predictions as there is a spike in the density (in orange) at the lower values
compared to the observations (in black). The asymmetric losses predict larger �oods more
often (LINEXE > WLSE > MSE), which was their intended use. The MSE density (in dark
blue) shows three peaks like the observations, except the �oods get more pronounced. This
shows the e�ects of having a squared error loss. The MAE and LOGCOSH perform very
similarly predicting more droughts than �oods. In contrast, the WLSE predicts more �oods
than droughts and the LINEXE predicts the most amount of �oods.

3.3.2 Spatial Distribution of Error

Figure 3.8 shows spatial performance for each loss function. Except for the MSPE which
su�ers from a major bias, other methods perform similarly. These methods favor the northern
basins and watersheds lower in the network. The LINEXE and WLSE perform �worse� in
headwater basins than the MSE because the asymmetry is pushing the model to underpredict
at low �ows. This e�ect is more pronounced in the WLSE than the LINEXE possibly due
to the nuisance parameters. As explained before, the MSE, LOGCOSH and MAE perform
similarly.

3.4 Conclusion
This chapter followed a risk minimization framework in developing models with di�erent

loss functions. We are putting the horse before the cart ; the loss function is developed before
performing the learning, not just as an evaluation step after. In squared error loss functions
(i.e., MSE), the peaks or high leverage points get �tted at the expense of the low �ows.

The proposed WLSE and LINEXE asymmetric losses are able to force a �t to the tails
of the distribution (the peaks and valleys of the hydrograph). These results are shown in
the shape of the predicted time series compared to the observations. Asymmetric losses are
useful when �tting the peaks and valleys of a hydrograph is important. Their downside
is the di�culty in implementing and developing the code and �nding appropriate nuisance
parameter estimates.
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(a) Residual error densities.

(b) Model residuals compared to a Normal distri-

bution, Q-Q plot.

Figure 3.7: Probability densities of model residual error: (a) Model residuals are skewed left
in all models, but is less extreme in WLSE and LINEXE; there is more of a tendency to
underpredict �oods in models, but less so in WLSE and LINEXE. (b) Model residuals do
not have a normal distribution. The points fall along a line in the middle of the graph, but
curve o� in the extremities. This behavior implies that model residuals have more extreme
values than would be expected if they truly came from a Normal distribution. WLSE shows
the most extreme behavior at higher levels (i.e., overpredicting �oods).

As for symmetric functions, the LOGCOSH performs similarly to the MAE and MSE as
is shown in the predicted vs. observed graphs and the bR2 measure. The LOGCOSH and
MAE are useful when errors in the estimates for larger values do not need to be penalized
more by squaring like in the MSE. The MSPE is biased towards lower predictions and is not
suited to problems where the data is skewed positive. However, it can be useful in problems
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Figure 3.8: Spatial distribution of bR2 for di�erent loss functions. Except for the MSPE
which su�ers from a major bias, other methods perform similarly. These methods favor the
northern basins and watersheds lower in the network.

where relative errors are more of interest.
In general, the di�erences show the amount of control the modeler has on the predictions

and their probability distribution when picking a loss function. Many reasonable calibration
loss functions exist, with somewhat di�erent rationales that a�ect model estimates di�erently.
The �exibility in picking a loss function is especially useful in risk-based decision making
where the modeling aim is to accurately predict the probability distribution particularly
at its tails where high cost consequences may occur. Water managers can then use this
somewhat unbiased probability distribution in decision analysis. Asymmetric loss functions
proved useful in this regard.
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Chapter 4

Resample Like Sample: Blocked

Resampling for Data Dependent in

Time, Space, and Unique Structure

If two things are similar, the thought of one will tend to trigger the

thought of the other.

Aristotle, �Laws of Association�, 300 B.C.

Summary
Having chosen and �tted an estimator based on observations, we need to answer further

questions about the accuracy of the estimator or the likely quality of inferences. Most resam-
pling techniques used in water resources modeling employ a simple nonparametric random
splitting of data into several folds to estimate model error (i.e., k-fold cross-validation). In
each iteration, one fold is held out as a test set and others are designated as a training set.
While suitable for independent and identically distributed random variables, such random
resampling schemes can ignore structures in dependent data, and underestimate model error.
The central assumption in resampling is that training and evaluation data are independent.
If not, error estimates will be too optimistic, and model selection will favor more complex
models (Roberts et al., 2017). Despite this shortcoming, random resampling is widely used
in hydroinformatics.

For the PUB problem, where observations are correlated in time, space, or unique struc-
ture (e.g., by hydrologic basin networks), more accurate estimates of model error can come
from blocked resampling. In blocked methods, correlated observations move in and out of
the training set together. Therefore, these methods give us a collection of approximately in-
dependent and identically distributed random vectors. The di�culty with blocking methods
lies in specifying block sizes and structures. Blocking potentially reduces the range of pa-
rameters seen by the model or may exclude a particular meaningful combination of predictor
variables in the training data set. Too small of a block size and the resampling strategy more
closely mimics the randomized method and increases risk of underestimating model error.
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Large block sizes force too much model extrapolation and risk overestimating model errors.
This chapter compares the following random and blocked resampling methods. Cross-

validation strategies include resubstitution (i.e., training set is test set), random k-fold (or
Monte Carlo), leave one group out (LOGO), and leave multiple groups out (LMGO), and
bootstrapping strategies include random or independent and identically distributed (IID),
blocked by group (BBG), and blocked by multiple groups (BBMG). Of the four model types
(i.e., LM, GLM, RF, and NN discussed in Chapter 2), the LM performs the poorest and is
also least sensitive to the resampling scheme (bR2 ranges from 0.23 to 0.26). The RF is most
sensitive to the resampling scheme; larger block sizes more accurately captures performance
(bR2 is 0.51 for LMGO, largest block size, and 0.94 for resubstitution, no blocking for the
same model). Surprisingly, in the NN, the more appropriate the block size the better it
performs (bR2 is 0.75 for randomized 2-fold, which has a large fold size but not blocked
systematically, and 0.92 for LOGO, which blocks by basin that is the natural grouping
scheme). In the NN, even the LMGO method out-performs the randomized k-fold methods
proving that in the NN intelligent blocking (i.e. by basins) proves more useful even though
the block size is large (i.e., multiple basins in a block rather than just one).

As expected, when using bootstrapped resampling, models built with the IID method
appear to perform better on average and are more reliable (have smaller spread). However,
IID resampling underestimates model error and overestimates its reliability, so, true model
error is closer to those of the BBG and BBMG methods. Generally, regardless of model
type, larger block sizes produce more uncertain model results (i.e., more spread in BBMG
and BBG than in IID estimates). These results illustrate the sensitivity of each model's
estimated uncertainty to resampling methods, and its importance in designing a resampling
strategy. Overall, random resampling is not recommended for studies with correlated data
sets.

4.1 Introduction
Having chosen and �tted an estimator θ̂n based on observations, Xn, we need to eval-

uate the accuracy of the estimator θ̂n and the quality of inferences made based on θ̂n and
model parameters. Bootstrap and other resampling methods are general methods for �nd-
ing estimators of parameters like MSE(θ̂n). In predictive modeling, the estimator needs to
be accurate at unmeasured locations: either ungauged locations, or at future times where
observations do not yet exist. Therefore, the predictive accuracy on the training set, the
data the model is trained on, is of little consequence. The test set error, the error of a set
of data not seen by the model, is a better measure of model accuracy.

Test set error can be easily calculated if such a data set exists, or, it can be estimated by
holding out a subset of the training data. The holding-out is done by resampling strategies,
to create an otherwise non-existent test set. Two popular resampling methods are: cross-
validation and bootstrapping. In cross-validation, the data set is split into non-overlapping
testing and training data sets where each observational unit gets a chance at being in the test
set once. In bootstrapping, sampling is done with replacement where each observational
unit has an equal chance at being selected and being selected more than once. In this case,
the probability that the observationX0 = xi appears in the training sample is 1−(1−1/n)n ≈
0.632 (Efron & Tibshirani, 1997). Therefore, in bootstrapping, approximately 1/3rd of the
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data set will end up not being selected and are out-of-bag.
Resampling helps avoid problems caused by an unknown population; if the resampling

method is chosen appropriately then, the resample, together with the sample, is expected to
re�ect the original relation between the population and the sample (Lahiri, 2013). Appro-
priate resampling is one where the same dependence structures seen in the sample appear in
the resample. The goal is to approximate the data generating mechanism as well as possible
or �resample like the sample.�

Geographic data often have internal correlation and dependence structures (Legendre,
1993): (1) temporal autocorrelation: nature responds to changes gradually. For example,
today's precipitation is correlated with yesterday's precipitation; (2) spatial autocorrela-
tion: nearby things tend to be more related than those far away. For example, two points
close together on a topographic map are more likely to have similar elevations; and (3) hier-
archical structures: the network of streams �owing into one another (or more formally, the
stream order) provides a hierarchical structure. That is, basin topology provides a spatial
structure more complicated than mere proximity of river gauges. For example, two points
on a river may be close in proximity but depending on which side of the watershed divide
they fall on they can be fed by two di�erent basins, in di�erent hierarchies in the network,
with di�erent governing hydrologic processes and so, have di�erent measured �ows (Figure
4.1).

A dependence structure points to a pseudoreplication problem (Figure 4.2). For an
observation, xd, at a distance, ∆d, from another observation, xd+∆d, where xd and xd+∆d

are autocorrelated, the distance ∆d can be de�ned in time, space, or hierarchy. In random
resampling, either autocorrelated value is free to lie in the bag of samples given to the model
or be left out-of-bag. Therefore, the model can easily predict one, given that the other is
likely in the bag. However, in blocking resampling the two observations are connected and
will both end up in the bag or out-of-bag. Here, the model is forced to predict a phenomenon
from other observations.

Most studies in water resources ignore dependence structures in the data when devising a
resampling strategy. When test data are randomly selected from the entire temporal, spatial,
and hierarchical domain, training and testing data from nearby locations will be dependent
due to autocorrelation. Therefore, if the objective is to project outside the spatial structure
of the training data (e.g., to an ungauged basin), error estimates from random resampling,
will be overly optimistic. This chapter will compare a model's error estimates given multiple
random and blocked resampling strategies.

Moreover, cross-validation has been the traditional method used for the predictive accu-
racy problem and provides a nearly unbiased estimate of the future error rate. However, the
low bias of cross-validation is often paid for by high variability. Efron and Tibshirani (1997)
showed that suitably de�ned bootstrap procedures can substantially reduce the variability of
error rate predictions. Bootstrapping and its blocked variants are now the preferred method
for resampling in statistics, while cross-validation still remains popular in water resources.
This chapter applied both methods to PUB models.
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Figure 4.1: Dependence structures in stream�ow data are: temporal autocorrelation, spatial
autocorrelation, and hierarchical structures. Appropriate resampling is one where the same
dependence structures seen in the sample appear in the resample.

4.2 Methods
To �nd the test set error of the estimator we: (1) simulated n landscapes of the data by

resampling the original data set using a chosen resampling method. This separates the data
into training and testing sets; (2) for each simulation, fed the training data into the desired
machine learning algorithm (i.e., LM, GLM, RF, and NN); and (3) calculated the desired
model measure of �t for each simulation (Figures 4.3 and 4.4).

Separating the data into training and testing sets (step 1), can be done by one of the
following methods:

Cross-Validation

� Resubstitution: The test set is the training set. Here, the model is evaluated against
the same data it has already seen. We expect the model to perform the best here with
the distribution of residuals closest to zero.
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Figure 4.2: Autocorrelation as a pseudoreplication problem. The two striped marbles are
autocorrelated. A model that uses random resampling will be able to easily predict one
striped marble since it has seen the other. When blocking, the observations move in and out
of the bag together.

Figure 4.3: Research design for cross-validation resampling to estimate model error.

s

Figure 4.4: Research design for bootstrapped resampling to estimate the distribution of the
bootstrap statistic.

� Randomized k-fold or Monte-Carlo:

2-fold or validation set: The test set is a random 1/2 of the full data set. The
training set is the other 1/2. This method is run twice, once with the �rst half as a
test set and next with the second half as the test set.

5-fold: The data is split into �ve folds. In each iteration each fold is considered
the test set and the other four folds the training set.

10-fold: The data is split into ten folds. In each iteration each fold is considered
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the test set and the other nine folds the training set.

� Leave One Out (LOO): In each iteration, one instance of the data is held out, and the
rest of the data set is the training set. This method was too computationally intense
to perform on our data set.

� Leave One Group Out (LOGO): In each iteration, one basin's data is held out as a
whole and the rest of the basins become the training set. The process is repeated for
each basin.

� Leave Multiple Groups Out (LMGO): In each iteration, 1/5th of the basins are held
out and the other basins become the training set. The process is repeated for each
fold.

� Leave Hierarchies Out (LHO): Blocking is designed across basins that cluster on a river
branch. Because of the limited size of the dataset we have not considered this strategy.

Bootstrapping

� Randomized or IID: It is the most popular form of bootstrapping where a new data set
is built from randomly resampling the original sample with substitution. The length
of the data set is the original length of the data set.

� Blocked By Group (BBG): the data set is blocked by unique basins. The basins are
randomly resampled with substitution. Since the basins may have di�ering record
lengths, the length of the data set may not match the original data set. However, the
data set will have the same number of basins as in the original data set.

� Blocked By Multiple Groups (BBMG): The data set is blocked by multiple basins. The
grouped basins are randomly resampled with substitution. As the group sizes become
larger the blocking size becomes larger.

� Blocked By Hierarchy (BBH): Blocking is designed across basins that cluster on a river
branch. The grouped basins are randomly resampled with substitution. Because of
the limited size of the data set we have not considered this strategy.

When working with gauge records, random resampling can be used to �ll in a sparsely
incomplete gauge record. Blocked resampling in time is most appropriate for predicting,
extrapolating or forecasting �ows. In PUB, the most appropriate resampling method is
those which block observations in groups since, the goal is to approximate the data generating
mechanism as well as possible. In LOGO cross-validation or BBG bootstrapping the grouping
structure is simple; we assume that data are correlated within a basin, but independent
between basins. The structure of the block bootstrap is easily obtained (where the block
just corresponds to the group), and only the groups are resampled, while the observations
within the groups are left unchanged (Cameron, Gelbach, & Miller, 2008).
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4.3 Results

4.3.1 Model Evaluation

Figure 4.5 shows that generally, in the LM, GLM, and RF, the test set error is lower for
smaller block/fold sizes. The LOGO and BBG methods provide the most accurate estimates,
since they replicate the natural grouping by basin of the sample in the resample. Therefore,
in PUB modeling with an RF, a ten fold cross-validation strategy can underestimate model
error (bR2=0.79 in random ten fold vs. 0.61 in LOGO). The same is true in bootstrapping;
IID bootstrapping underestimates model error (bR2=0.79 vs. 0.50 in BBG). Surprisingly,
the NN performs better given a more accurate cross-validation technique (LOGO bR2=0.92).
In bootstrapping, the IID su�ers the same fate as in other models and gives arti�cially low
estimates compared to the BBG and BBMG methods. Overall, the performance in each
method is clustered together with the NN and RF performing very similarly with the di�erent
cross-validations strategies.

Figure 4.6 shows model goodness-of-�t given by cross-validation and bootstrapping. Fig-
ure 4.6a shows LM and GLM models are not as sensitive to cross-validation strategies as NN
and especially RF models. Figure 4.6b shows bR2 values obtained where each dot is a simu-
lation, with 100 simulations depicted in each line. The IID method generally underestimates
model error in all four model types. In the BBG method, RF shows the biggest spread
(standard deviation=0.19, N=100) and NN the lowest spread (standard deviation=0.07,
N=100). In general, the bootstrap methods show the spread (or reliability) of an estimate
more than cross-validation, which is why bootstrapping methods have become more popular
in statistics.

Figure 4.7 shows the observed vs. predicted values for the NN model. It con�rms the
goodness-of-�t results; in LOGO cross-validation the points more closely fall along the line of
best �t, y = x, with a slight tendency to underpredict (slope of the �tted line β=0.97). The
lowest performance was with the LMGO method proving that grouping basins together can
hide meaningful information from the model. In this method, the 67 basins are randomly
grouped into 5 folds (block size=13 or 14 basins). Unsurprisingly, the performance degrades
compared to the BBG method (block size=1 basin), where less information is held out from
the model.

Figure 4.8 shows that the goodness-of-�t obtained by bootstrapping decreases when
switching to a blocking method, and the reliability in such measures decreases (standard
deviation of bR2=0.10 in BBMG vs. 0.03 in IID). Increasing block size decreases mean
goodness-of-�t slightly (bR2=0.88 in BBG vs. 0.83 in BBMG) and decreases the reliabil-
ity of this estimate (standard deviation of bR2=0.07 in BBG vs. 0.10 in BBMG). This
is evident in the increase in spread and slight funnel shape (i.e., heteroscedasticity) of the
plots as block sizes increase; withholding more information with bigger block sizes proves
especially detrimental for accurately predicting lower �ows. The data in the bootstrapping
strategies somewhat confusingly have more variability and higher R2 as compared to the
cross-validation strategies. The higher R2 is due to more data points being closer to the 1:1
line that are being plotted on top of one another.

Figure 4.9 shows the density of predicted vs. observed unimpaired �ows for cross-
validation resampling. All models tend to predict to the mean due to MSE being the loss
function of choice. GLM, RF, and NN more accurately predict the frequency of ��oods� (i.e.
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(a) The cross-validation test set error.

(b) The average bootstrapping test set error.

Figure 4.5: Model goodness-of-�t and average goodness-of-�t given by cross-validation and
bootstrapping strategies. Generally, in the LM, GLM, and RF models, the test set error is
lower the smaller the block size or fold size. However, the NN prefers the more appropriate
LOGO cross-validation strategy.
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(a) The cross-validation test set error.

(b) The bootstrapping test set error.

Figure 4.6: Model goodness-of-�t given by cross-validation and bootstrapping (100 simula-
tions per model per bootstrapping strategy). (a) LM and GLM models are not as sensitive
to cross-validation strategies as NN and especially RF models. (b) The spread of the bR2

values obtained proving the value of having repeated experiments when estimating a model
measure of �t.
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Figure 4.7: NN observed vs. predicted for di�erent cross-validation strategies. NN's perfor-
mance is not as sensitive to the cross-validation strategy and prefers the more appropriate
LOGO method.
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Figure 4.8: NN observed vs. predicted for di�erent bootstrapping strategies (No. of simula-
tions=100). As block sizes increase, the spread increases especially for low �ows; withholding
more information with bigger block sizes proves especially detrimental for accurately pre-
dicting lower �ows.
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the right side tail). All models, except for the RESUB, 10 FOLD and 5 FOLD in the RF,
fail to predict the frequency of �droughts� (i.e. the left side tail). As block sizes increase in
the RF, the harder it becomes for the RF to predict droughts, much like other models. LM
shows very little sensitivity to the cross-validation resampling method. GLM has a slight
increase in low �ow densities due to the Tweedie distribution (a semi-continuous function)
de�ning variance in the y values. Also, blocking strategies (i.e., LOGO and LMGO) have
a slight improvement in predicting �oods. In the RF, blocking strategies (i.e., LOGO and
LMGO) more closely follow each other than the non-blocked methods, with the RESUB
method being closest to observed values. The LOGO and LMGO methods predict more
�oods compared to other non-blocked methods. In the NN, all methods except for the ran-
dom two fold method follow each other, indicating that the 1/2 fold size, signi�cantly a�ects
the model. The fact that large folds or blocking itself produces higher �ood densities may
be because in a model built with less data, the bigger �ood values have more leverage in
producing a �ood sensitive model.

Figure 4.10 shows the density of predicted vs. observed unimpaired �ows for bootstrapped
resampling. The observed value densities also are depicted and slightly di�er from one
another because in bootstrapping the data set gets resampled. The densities here, much like
with the cross-validation methods, show a regression to the mean due to MSE being the
loss function of choice. In the LM, bootstrapping strategies are virtually indistinguishable.
In the other models, the blocking strategies (i.e., BBG and BBMG) follow each other more
closely than the IID. Just as in cross-validation, blocking produces higher �ood densities.

4.3.2 Spatial Distribution of Error

Figures 4.11 and 4.12 show goodness-of-�t results spatially. In all models there is a ridge
of basins (lower Sierra Nevada basins) that generally have better �t. These basins have
larger �ows and the models trying to predict these values are more accurate at the expense
of poorly predicting lower �ows seen predominantly in headwater basins. In all model types,
generally, performance declines as fold/block sizes increase.

4.4 Conclusion
This chapter presented various blocking resampling techniques where the observations

in a block are bonded together. The idea behind blocked resampling is simple: birds of a
feather �ock together, or more accurately birds of a feather should �ock together (Figure
4.13). That is, if two observations are autocorrelated they should be both included in the
bag, or training set, or both be out-of-bag, or in the test set.

These blocking methods show how much random resampling underestimates model error.
Models evaluated with random methods have arti�cially low errors due to pseudoreplication
from autocorrelation. This is not to say that, in hydrology, random resampling is never useful;
a random test-train split is most appropriate for predicting �ow for a sparsely incomplete
gauge record. Blocked resampling in time is most appropriate for predicting or extrapolating
stream�ow in time for that location. One should not expect to use these resampling strategies
and get the same predictive accuracy in a purely ungauged basin problem, where blocks are
supposed to be designed across geographic space (or more accurately hierarchical structure).
Results show that generally model performance estimates decline as block sizes increase.
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Figure 4.9: Cross-validation prediction density on a log transformed x axis. All models tend
to predict to the mean due to MSE being the loss function of choice. GLM, RF, and NN
more accurately predict the frequency of ��oods� (i.e. the right side tail). LM shows very
little sensitivity to the cross-validation resampling method. GLM has a slight increase in low
�ow densities due to the Tweedie distribution (a semi-continuous function) de�ning variance
in the y values. Also, blocking strategies (i.e., LOGO and LMGO) have a slight improvement
in predicting �oods. In the RF, blocking strategies (i.e., LOGO and LMGO) more closely
follow each other than the non-blocked methods, and these methods (i.e., RESUB and K-
FOLD) are closest to observed value densities. The LOGO and LMGO methods predict
more �oods compared to other non-blocked methods.
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Figure 4.10: Bootstrapping prediction density on a log transformed x axis. In the LM,
bootstrapping strategies are virtually indistinguishable. In the other models, the blocking
strategies (i.e., BBG and BBMG) follow each other more closely than the IID, a non-blocking
resampling method. Just as in cross-validation, blocking produces higher �ood densities. In
the RF, the IID method is closest to the observed value densities.
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(a) LM (b) GLM

(c) RF (d) NN

Figure 4.11: The spatial distribution of bR2 performance for cross-validation strategies. In
all model types, generally, performance declines as fold sizes increase.
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(a) LM (b) GLM

(c) RF (d) NN

Figure 4.12: The spatial distribution of bR2 performance for bootstrapping strategies. In all
model types, generally, performance declines as block sizes increase.
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Figure 4.13: The idea behind blocked resampling. Birds of a feather should �ock together.

Some modeling methods are more sensitive to the resampling scheme than others. The
LM performs poorly and is least sensitive. The RF is the most sensitive quite possibly
because it uses bootstrapping to construct a tree. The NN, performs well with all resampling
strategies and surprisingly, performs better given the LOGO cross-validation strategy. The
bootstrapping results also show how much variance there could be around a particular error
estimate and the importance of the �eld moving away from cross-validation that gives one
estimate of the error to bootstrapping that can give an estimate of the reliability of the error
as well. Larger fold sizes and blocked strategies seem to favor predicting more �oods, which
could be because fewer data available to the model gives more leverage to observations with
a higher value (especially when using the MSE loss function).
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Chapter 5

Climate Change and Future Unimpaired

Flow

For all of its uncertainty we cannot �ee the future.

Barbara Jordan, �Democratic National Convention Keynote Address�, 1976

Summary
Future water resources conditions are usually estimated using projected climate variables

(i.e., precipitation and temperature) from global climate models (GCMs) and a hydrologic
model that routes precipitation to runo�. Pierce et al. (2018) identify a subset of four of the
32 GCMs that have done particularly well reproducing California's historical climate and are
recommended when using more GCM data is prohibitive. This chapter uses these models
each with two Representative Concentration Pathways (4.5 and 8.5) to study future hydrol-
ogy. Pierce et al. (2018) bias-corrected and downscaled the GCM data using the Localized
Constructed Analogues (LOCA) statistical method and the Variable In�ltration Capacity
(VIC) model. The downscaled runo� rasters were then aggregated to the CDEC basin bound-
aries as a simple routing technique for this dissertation. Each downscaled climate change
model data is put through the NN model built on past hydrology and the model predictions
are compared to the runo� projections from the VIC+LOCA+Aggregation model.

There is fairly good agreement in the statistical (NN) model's unimpaired �ow predictions
and the mechanistic and statistical (VIC+LOCA+Aggregation) model's runo� (R2= [0.65-
0.72]). However, the NN model predicts more low �ows than the VIC+LOCA+Aggregation
models; when we compare more smoothed data (with a moving average window), we can see
a bias emerge (e.g., β1= 0.95 to 1.84 for CanESM2 RCP 4.5). This can also be seen in the
time series comparisons; with a larger moving average window, the NN model's predictions
are consistently higher than the runo� projections. The climate changed experiment is much
like the problem of ungauged basins where the �true� test set is one which has no observa-
tions. However, we can argue that the runo� projections from the VIC+LOCA+Aggregation
models are slightly more reliable since the processes of �nding the amount of recharge and
runo� for each pixel (∼ 100 km) is grounded in hydrology (VIC model).
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5.1 Introduction
Future water resources conditions are usually estimated using projected climate variables

(i.e., precipitation and temperature) from global climate models (GCMs) and a hydrologic
model that routes precipitation to runo�. A more robust climate assessment relies on multi-
ple scenarios of future climate from current GCMs available. Two common Representative
Concentration Pathways (RCPs) provide information on possible scenarios or develop-
ment trajectories for the main forcing agents of climate change. RCPs encapsulate particular
sets containing emission of aerosols, concentration of greenhouse gasses, and land-use trajec-
tories. For example, RCP 4.5 is a �medium� stabilization emissions scenario that models a
future where societies attempt to reduce greenhouse gas emissions, while RCP 8.5 is a very
high baseline or �business-as-usual� emission scenario (Van Vuuren et al., 2011).

The precipitation and temperature data used here originally came from the Climate
Model Intercomparison Project version 5 (CMIP5; Taylor, Stou�er, & Meehl, 2012), which
includes 32 coarse-resolution (∼ 100 km) GCMs. Runo� rasters were produced with the
Variable In�ltration Capacity (VIC) model. The temperature, precipitation, and runo�
were bias corrected and downscaled using the Localized Constructed Analogues (LOCA)
statistical method to better capture key features in California's climate (Pierce et al., 2018).
These data are available at www.caladapt.org and can be downloaded with a simple Rcurl
script and the CalAdapt API.

Di�erences in climate change projections from di�erent climate models arises from: (1)
model uncertainty: di�ering representations of various processes, (2) scenario uncertainty:
unknown rates and changes in climate forcings (e.g., rate and concentration of CO2 and other
greenhouse gases), and (3) climate uncertainty: unknown internal variability of the climate
such as El Niño (Hawkins & Sutton, 2011). Pierce et al. (2018) identi�es a subset of four, out
of 32, GCMs that have done particularly well reproducing California's historical climate and
are recommended when using more GCM data is prohibitive. In this chapter, the following
models, each with two RCPs (4.5 and 8.5), are used to explore future hydrology:

� CanESM2 (CCCma, BC, Canada): an �average� model in terms of changes in precipi-
tation and temperature.

� CNRMCM5 (CNRM and CERFACS, Toulouse, France): a �cool/wet� model.

� HadGEM2ES (Met O�ce Hadley Centre, UK): a �warm/dry� model.

� MIROC5 (JAMSTEC, AORI, and NIES, Japan): a model most unlike the other three.

5.2 Climate Change Data
Figures 5.1, 5.2, and 5.3 compare the relative percent di�erence (RPD) between

historical and future projections in precipitation, temperature, and runo� in the di�erent
climate+VIC models. To calculate RPD, �rst, the annual values are averaged across time
in both the projected data (2015-2099) and the observed data (1914-2014). Then, the RPD
is calculated using Equation 5.1. Its value always lies between −200% and 200%. It is
positive when the mean projected data exceeds the mean observed and negative when the
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Figure 5.1: Relative percent di�erence in precipitation for each climate model. MIROC5
RCP 8.5 and CanESM2 RCP 4.5 show the most amount of dryness across California. In other
models, southern California becomes wetter (e.g, CNRMCM5 RCP 4.5 and HadGEM2ES
4.5). This projected wetness can be viewed as a southward shift in the cooler/wetter cli-
mates of today. In all models, except for CanESM2, the RCP 8.5 scenario is dryer than its
counterpart RCP 4.5.

mean observed exceeds the mean projected. A regular percent di�erence was not calculated
because dividing by zeros in the mean observed values creates large relative errors.

RPD(x, y) = 2
x− y
|x|+ |y|

∗ 100% RPD ∈[-200% , 200%] (5.1)

Figure 5.4 compares the mean RPD between historical and future precipitation, tem-
perature, and runo� for di�erent GCMs. These values were calculated by: taking a 30 year
subset of the annual values for the projected data (2070-2099) and the observed (1976-2005);
�nding the RDP for each year (with 1-to-1 matching: 2070 with 1976, 2071 with 1977, etc.);
cropping these rasters to the California boundary; averaging the RPDs for each pixel across
time; and averaging across space to arrive at one mean RDP for each GCM and RCP combi-
nation. Figure 5.4(a) shows that models with RCP 8.5, on average, project hotter climates.
The CanESM models and the CNRMCM5 RCP 8.5, on average, project wetter climates.
Using these models can give us a wide range of possible futures (dry/wet, and warm/less
warm) for California. Figure 5.4(b) shows that runo� in all models generally increases lin-
early with precipitation and at a higher rate, con�rming the positive relationship used when
constructing runo�.

Figure 5.5 shows the mean annual precipitation, temperature, and runo� over time.
These values were calculated by averaging the parameter value across California and Nevada
for each year. With uncertainty in models, scenarios, and climate there are many varied
projection paths these variables can take. MIROC 5 RCP 4.5 and CNRMCM5 RCP 4.5
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Figure 5.2: Relative percent di�erence between historical and future air temperature for
each climate model. In all models, California becomes hotter in all areas of the state; the
relative percent di�erence is never negative. The Sierra-Nevada range and the northern part
of California are projected to experience the brunt of the warming and the central valley
and southern California are projected warm to a lesser extent. In all models, the RCP 8.5
scenario is slightly hotter than its counterpart RCP 4.5. Overall, there is more agreement
between the models on air temperature changes than there is with precipitation.

project a wetter climate (con�rming mapped values in Figure 5.3). Annual temperature
values slightly increase over time in all models with RCP 4.5 values generally lower than
RCP 8.5. Runo� shows more of a change compared to precipitation, with more frequent
peaks in the projections compared to the observed.

To smooth out Figure 5.5, Figures 5.6 and 5.7 show the rolling 10 year mean and standard
deviations in annual precipitation, temperature, and runo�. These values were calculated by:
�rst, taking a 10 year rolling window starting from 2015 and looking forward in time; �nding
the average or the standard deviation of the annual parameter values for each raster pixel
in time with the last 10 years (2090-2099) discarded from the analysis; �nding the spatial
mean of the 10 year rolling mean or standard deviation for each parameter. Figure 5.6 shows
mean precipitation increasing in CNRMCM5 RCP 8.5. Mean temperature increases in most
models and is more pronounced in RCP 8.5. Mean runo� follows mean precipitation trends.
Figure 5.7 shows standard deviations in precipitation increasing in CNRMCM5 RCP 8.5 and
HadGEM2ES RCP 8.5. Standard deviation in temperature increase in MIROC5 RCP 4.5 and
CNRMCM5 RCP 4.5. Standard deviations in runo� follows the trends seen in precipitation.
In all but CNRMCM5 RCP 8.5 (cool/wet model), the di�erences in precipitation and runo�
across models are evident from the beginning of the time period and the mean and standard
deviations remain stationary.
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Figure 5.3: Relative percent di�erence between historical and future runo� for each cli-
mate+VIC model. Much like the changes in precipitation, southern California becomes wet-
ter in CNRMCM5 RCP 4.5 and HadGEM2ES 4.5, and in all models, except for CanESM2,
the RCP 8.5 scenario is dryer than its counterpart RCP 4.5. MIROC5 RCP 4.5 is most un-
like the other models in that it projects a wetter environment for the majority of California
(i.e., the central valley and southern California). However, its RCP 8.5 projects a much drier
state.

Figure 5.4: Relative percent di�erence between historical and future precipitation, temper-
ature, and runo� for di�erent GCMs. (a) Models with RCP 8.5, on average, project hotter
climates. The CanESM models and the CNRMCM5 RCP 8.5, on average, project wetter
climates. (b) Runo� in all models generally increases linearly with precipitation and at a
higher rate.
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Figure 5.5: Time series of projections in precipitation, temperature, and runo�. MIROC
5 RCP 4.5 and CNRMCM5 RCP 4.5 project a wetter climate. Annual temperature values
slightly increase over time in all models with RCP 4.5 values generally lower than RCP 8.5.
Runo� seems to show more of a change compared to precipitation, with more frequent higher
values in the projections compared to the observed.
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Figure 5.6: Time series of 10 year rolling mean in precipitation, temperature, and runo�.
Most di�erences in precipitation between models is in the mean precipitation rather than
in trends, except in CNRMCM5 RCP8.5 (cool/wet model). Mean temperature increases in
most models and is more pronounced in RCP 8.5. Mean runo� follows the trends seen in
mean precipitation.

73



Figure 5.7: Time series of 10 year rolling standard deviation in precipitation, temperature,
and runo�. Standard deviations in precipitation increase in CNRMCM5 RCP 8.5 (cool/wet
model) and HadGEM2ES RCP 8.5 (the warm/dry model). Standard deviation in temper-
ature increase in MIROC5 RCP 4.5 and CNRMCM5 RCP 4.5. In RCP 4.5, the standard
deviations decrease at the end of the century. Again, standard deviations in runo� follows
trends seen in precipitation.
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Figure 5.8: Studying future hydrology research design. The predictions from the NN model
(purely statistical) were then compared to the downscaled and routed climate change model
(mechanistic and statistical) projections.

5.3 Methods
The precipitation and temperature data used here originally came from the Climate

Model Intercomparison Project version 5 (CMIP5; Taylor et al., 2012), which includes 32
coarse-resolution (∼ 100 km) GCMs. Pierce et al. (2018) produced runo� rasters with the
Variable In�ltration Capacity (VIC) model and bias corrected and downscaled VIC's hy-
drologic parameters (e.g., precipitation, temperature, and runo�) using the Localized Con-
structed Analogues (LOCA) statistical method to better capture key features in California's
climate (Pierce et al., 2018).

Each downscaled climate change model data is put through the NN model built on past
hydrology (model with aggregate data, MSE loss, and LOGO cross-validation resampling),
and the model predictions are compared to the climate model projections. Figure 5.8 shows
this process. The downscaled climate model projections come in raster (i.e., not routed)
format. A simple aggregation to basin boundaries �nds the mean precipitation (and its
lagged values), mean temperature (and its lagged values), mean snow, and total runo� over
the basin. One problem with this simple routing technique is that some end-of-month storms
may end up as stream�ow in the next month; some precipitation values are getting counted
in the month that the �ows it generates is not. Since the NN model is on a monthly time-
step, we will ignore this small accounting di�culty. The other option was to use the Variable
In�ltration Capacity (VIC) routed stream�ows that do account for basin lags, however, this
data set was only developed for 11 basins, hand selected for the CALSIM II model's major
reservoir in�ow locations. To keep all our 67 diverse basins in the study, we will use the
aforementioned aggregation method as a good approximation for routing.

In the following sections, the VIC+LOCA+Aggregation output will be simply referred
to as runo� projections.
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Figure 5.9: NN model predictions compared to runo� projections (monthly data for each
basin). There is fairly good agreement between the purely statistical (the NN) and the
mechanistic+statistical models (VIC+LOCA+Aggregation) with the highest R2 being 0.72
for the CanESM2 and CNRMCM5 RCP 4.5 models.

5.4 Results
Figure 5.9 shows the NN model predictions compared to runo� projections for monthly

data for each basin. There is fairly good agreement between the purely statistical NN model
and the mechanistic and statistical climate models (VIC+LOCA+Aggregation) with the
highest R2 of 0.72 belonging to the CanESM2 and CNRMCM5 models. In all models the
NN is slightly biased to predict higher values compared to the climate change models as is
evident in the slope of the best �t line (β1 > 1).

Figure 5.10 shows the probability densities for the monthly NN unimpaired �ow pre-
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Figure 5.10: Predicted unimpaired �ow density compared to projected runo� densities. The
NN model does not capture low �ows like the VIC+LOCA+Aggregation models. There is
very little di�erence in the densities across the various climate data in either the NN model
predictions or runo� projections. Also, there is very little di�erence observed across the two
RCPs.

dictions and the runo� projections. Similar to results in previous chapters, the NN model
predicts fewer low �ows compared to the runo� from VIC+LOCA+Aggregation models.
There is very little di�erence in the densities across the various climate data in either the
NN model prediction or runo� projections themselves. Also, there is very little di�erence
observed across the two RCPs. This shows that our simple routing precipitation to runo�
eliminates the di�erences across models and should be replaced with a better model (e.g.,
VIC).

Figures 5.11, 5.12, and 5.13 compare the monthly, moving 1 year average, and moving 10
year average NN model predictions with runo� projections. Instead of showing each basin
separately, this plot shows the mean �ows across the 67 basins. The moving window allows us
to view larger trends. Unsurprisingly, as the window grows larger, the values are �smoothed
out�, and the agreement (in terms of R2) increases. For example, in the CNRMCM5 RCP 4.5
R2 increases from 0.77, to 0.90, and 0.96 when comparing monthly, moving 1 year average,
and moving 10 year average values. However, with the increase in R2 the NN model biases
increase as well. For example, the slope of the best �t line in CNRMCM5 RCP 4.5 increases
from 0.95 to 1.44 and 1.74. This is due to the NN model's inability to capture a higher
density at the lower �ows, which was observed in Figure 5.10.

Figures 5.14, 5.15, and 5.16 con�rm the NN model's bias observed in the previous plots.
Here, the monthly, moving 1 year average, and moving 10 year average NN model predictions
and runo� projections are plotted through time. As the window grows larger the NN model
predictions increase as compared to the runo� projections. This is again due to the NN
model's inability to capture a higher density at the lower �ows, which was observed in
Figure 5.10.
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Figure 5.11: Mean California unimpaired �ow NN model predictions vs. runo� projections
(monthly data). There is fairly good agreement between the two types of models on the
average California �ows. Compared to unaggregated monthly data model agreement slightly
increases as the data gets aggregated across California.
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Figure 5.12: Mean California unimpaired �ow NN model predictions vs. runo� projections
(annual moving average data). There is fairly good agreement between the two types of
models on the average California �ows. Compared to monthly data, here, model agreement
increases slightly.
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Figure 5.13: Mean California unimpaired �ow NN model predictions vs. runo� projections
(10 year moving average data). There is fairly good agreement between the two types of
models on the average California �ows. Compared to 1 year moving average data, here,
agreement increases slightly but so does biases (slope of the best �t line). Averaging also
produces a smoothing e�ect, which further distinguishes hierarchies by lumping them in
groups.
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Figure 5.14: Mean California NN model unimpaired �ow and runo� projections comparisons
in time (monthly data). The NN model captures the high �ow events at the right time but
is slightly under predicting them compared to the climate model projections.

81



Figure 5.15: Mean California NN model unimpaired �ow and runo� projections comparisons
in time (1 year moving average data). The NN model's predictions over-take the climate
model projections.
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Figure 5.16: Mean California NN model unimpaired �ow and runo� projections comparisons
in time (10 year moving average data). The NN model's predictions over-take the climate
model projections and a larger moving window means larger di�erences.
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5.5 Conclusion
This chapter used four global climate models with two RCPs each to estimate future

hydrology. The LOCA downscaled climate variable from these models give a wide range of
possible futures for California. Some models like the MIROC5 RCP 4.5 and CNRMCM5
RCP 4.5 project a wetter California while most other models project a drier climate in
terms of precipitation. Most models agree that in both RCPs, temperatures will rise and
are projected to increase 2-4 ◦C for RCP 4.5 and 4-7 ◦C for RCP 8.5 (Pierce et al., 2018).
Runo� projections show more �oods compared to historical hydrology but are stationary in
their mean and standard deviations in all but one model (CNRMCM5, the cool/wet model).

Statistical models operate from no a priori knowledge of hydrologic processes, and have to
be used with caution when extrapolating beyond the time range they were trained on. There
is fairly good agreement in the statistical (NN) model's unimpaired �ow predictions and
the mechanistic+statistical (VIC+LOCA+Aggregation) model's routed runo� (R2= [0.64-
0.72]). However, the NN model does not capture low �ows like the VIC+LOCA+Aggregation
models and overestimates their values so much so that when we compare more smoothed
data (with a moving average window) we can see a bias emerge (β1= [0.95-1.84] for CanESM2
RCP 4.5 for example). This can also be seen in the time series comparisons, where with a
larger moving average window the NN model's predictions are systematically higher than
the climate model projections.

Both runo� projections and NN model predictions are untestable since the �reality� we
need to test against will be available either too late or never-an unavoidable feature of all
hydrologic simulation models discussed by Kleme² (1986). Therefore, the climate changed
experiment is much like the problem of ungauged basins where the �true� test set is one which
has no observations. We can argue that the runo� projections are slightly more reliable
since the processes of �nding the amount of recharge and runo� for each pixel (∼ 100 km)
is grounded in hydrology (VIC model). However, the downscaling to a �ner resolution was
a statistical process (i.e., LOCA downscaling), and the routing scheme used here was a
simple statistical aggregation to basin boundaries. Therefore, even in the runo� projections
many approximations are used to arrive at water balance estimates. The advantages of using
statistical learning models still remain; they are easier to use, apply, and operationalize. The
next chapter will explain some improvement strategies for the NN model.
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Chapter 6

Overall Conclusions and Future

Directions

This dissertation develops statistical learning models, generally simpler than mechanistic
models, to predict unimpaired �ows of California basins from available data. Several issues
arise in this prediction problem:

(1) How we view hydrology, and how we de�ne an observational unit, determines how
data is pre-processed for statistical learning methods. So, one issue is in deciding the or-
ganizational form of the data (i.e., aggregate vs. incremental basins). Chapter 2 showed
that �incremental basin� modeling provides an easy way to include network information in
statistical models, and the results show its value for modeling hydrology with parametric
models, especially those with few parameters like LM and GLM. The LM and GLM bene�t
more from the incremental modeling approach, whereas the RF and the NN are somewhat
insensitive to it.

(2) Often, water resources problems are not concerned with accurately predicting the
expectation (or the mean) of a distribution but require better estimates of extreme values of
the distribution (i.e., �oods and droughts). Solving this problem involves de�ning asymmet-
ric loss functions presented in Chapter 3. In symmetric loss functions such as the squared
error loss functions (i.e., Mean Squared Error or MSE), the peaks or high leverage points
get �tted at the expense of the low �ows. The proposed Weighted Least Squared Error
(WLSE) and Linear-Exponential Error (LINEXE) asymmetric losses are able to force a �t
to the tails of the distribution (the peaks and valleys of the hydrograph). The symmetric
Log-Cosine Hyperbolic Error (LOGCOSH) performs similarly to the Mean Absolute Error
(MAE) and MSE. The Mean Squared Percentage Error (MSPE) is chronically biased to-
wards lower predictions and is not suited to problems where the data are skewed positive.
In general, the di�erences show the amount of control the modeler has on the predictions
and their probability distribution when picking a loss function.

(3) Dependencies and correlation structures are inherent in hydrologic observations; gauge
data are structured in time and space, and rivers form a network of �ows that feed into
one another (i.e., temporal, spatial, and hierarchical autocorrelation). These characteristics
require careful construction of resampling techniques for model error estimation. In Chapter
4, blocking methods show how much random resampling methods underestimate model error.
Models evaluated with random methods (e.g., Random 5-fold) have arti�cially low errors
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due to pseudoreplication from autocorrelation. This is not to say that, in hydrology, random
resampling is never useful; a random test-train split is most appropriate for predicting �ow
for a sparsely incomplete gauge record. Blocked resampling in time is most appropriate for
predicting or extrapolating stream�ow in time for that location. One should not expect to
use these resampling strategies and get the same predictive accuracy in a purely ungauged
basin problem, where blocks are supposed to be designed across geographic space or more
accurately hierarchical structure (e.g., LOGO and BBG). Results show that generally model
performance estimates decline as block sizes increase. However, these estimates are more
accurate than random resampling methods since they better approximate the data generating
mechanism. This chapter highlights the importance of the �eld in moving away from 5-fold
or 10-fold random cross-validation to blocked cross-validation and eventually to blocked
bootstrapping methods.

(4) Non-stationarity due to climate change may require adjustments to statistical models,
especially if they are meant for long-term decision-making. Chapter 5 compares unimpaired
�ow predictions from a statistical model (NN) that uses climate variables representing future
hydrology to projections from routed climate models simply aggregated to basins in the study
(VIC+LOCA+Aggregation). There is fairly good agreement in the statistical (NN) model's
unimpaired �ow predictions and the mechanistic+statistical (VIC+LOCA+Aggregation)
models runo� projections (R2= [0.64-0.72]). However, the NN model predicts more low
�ows than the VIC+LOCA+Aggregation models; when we compare more smoothed data
(with a moving average window), we can see a bias emerge (e.g., β1= 0.95 to 1.84 for
CanESM2 RCP 4.5). This can also be seen in the time series comparisons, where with a
larger moving average window the NN model's predictions are systematically higher than
the VIC+LOCA+Aggregation model projections.

6.1 Model Improvement Strategies
Figure 6.1 shows the residuals for the NN model built on observed data in the previous

chapters (Appendix A). Model residuals are positive for smaller hierarchies and negative
for larger ones. This was evident by the fact that the model overpredicts lower �ows (that
tend to occur at smaller hierarchies) and underpredicts higher �ows (that tend to occur at
larger hierarchies). Also, residuals tend to increase with increasing �ow (Figure 6.2), but
standardized residuals decrease with �ow (Figure 6.3).

Overall, the NN model residuals may appear to be spaced at random. However, with the
Box-Pierce and Ljung-Box tests for autocorrelation we can see that in most basins they are
not (Figure 6.4). These tests, also known as the portmanteau tests, are used for examining
the null hypothesis of independence in a given time series. P-values close to zero are evidence
against independence and imply that the model can be improved to eliminate non-random
patterns in the residuals.

Model improvement can come from taking advantage of the knowledge that �ow data
is sequential and therefore using models that focuses on the time series component of the
data. For example, some models use a lagged response variable to construct the model
as in the Auto Regressive Integrated Moving Average (ARIMA) models. These models
are uni-variate and are solely trained on the response variable; in order to accommodate
predictor (exogenous) variables, we can use a Seasonal ARIMA (SARIMA). In ungauged
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Figure 6.1: NN model residuals over time. Residuals may appear random as a whole,
however, they tend to be positive for smaller hierarchies and negative for larger ones.

Figure 6.2: NN model residuals vs. unimpaired �ow (CDEC). Model residual increase with
an increasing response variable. Most of these �ows occur at the larger hierarchy (4) as these
basins are lower in the network and are expected to have larger �ows.
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Figure 6.3: Standardized NN model residuals vs. unimpaired �ow (CDEC). The ratio of
model residuals to mean annual observed unimpaired �ow decrease with an increasing re-
sponse variable. Most relative errors occur at smaller hierarchies (1) as these basins are
higher in the network and are expected to have smaller �ows.

scenarios, to avoid information leaks we must eliminate training data that the model has
seen, creating a problem with small data sets. To avoid this issue altogether, models like
Recurrent Neural Networks (RNNs) have the capability of connecting previous information
to the present in their architecture. Therefore, unlike ARIMAs, there is no need to include
the response variable in the training. A special type of RNNs, Long Short Term Memory
networks (LSTMs) are capable of learning long-term dependencies with fewer memory needs
and have shown to be e�ective in time series modeling for PUB (Kratzert et al., 2019).

Also, semi-supervised statistical learning models aid in learning in non-stationary en-
vironments. A special case is known as covariate shift, in which the distributions of inputs
(queries) change but the conditional distribution of outputs (answers) is unchanged. For ex-
ample, with climate change, the distribution of precipitation �attens (more extreme weather)
and the distribution of temperature shifts (hotter climate), but the runo� produced by a par-
ticular combination of temperature and precipitation is unchanged. In this case, covariate
shift adaptation weights the importance of each training observation based on the probability
it will be queried later. So, the climate change queries (input-only data) are included in the
learning process along with the observations (input-output data), and the importance of each
training observation is considered with an importance-weighted loss function (Sugiyama &
Kawanabe, 2012). In some instances, even without query data, covariate shift is intentionally
implemented in the modeling to improve generalization ability.

As we saw, some models predict physically impossible �ows: negative �ows, or more
�ow than there is in precipitation volumes. These unrealistic predictions can be eliminated
by: (1) Constrained optimization where a high penalty is imposed when predicted �ows are
outside a prescribed range of �ows (Ren, Stewart, Song, Kuleshov, & Ermon, 2018). The
penalty can make the loss function be non-di�erentiable and therefore need more creative �t-
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Figure 6.4: Box-Pierce and Ljung�Box tests for auto-correlation in model residuals (predicted
- CDEC unimpaired �ows). The p-values close to zero indicate that residuals are auto-
correlated. Most basins su�er from 0 p-values indicating that the model can be improved to
eliminate non-random patterns in its residuals.
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ting techniques, or the penalty can be added to the loss function as a regularization method.
This added term gives a di�erentiable measure of how close the model is to satisfying the
constraint. (2) Adding a constrained layer to the neural architecture design to enforce con-
straints. The constrained layer increases the pre-activated value of a neuron if a constraint
is met and decreases it otherwise. Because constraint violation is a binary variable (0 for
violated, 1 for not) and is non-di�erentiable, a smooth surrogate must be used (Li & Sriku-
mar, 2019). (3) Data augmentation, i.e. the addition of supplementary data sets that follow
constraints, incentivizes networks to be more mindful of constraints. The infusion of domain
knowledge with a simulation model also helps with data sets of limited size and the related
issue of poor generalization performance.

Model improvement may also come from a more granular data set; daily rather than
monthly data can increase model performance, since the variable importance plots showed
that precipitation rates, which vary through time, contain the most amount of information
needed for accurate predictions.

6.2 Final Thoughts
In general, rainfall-runo� models can be used inside hydrology, as exploratory research

tools, or outside hydrology, for planning, design, or operational decisions. The models de-
veloped here are intended for use outside hydrology where hydrologic information is relevant
and useful. I started studying the PUB problem during my undergraduate years, because
stream�ow estimates were needed as a pre-requisite to the original task of estimating nu-
trient loadings. The model was ultimately intended to inform the Kentucky Division of
Water in establishing total maximum daily loads for Nitrogen and Phosphorous. This model
was simple, transparent, and helped evaluate di�erent nutrient management options. Like
this application, stream�ow dis-aggregation and water budget outputs can be used to aid
in setting minimum in-stream �ow regulations, establishing water rights, modeling river
stage-discharge relationships or water levels in a channel, simulating sediment and nutri-
ent loadings, cleaning up anomalies in the data or �lling in missing records, and managing
natural disasters.
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Appendix A

Model Data

This appendix introduces the data used in the statistical learning model.

Study Area & Response Variable
This study used the monthly unimpaired �ows dataset developed and maintained by the

California Data Exchange Center (CDEC). The data spans 67 California basins (Figures A.1
and A.2, and Table A.1) from 1982 to 2014. It can be downloaded with a simple web-scraping
script available on GitHub. It has approximately 19,000 monthly stream�ow observations in
acre-feet (AF) and as a continuous variable can be used for regression type studies (Figure
A.3).

Table A.1: CDEC unimpaired �ow gauges included in this study.

No. ID Name Hierarchy Longitude Latitude Area
(km2)

1 AMA AMERICAN MF NR AUBURN 2 -2128686.67 2042808.70 2517.49

2 AMF AMERICAN R AT FOLSOM 4 -2144854.69 2025238.28 4845.51

3 AMK AMERICAN SF NR KYBURZ 1 -2071111.72 2014979.17 494.37

4 AMN AMERICAN NF AT N FORKDAM 1 -2124144.54 2049024.85 886.93

5 ANM SANTA ANA R NR MENTONE 1 -1916225.50 1440652.95 543.45

6 ANT ANTELOPE LAKE 1 -2053955.06 2174556.63 183.94

7 ASP ARROYO SECO (PASADENA) 1 -2009350.30 1475311.58 43.05

8 ASS ARROYO SECO NR SOLEDAD 1 -2227364.03 1768676.13 626.27

9 ASV AMERICAN-SF SILVER CREEK 1 -2072796.09 2021792.99 71.59

10 CSN COSUMNES R AT MICHIGAN
BAR

1 -2138635.20 2002305.87 1384.43

11 CYO COYOTE CR NR MADRONE 1 -2228858.29 1872199.32 507.07

12 DAV LAKE DAVIS (DWR) 1 -2051002.47 2139358.74 121.48

13 EFC EAST FK CARSON RIVER NR
GARDNERVILLE

1 -2016973.86 2010608.38 928.85

14 ERS EEL RIVER AT SCOTIA 1 -2327255.02 2288682.16 8069.24

15 EWR EAST WALKER RIVER NR
BRIDGEPORT

1 -1990272.14 1943888.95 944.67
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No. ID Name Hierarchy Longitude Latitude Area
(km2)

16 FPL FEATHER NF AT PULGA 3 -2134185.57 2151395.21 5062.47

17 FPR FEATHER NF NEAR
PRATTVILLE

1 -2093742.59 2183928.16 1299.27

18 FRD FRENCHMAN DAM 1 -2027714.74 2133264.26 226.81

19 FTC FEATHER MF NR CLIO 3 -2065191.81 2128154.52 1772.44

20 FTO FEATHER RIVER AT OROVILLE 4 -2150136.78 2124168.74 9374.46

21 FTP FEATHER SF AT PONDEROSA 1 -2129324.12 2121485.04 278.67

22 KGC KINGS NF NR CLIFF CAMP 1 -1999299.27 1792108.25 6.42

23 KGF KINGS R PINE FLAT DAM 2 -2041219.40 1783693.80 4001.10

24 KGP KINGS PRE PROJECT PIEDRA 2 -2040307.84 1783696.42 4000.12

25 KRB KERN R BAKERSFIELD 2 -2045237.12 1623254.90 6229.30

26 KRI KERN R BLW ISABELLA 2 -1999491.62 1635957.72 4975.50

27 KRK KERN R NEAR KERNVILLE 1 -1990852.72 1669117.93 2197.81

28 KWT KAWEAH R TERMINUS DM 1 -2024002.66 1731041.34 1427.86

29 LNV LONG VALLEY TO TINEMAHA 1 -1978782.77 1871636.59 283.25

30 MBS MONO BASIN 1 -1993147.05 1904294.06 215.36

31 MDP MERCED AT POHONO BRIDGE 1 -2045021.97 1887054.05 835.76

32 MKM MOKELUMNE MOKELUMNE
HILL

2 -2116905.46 1974783.27 1414.03

33 MKW MOKELUMNE AT WEST POINT 1 -2100680.10 1976858.85 186.68

34 MRC MERCED R NR MERCED FALLS 2 -2106863.79 1880441.07 2748.96

35 MSS MCCLOUD RIVER ABOVE
SHASTA LAKE

1 -2161448.62 2294358.06 1575.08

36 NCD NACIMIENTO R BLW DAM 1 -2202248.56 1701662.95 858.59

37 NPH NAPA R NR ST HELENA 1 -2253820.95 2034051.71 211.92

38 OWL OWENS RIVER-LONG VLY 2 -1967405.66 1852775.42 994.11

39 PLK SF PIT RIVER NEAR LIKELY 1 -2010166.22 2284708.33 673.47

40 PSH PIT RIVER AT SHASTA LAKE 2 -2148617.08 2277359.96 13240.32

41 RRH RUSSIAN R NR HEALDSBERG 1 -2284103.06 2056180.11 2058.80

42 SBB SACRAMENTO RIVER ABV
BEND BRIDGE

4 -2179184.13 2221503.29 23474.25

43 SCC SUCCESS DAM 1 -2026405.06 1691144.77 1011.73

44 SCU SILVER CR AT UNION VALLEY 1 -2076668.35 2028174.76 216.89

45 SDT SACRAMENTO R AT DELTA 1 -2177823.22 2296916.82 1086.65

46 SIS SACTO INFLOW SHASTA 3 -2184967.47 2273101.54 17098.24

47 SJF SAN JOAQUIN RIVER BELOW
FRIANT

1 -2070323.68 1808777.82 4350.67

48 SNS STANISLAUS R GOODWIN 2 -2123287.23 1923015.75 2546.40

49 SQS SQUAW CR INFLOW-SHASTA
LAKE

1 -2153666.60 2280408.47 165.81

50 SRS SALMON R AT SOMES BAR 1 -2248832.40 2368685.00 1945.97

51 SSP SESPE CREEK NR FILLMORE 1 -2070163.63 1515286.95 662.87

52 STB STANISLAUS MF BLW BEARDS 1 -2068257.97 1948099.97 812.74
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No. ID Name Hierarchy Longitude Latitude Area
(km2)

53 SVC SILVER CR BLW CAMINO DAM 3 -2087127.00 2026143.25 442.74

54 SWH SESPE CK AT WHEELER 2 -2074131.12 1509395.89 693.90

55 THT TINEMAHA TO HAIWEE 1 -1939473.99 1786499.22 98.68

56 TLG TUOLUMNE R-LA GRANGE
DAM

3 -2112073.47 1898492.85 3988.05

57 TLM TUOLUMNE CHERRY CREEK 1 -2059288.72 1919713.74 302.09

58 TLN TUOLUMNE NR HETCH
HETCHY

1 -2050052.23 1913899.28 1175.09

59 TNL TRINITY R AT LEWISTON 1 -2215692.33 2282053.74 1862.19

60 TRF TRUCKEE RIVER AT FARAD 1 -2028165.07 2080706.71 2430.66

61 WFC WEST FORK CARSON RIVER
AT WOODFORDS

1 -2029890.03 2004884.38 170.41

62 WWR WEST WALKER RIVER NR
COLEVILLE

1 -2008642.77 1954269.52 166.77

63 YBG YUBA NF BELOW GOODYEARS
BAR

1 -2099908.30 2110853.00 645.47

64 YBM YUBA MF NR JACKSON MDWS 1 -2068784.00 2100936.65 97.69

65 YBS YUBA SF BLW SPAULDING 1 -2082870.09 2082407.80 319.76

66 YCB YUBA CANYON CK/BOWMAN
LK

1 -2079638.13 2095580.35 73.80

67 YRS YUBA RIVER NEAR
SMARTVILLE

5 -2136165.99 2087011.27 2871.21

Some unimpaired �ow basins in the CDEC dataset were removed from this study: (1)
YBJ. YBJ (INFL JACKSON MDWS & BOWMAN) and YBM (YUBA MF NR JACKSON
MDWS) basin outlets are close to one another but have slightly di�erent �ow data. Upon
further inspection we learned that YBJ=YBM+USGS Gauge after a diversion. Therefore,
YBM is the truly unimpaired �ow gauge. (2) SFJ and OTR. These gauges were in the
dataset but were stripped of their data. We are leaving them out until CDEC updates their
database including these basins. (3) KLO. KLO is downstream of SFJ. Since SFJ was pulled
from the dataset for revision, we removed KLO, believing its calculated values will also be
e�ected. (4) BHN, FTM, SFR, and SJM. These stations were discontinued and as such their
time series do not overlap with the rest of the basins. That gives us a total of 67 (75 total -
8 omitted) unimpaired �ow basins. Figure A.2 shows how these basins are connected.

Predictor Variables
Predictor attributes were calculated for each observation point (Table A.3). A total of

24 predictor variables were selected based on the knowledge of basin characteristics and
processes that in�uence a watershed's response to precipitation: evaporation (temperature);
snowfall (cumulative sum of precipitation below 2◦C); storage in soil (with soil and land cover
parameters); antecedent conditions (with lagged precipitation and temperature parameters);
and groundwater processes (with depth to restricted layer).

The climate data were derived from the Parameter elevation Regression on Independent
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Figure A.1: The 67 California basins under study are the CDEC unimpaired �ow basins.
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Figure A.2: Network schematic.
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(a) The cumulative distribution function. (b) The cumulative distribution function in log

space.

Figure A.3: Distributions of the response variable. Approximately 19,000 unimpaired �ows
in acre-feet/month (AF/m).

Slopes Model (PRISM) dataset, which contains gridded rasters for the continental United
States at 4km resolution from 1891 to 2014. The temperature variable and its lagged
forms are the basin averaged PRISM tmean variable, which in turn was calculated by the
mean of the monthly minimum temperatures and the monthly maximum temperatures. The
precipitation variable and its lagged forms are the basin averaged PRISM ppt variable,
which is a measure of total precipitation (rain and snow).

Low �ows in some Sierra Nevada basins exhibit a �memory� e�ect in which they depend
on the current and previous year's snowpack (Godsey, Kirchner, & Tague, 2014). Since
we did not want to include 24 lagged precipitation parameters in the model, we developed
a snow variable. The snow variable was the cumulative sum of precipitation, starting in
October of each water year, for temperatures under 2◦C.

Basin shape can a�ect the peak discharge; peak discharge for a circular basin arrives
sooner than for an elongated basin of the same area. Because of how the tributary network
in a circular basin is organized, the �ows in a circular basin enter the main stem at roughly the
same time, so more runo� is delivered to the outlet together, sooner. In an elongated basin,
because of the mismatch in timing, peak runo� is more attenuated, except for some slow-
moving streams. The shape parameter, calculated by basin length divided by basin width,
and the compactness parameter, calculated by basin area divided by (basin perimeter)2,
account for this phenomenon. Although, this phenomenon is more pronounced in runo� on
a smaller time step, we included these parameters in the �nal model to see their importance.

Basin hypsometric information was derived from the Shuttle Radar Topography Mission
(SRTM) 90mmodel, which is a gridded raster of static elevation at a 3arc−second resolution.
The vertical error of the model is reported to be less than 16m. Themean basin elevation
and basin relief ratio parameters (Pike & Wilson, 1971) were calculated from this dataset.
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Basin relief ratio is calculated by the di�erence in maximum and minimum elevations divided
by basin length.

Soil properties were derived from the POLARIS dataset, a Soil Survey Geographic
Database (SSURGO) processed dataset at a 3arc − second resolution. Percent clay, silt,
and sand, saturated hydraulic conductivity, lambda and n pore size, available water
content, and depth to restricted layer information was averaged for each basin.

Table A.3: Summary of the variables used in the implementation of the model.

Type Variable Description Source

Response Unimpaired
Flow

monthly estimated unimpaired �ows, in AF CDEC
(Beaudette,
2016)

Time Ordinal Month numerical distance till October

Water Year numeric year starting from the October of previous
Gregorian year

Climate Temperature,
Lag 1, 2 and 3
Months

temperature and lagged monthly temperature, in ◦C PRISM (Hart
& Bell, 2015)

Precipitation,
Lag 1, 2 and 3
Months

precipitation and lagged monthly precipitation, in
mm

Snow cumulative precipitation of the same water year for
temperatures bellow 2 ◦C, in mm

Hypsometric Relief Ratio (max(elev) - min(elev))/ basin length in, m/m SRTM90
(Jarvis,
Reuter, Nel-
son, Guevara,
et al., 2008)

Mean Elevation mean basin elevation, in m

Basin
Boundaries

Area basin drainage area, in miles2 NHD2PLUS
(McKay et al.,
2012)

Shape basin length/basin width, in m/m

Compactness basin area/(basin perimeter)2, in m2/m2

Soil % Clay percent clay in surface layer, in % POLARIS
(Chaney et
al., 2016)

% Silt percent silt in surface layer, in %

% Sand percent sand in surface layer, in %

Sat. Hydraulic
Conductivity

hydrologic conductivity of surface layer, in cm/hr

Lambda pore size distribution index (brooks-corey)

N measure of the pore size distribution (van genuchten)

Available water
content

available water content, in m3/m3
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Type Variable Description Source

Land Cover Vegetated Percent of area in the basin vegetated in % CALVEG
(Forest Ser-
vice, USDA,
Paci�c South-
west Region,
2006)

Ground Wa-
ter

Depth to Re-
stricted Layer

depth to aquitard, in cm POLARIS
(Chaney et
al., 2016)

Other Descriptive Variables
Some variables are included in the dataset, but not in the modeling; these variables

de�ne the location of the gauges, and consist of the following: Longitude and Latitude
(de�nite location), Hierarchy or the number of gauges that exist above (relative location in
the network), river basin, county, and gauge operator. Hierarchies are di�erent from the
Strahler stream order; the gauges determine the hierarchy within the network whereas all
branches can have a stream order number regardless of whether they are gauged or not.
These descriptive variables are only used for plotting purposes (Table A.5 and Figures A.4,
A.5, and A.6).

Table A.5: Descriptive statistics for unimpaired �ow grouped by hierarchy.

Hierarchy Total length of
record

Standard devia-
tion (σ)

Mean (µ) Coe�cient of
Variation (σ

µ
)

1 12,225 162,341 47,491 3.41

2 3,548 131,218 91,677 1.43

3 1,175 320,759 242,211 1.32

4 1,179 518,580 424,348 1.22

5 393 225,426 186,534 1.21

Correlations
A simple examination of the partial correlations of predictor variables with �ow shows

that most of the information content lies within drainage area, precipitation, and some mea-
sures of in�ltration (i.e., lambda pore size, n pore size, and saturated hydraulic conductivity).
The correlated variables were not removed from the model (Figure A.7). For a more complete
correlation plot see Figure A.8.
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Figure A.4: The cyclical behavior of total monthly unimpaired �ows. The �ows start to rise
in October, the start of the �water year.� The boxplots also show that given a higher hierarchy
(i.e., being lower in the network of gauges) the monthly distribution of �ows becomes larger.
The only exception to this is basin hierarchy number 5, and that is because this data set
only had one basin in that hierarchy. Had there been more basins, its distribution would be
wider showing that the lower you are in the network, the higher the �ows and the bigger the
distribution of �ows.

Figure A.5: Total monthly unimpaired �ow vs. latitude. Total monthly unimpaired �ow
increases at higher latitudes in California. Note that each of the basins were at a unique
latitude, for illustration purposes the latitude variable was jittered.
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Figure A.6: Total monthly unimpaired �ow vs. precipitation. The total monthly unimpaired
�ow increases with increasing precipitation. This is also drainage area dependent, as the
smaller drainage areas that happen to have high amounts of precipitation still produce low
�ows. Basin hierarchies also show that the larger basins are lower in the network. The only
exception being hierarchy number 5, and that is because this data set only had one basin in
that hierarchy.

(a) Pearson's Correlation
(b) Partial Correlations

Figure A.7: Correlation of predictor variables with monthly �ow volumes. Drainage area
and precipitation correlate the most with �ow.
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Figure A.8: Correlation plot. Patterns can arise in correlations especially when some vari-
ables are calculated from or are directly related to others. For example, the percentage of
sand silt and clay in a basin adds to one. Therefore, these variables are negatively correlated.
Also, lag variables calculated from precipitation and temperature will tend to correlate with
one another. However, the snow variable that was calculated from precipitation does not
signi�cantly correlate with precipitation.
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Appendix B

Terms & Concepts in Machine Learning

This appendix introduces common terms and concepts used in statistical learning and in
this paper.

Terminology
Variables: Predictors, independent variables (sometimes just variables), or features all

are the inputs into a model that we believe in some way will inform us about another variable
we are interested in. The response, output, or dependent variable, is the output of the model
we are interested in.

Training and Test sets: Data sets used for training the model and testing the model's
predictive capabilities, respectively.

Bias Variance Trade-o� : Bias and variance make up part of the expected test set
squared error (See Equation B.1).

E[(y − f̂)2] = V ar[f̂ ] + (Bias[f̂ ])2 + V ar(ε)

V ar[f̂ ] = E[f̂ 2]− (E[f̂ ])2

Bias[f̂ ] = E[f̂ − E[y]]

V ar[ε] = σ2

(B.1)

where y is the observed response variable, x is the observed predictor variable and y =
f(x) + ε, f̂(x) is the modeled or predicted response variable, and ε is the irreducible error in
the response variable.

That is, variance and bias make up the reducible error in the response variable. It is
reducible because we can modify it by changing the training data (e.g., adding more data),
which e�ects the variance component, or changing the model type (e.g., going from linear to
nonlinear), which e�ects the bias component of the bias variance trade-o�.

Resampling: These methods create synthetic or �extra� data from the original data set.
This data set, di�erent from the whole sample, is sometimes needed for nuisance parameter
estimation (usually with cross-validation) or model error estimation (usually achieved with
the bootstrap). We discuss the importance of resampling methods in Chapter 4.

Loss or Objective Function: The expectation of the loss function, L(yi, ŷi) is the
function that is minimized (or maximized) in a statistical learning algorithm representing
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Figure B.1: Typical convex loss functions in statistical learning.

linear or non-linear penalties for mis-estimation. Figure B.1 depicts typical loss functions
used in machine learning. A loss function is a statement of priorities; what we want the
model to get right and how much we care about the error relatively. For example, what is
the cost of getting low �ows predicted incorrectly (additional drought damage cost)? What
is the cost for predicting high �ows incorrectly (additional �ood damage cost)? To some
extent the choice of a loss function is subjective. We examine loss functions in chapter 3.

Convex Optimization Problems: Optimization problems that are convex if the ob-
jective function and constraints have optimal edge solutions; if a solution is found to the
minimization or maximization, it is guaranteed to be a global solution.

Gradient-Based Optimization Methods: These methods �nd local minima or max-
ima of an objective function by searching along the gradient of the objective function. For
example, in a minimization problem using the steepest gradient search methods, the decent
direction and step size is found in each iteration. Gradient-based methods require a di�eren-
tiable loss function. However, variations such as subgradient methods allow for minimization
of convex problems with kinks in the loss function.

Derivative-Free Optimization Methods: These methods do not require gradient
calculations and are well suited to problems where a loss function is not non-convex or
irregular. For example, evolutionary algorithms �nd local minima or maxima by evaluating
the loss function on a population of solutions, and allowing them to evolve in each iteration.

Learning Scenarios
Supervised vs. Unsupervised: In supervised settings, we have a variable of interest,

y, that we believe follows a functional form: y = f(x) + ε, where f(x) provides systematic
information about y, and ε is the error term. In modeling we try to approximate this
functional form (i.e., f̂(x)) with the observations (i.e., ŷ). We also can try to estimate y
from the data itself, without assuming a functional form (See next section on Parametric vs.
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Non-Parametric).
In unsupervised learning, we do not have a variable of interest, y, to model. Instead,

we have observations of many variables that we can still study for their natural groupings,
patterns, or relationships between variables. For example, when classifying streams, the
model can learn from various stream and basin characteristics without a particular variable
being of interest.

Prediction vs. Inference: The two major goals of statistical analysis are prediction or
inference. In prediction, we are interested in getting the simulated value to closely resemble
observed values (e.g., can we accurately predict the value of a house). That is, we are
concerned with accuracy.

However, in inference, we are interested in the relationship of predictor variables to the
response variable (e.g., how much extra will a house be worth with a scenic view). That is,
we are concerned with model interpretability, which implies that a simpler (fewer variables)
model is preferred even at some cost to prediction accuracy (James et al., 2013).

Parametric vs. Non-Parametric: Parametric models assume a functional form. For
example, from Ohm's law (V = IR), we assume that given an unknown resistor, voltage
and current have a linear relationship (y = β1x + ε), where y is the voltmeter readings and
x is the ammeter readings. By assuming this functional, form errors in observations can
be due to the measurement device (the voltmeter or ammeter) or human error. Now, we
can estimate the parameters of the model from the observations. In this case, we estimate
resistance, R, by �tting ŷ = β̂1x. We have reduced the problem of �nding f̂(x) to �nding
β̂1.

However, in non-parametric models, we do not assume a functional form and try to get
the model as close to the observations as possible without being too �rough.� For example,
Kriging interpolators are known as exact interpolators where the predictions at every ob-
servation are the observations precisely. This approach highly depends on the observations,
and so, it su�ers from high variance in the bias-variance trade-o�; is the sample data were
to change, even slightly, the model shifts (high variance) because it needs to pass through
these observations. Smoothing techniques, such as thin plate splines, relax this constraint,
and depending on the degrees of freedom or �exibility we allow, the prediction can be close
to or far from the observations. This approach is data intensive and usually performs better
for prediction than for inference, because, after all, it is trading the parameters that aid
inference for model �exibility.

Regression vs. Classi�cation: Variables can be classi�ed as quantitative or qualita-
tive. Quantitative variables have numerical values and a quantitative response variable is
used in what we refer to as regression models. In contrast, qualitative variables have class
values, categories or ordinal levels and a categorical response variable is used in classi�cation
models. The predictors may take either form and are generally less important (James et al.,
2013).
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Appendix C

Brief History of Statistical Learning

This appendix explains how some of the ideas organized in chapter 1's heuristic guide
developed over time.

In 1763, Thomas Bayes' An Essay towards solving a Problem in the Doctrine of Chances
was published posthumously. In it, Bayes explained that �given the number of times in which
an unknown event has happened and failed, the chance that the probability of its happening
in a single trial lies somewhere between any two degrees of probability that can be named�
(Bayes & Price, 1763). This work later underpins Bayes' Theorem.

In 1805, Adrien Marie Legendre introduced the least squares method of estimating pa-
rameters as an appendix to his book on the paths of comets. Carl Freidrich Gauss also
published the method a few years later but claimed he had been using it since 1795 (Stigler,
1981). Regardless of the original inventor, the method is re�ned with its application in
linear regression and curve �tting.

In 1812, Pierre-Simon Laplace, expanding on the work of Bayes, introduced methods of
�nding probabilities of compound events when the probabilities of their simple components
are known, and he de�ned what is now known as Bayes' Theorem (O'Connor & Robertson,
2000).

In 1913, Andrey Markov founded a new branch of probability theory by applying math-
ematics to poetry. Later called Markov chains, the method went beyond coin-�ipping
(where each event is independent of all others) to chains of linked events (where what hap-
pens next depends on the current state of the system) (Hayes et al., 2013).

In 1936, Ronald Fisher introduced a method to �nd a linear combination of features that
separates (or discriminates between) two or more classes of events. Fisher's discriminant is
later slightly modi�ed to add the assumptions of normally distributed classes or equal class
covariances, and became the more famous linear discriminant analysis (LDA) (Härdle
& Simar, 2007).

In the 1958, David Cox developed logistic regression for situations where it is not
reasonable to assume that the independent variables are normally distributed as in LDA
(Cox, 1958).

In 1951, Marvin Minsky and graduate student Dean Edmonds built the �rst neural
network machine. This machine was a randomly connected network of capacitors that
have a �nite amount of memory and time to keep or remember that memory. The memory
holds the probability that a signal will come in one input and another signal will come out of
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the output. This machine, modeled after the Hebbian theory of learning in the human brain,
was one of the �rst pioneering attempts at arti�cial intelligence (Crevier, 1993). Shortly after,
in 1957, Frank Rosenblatt invents the perceptron, the �rst neural network for computers
(Rosenblatt, 1957).

In 1967, the Thomas Cover and Peter Hart invent the nearest neighbor algorithm,
which kickstarted basic pattern recognition (Cover & Hart, 1967). The algorithm was used
to map a route for the traveling salesmen problem, starting at a random city, but ensuring a
visit to all cities during the shortest tour (Marr, 2016).

In 1972, Nelder and Wedderburn introduced generalized linear models. Linear models
are customarily made of systematic and random error components, with the errors usually
assumed to have normal distribution. This work allowed for a uni�ed �tting procedure,
despite the type of error distribution, based on likelihood (Nelder & Wedderburn, 1972).

In 1980, Kunihiko Fukushima developed the neocognitron, a type of arti�cial neu-
ral network (Fukushima & Miyake, 1982). This work later inspired the development of
convolutional neural networks.

In 1981, Gerald Dejong introduced explanation-based learning, where a computer
algorithm analyzes data, creates a general rule it can follow, and discards unimportant data
(Marr, 2016). The new knowledge structure is not constructed by noticing the similarities
and di�erences among a large number of inputs, nor is it constructed from a more general
one already existing within the system. The system can learn from just one example and
adapt its learning. The knowledge structure can be expanded later but is already a viable
new schema capable of adding future processing (DeJong, 1981).

In 1982, John Hop�eld developed Hop�eld networks, a type of recurrent neural net-
work that can serve as content-addressable memory systems (Hop�eld, 1982). Based on
aspects of neurobiology, the content-addressable memory can yield an entire memory from
any subpart of su�cient size. The recurrent aspect of RNNs make it a breakthrough for pro-
cesses driven by lagged parameters. For example, in hydrology, runo� processes are a�ected
by time-lagged precipitation; depending on the size of the watershed, precipitation at the
headwaters may take days to reach the outlet, or, snowfall in the winter will take months
to melt and turn into base�ow. In 1997, Sepp Hochreiter and Jorgen Schmidhuber invent
long short-term memory (LSTM) recurrent neural networks. This method greatly
improved the e�ciency of neural networks (i.e., more successful runs, at a higher learning
rate) and it solved complex (i.e., arti�cial long-time-lag) tasks that have never been solved
by previous recurrent network algorithms (Hochreiter & Schmidhuber, 1997).

In 1984, Brieman, Friedman, Olshen, and Stone introduced classi�cation and regres-
sion trees (CART) (Breiman, Friedman, Olshen, & Stone, 1993), a method of recursively
partitioning the feature space. In 1995, Tin Kam Ho �xes the issue of high variance in the
CART with his proposed random forest algorithm (Ho, 1995).

In 1986, Hastie and Tibshirani developed the generalized additive model, a non-
parametric extension to the generalized linear models where the linear predictor is replaced
by an additive predictor (Hastie & Tibshirani, 1990). This means the model is �t on multiple
predictors and the �t on each predictor is updated by holding the others �xed (i.e., �t to a
partial residual).

In 1995, Corinna Cortes and Vladimir Vapnik published their work on support vector
machines. Originally applied to only two-group classi�cation problems, this procedure
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constructs a linear decision surface in high dimensions with corresponding �support vectors�
at a margin, M, from the decision surface. The purpose of the method is to maximize the
margin, M (Cortes & Vapnik, 1995).

Until the 1990's, statistical learning was a purely theoretical analysis of the problem
of function estimation from a given collection of data (Vapnik, 1999). Since then, with
the commercialization of software programs, these methods can be applied to �real-world�
data and therefore used in �elds outside of statistics and computer science. Work on these
methods has also shifted from knowledge-driven approaches to a data-driven approaches; we
are letting the computer analyze large amounts of data and �learn� from the results. As
Winston (2010) puts it, �the computer is learning much like a bulldozer processing gravel.�

In 2006, Geo�rey Hinton developed deep learning techniques that let computers �see�
and distinguish text in images (using the famous MNIST database of hand-written digits).
These methods make inference easier in densely connected belief nets that have many hidden
layers and scale poorly to increases in the number of parameters (Hinton, Osindero, & Teh,
2006). Deep convolutional networks have brought about breakthroughs in processing
images, video, speech, and audio (Marr, 2016).

In 2010, the Microsoft Kinect was launched. The devise could track 20 human features
at a rate of 30 times per second (Marr, 2016), allowing people to interact with the computer
(or more pointedly, the console) via movements and gestures. Microsoft's vision was to
incorporate motion into gaming, eliminating the need for controllers you would have to
charge or could accidentally �ing into your TV (Cranz, 2018).

In 2012, Google Brain started. Led by Andrew Ng and Je� Dean, its deep neural
network can learn to discover and categorize objects. Despite the fact that the network had
never been told what a cat was, nor was it given even a single image labeled as a cat, it
�discovered� what a cat looked like from unlabeled YouTube images (Dean & Ng, 2015).

In 2014, Facebook developed DeepFace, a software algorithm that is able to recognize
that two images show the same face (i.e., facial veri�cation). It employs a nine-layer neural
net with over 120 million connection weights and was trained on four million images uploaded
by Facebook users (Simonite, 2014). This algorithm raised some privacy concerns and their
recent Cambridge Analytica scandal did not help Facebook with the heightened scrutiny
either.

In 2014, Google researchers presented their work on Sibyl. This proprietary platform
started o� by recommending YouTube videos to users. Now it can predict spam and a user's
ad preferences. In general, its goal is to predict how Google users will behave in the future,
based on what they did in the past (Woodie, 2014).

In 2015, Amazon launched its own machine learning platform, SageMaker. This plat-
form was designed to help developers and data scientists from the data acquisition step to
full model deployment (Amazon Web Services, 2018).

In 2015, Microsoft created the Distributed Machine Learning Toolkit, which makes
machine learning tasks on big data highly scalable, e�cient, and �exible. The toolkit employs
a special sampling technique to create and distribute training data throughout the cluster
(Rolle, 2015).

In 2015, over 3,000 AI and Robotics researchers, endorsed by Stephen Hawking, Elon
Musk, and Steve Wozniak (among many others), signed an open letter calling for a ban on
o�ensive autonomous weapons beyond meaningful human control. The letter warns us that
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�Arti�cial Intelligence technology has reached a point where the deployment of such systems
is�practically if not legally�feasible within years (Hawking, Musk, Wozniak, et al., 2015).�

In August of 2018, arti�cial intelligence bots beat �ve human players at the video game
Dota 2. OpenAI, an independent research institute cofounded by Elon Musk developed the
bots and used reinforcement learning to train for the match. In contrast to chess or go, it is
especially di�cult to train machines to play videogames, because the action takes place on
a much larger board, where not all opponent's moves are visible, and it requires players to
make decisions quickly.
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Appendix D

Model Measures of Fit

This appendix introduces typical model measures-of-�t developed in hydrologic modeling
listed in Table D.1.

Table D.1: Summary of the variables used in the implementation of loss functions.

MOF Name Type Ideal
Value

Range

MAE Mean Absolute Error absolute measure 0 [0,∞)

MSE Mean Squared Error absolute measure 0 [0,∞)

RMSE Root Mean Squared Error absolute measure 0 [0,∞)

nRMSE Normalized RMSE absolute measure 0 [0,∞)

RSR RMSE standard deviation ra-
tio

absolute measure 0 [0,∞)

RSD Relative Standard Deviation supporting measure 1 (−∞,∞)

RMU Relative Mean supporting measure 1 (−∞,∞)

PBIAS Percent Bias supporting measure 0 (−100%, 100%)

R2 Coe�cient of Determination measure of linearity in simulated
vs. predicted

1 [0, 1]

bR2 Weighted R2 bias corrected R2 1 [0, 1]

NSE Nash-Sutcli�e E�ciency square di�erence measure of �t 1 (−∞, 1]

d Index of Agreement square di�erence measure of �t 1 [0, 1]

mNSE Modi�ed NSE sensitivity to peaks can be mod-
i�ed

1 (−∞, 1]

md Modi�ed d sensitivity to peaks can be mod-
i�ed

1 [0, 1]

rNSE Relative NSE sensitivity to peaks eliminated 1 (−∞, 1]

rd Relative d sensitivity to peaks eliminated 1 [0, 1]

KGE Kling-Gupta E�ciency relative importance of error
component made explicit

1 (−∞, 1]

VE Volumetric E�ciency volumes made important no
matter if it is in a peak or re-
cession

1 (−∞, 1]
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See Equations D.1 to D.8 where Y obs
i are the observed unimpaired �ows, and Y sim

i are
the predicted or simulated unimpaired �ows, and n is the number of observations.

MAE =

∑n
i=1

∣∣Y sim
i − Y obs

i

∣∣
n

(D.1)

MSE =

∑n
i=1

(
Y sim
i − Y obs

i

)2

n
(D.2)

RMSE =

√∑n
i=1

(
Y sim
i − Y obs

i

)2

n
(D.3)

nRMSE =
RMSE

MU obs

=

√∑n
i=1

(
Y sim
i − Y obs

i

)2

Y obs
(D.4)

RSR =
RMSE

σobs
=

√∑n
i=1

(
Y sim
i − Y obs

i

)2√∑n
i=1

(
Y obs
i − Y obs

)2
(D.5)

The MAE, MSE, RMSE, nRMSE, RSR, are absolute measures of error.

RSD =
σsim
σobs

=

√∑n
i=1

(
Y sim
i − Y sim

)2

√∑n
i=1

(
Y obs
i − Y obs

)2
(D.6)
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Y obs
i
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PBIAS =
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(
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)
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n
∑n

i=1 (Y obs
i )

(D.8)

The RSD, RMU, and PBIAS are additional supporting measures of error.

R2 =


∑n

i=1

(
Y obs
i − Y obs

)(
Y sim
i − Y sim

)
√∑n
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2

(D.9)
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R2 is insensitive to additive and proportional di�erence between model simulation and
observations. One can simply show that for a non-zero value of β0 and β1, if the predictions
follow a linear form, Y sim = β0 + β1Y

obs, the R2 equals one (Legates & McCabe Jr, 1999).
Therefore, for a proper model assessment, it is recommended that the slope of the predicted
vs. observed graph be reported or systematically included as in Equation D.10.

bR2 =

{
|b|R2 for b ≤ 1

|b|−1R2 for b > 1
(D.10)

By weighting R2 under or over predictions are quanti�ed together with the dynamics
which results in a more comprehensive re�ection of model results.

NSE = 1−
∑n

i=1

(
Y sim
i − Y obs

i

)2∑n
i=1

(
Y obs
i − Y obs

)2 (D.11)

A Nash-Sutcli�e E�ciency factor of lower than zero indicates that the mean value of
the observed time series would have been a better predictor than the model. The largest
disadvantage of the Nash-Sutcli�e E�ciency factor is the fact that the di�erences between
the observed and predicted values are calculated as squared values. As a result, larger values
in a time series are strongly overestimated whereas lower values are neglected (Legates &
McCabe Jr, 1999). For the quanti�cation of runo� predictions this leads to an overestima-
tion of the model performance during peak �ows and an underestimation during low �ow
conditions (Krause et al., 2005).

To reduce the problem of the squared di�erences and the resulting sensitivity to extreme
values the Nash-Sutcli�e E�ciency factor is often calculated with logarithmic values of Y sim

i

and Y obs
i . Through the logarithmic transformation of the runo� values the peaks are �attened

and the low �ows are kept more or less at the same level. As a result the in�uence of the low
�ow values is increased in comparison to the �ood peaks resulting in an increase in sensitivity
of ln(NSE) to systematic model over or under prediction (Krause et al., 2005).

d = 1−
∑n
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i
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md = 1−
∑n

i=1

∣∣Y sim
i − Y obs

i

∣∣j∑n
i=1

(∣∣∣Y sim
i − Y obs

∣∣∣+
∣∣∣Y obs
i − Y obs

∣∣∣)j , j ∈ N (D.14)
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For j=1, the overestimation of the �ood peaks in regular NSE is reduced signi�cantly
resulting in a better overall evaluation. j=3 is best for �ood modeling.

rNSE = 1−

∑n
i=1

(
Y sim
i − Y obs

i

Y obs
i

)2
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(
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Y obs
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As a result, an over or under prediction of higher values (i.e., peaks) has, in general, a
greater in�uence than those of lower values. Therefore, we can use relative values in the
regular NSE equations. These equations will not be sensitive to peaks at all.

KGE = 1−
√

(r − 1)2 + (β − 1)2 + (γ − 1)2,

r = Pearson′s r,

β =
Y sim

Y obs
,

γ =
Csim
v

Cobs
v

=

σsim

Y sim

σobs

Y obs

(D.17)

The Kling Gupta E�ciency (KGE) factor facilitates the analysis of the relative impor-
tance of its di�erent components: r, correlation and timing; β: magnitude and bias; and γ:
variability).

V E = 1−
∑n

i=1

∣∣Y sim
i − Y obs

i

∣∣∑n
i=1 (Y obs

i )
(D.18)

To solve the problems presented with reporting bias in hydrologic models, the Volumetric
E�ciency (VE) can be used. It is easy to calculate, and of treats every unit volume of water
the same as any other unit volume, whether it be delivered during slow recession or during
peak �ow (Criss & Winston, 2008).

In conclusion, the optimal benchmark will di�er for di�erent applications, which is why
so many benchmarks have been proposed in hydrology. It is especially critical when the
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model measure of �t it to be used as a loss function in a machine learning algorithm. These
discretionary choices tend to disappear when complex modeling is concerned. Therefore, the
criteria for decisions should be made explicit and known before modeling begins.

Moriasi et al. (2007) provides a table of general performance ratings for recommended
statistics for a monthly time step, useful for the modeling done in this dissertation D.3.

Table D.3: General performance ratings for recommended statistics for a monthly time step.
Reprinted from Moriasi et al., 2007.

Performance Rating RSR NSE PBIAS

Very good [0.0, 0.5] (0.75, 1.00] (−∞,±10)

Good (0.5, 0.6] (0.65, 0.75] [±10,±15)

Satisfactory (0.6, 0.7] (0.50, 0.65] [±15,±25)

Unsatisfactory (0.7,∞) (−∞, 0.50] [±25,∞)
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Appendix E

Code for Implementing Custom Loss

Functions

This appendix shows R code used for implementing custom loss functions in Chapter 3.
MSPE loss is de�ned as follows:

1 mspe ← f unc t i on ( y_true , y_pred ) {
2 K ← backend ( )
3 # added a 1 to y_true in the denominator , because d i v i d i ng by 0 i s a

problem . You can a l s o use a r e l u funct ion , or use a c l i p where the 0
va lue s get truncated . However , here , in the ca s e s where y_true=0, the
mspe func t i on turns in to a s imple mse .

4 mod_loss ← K$mean(K$pow( (K$ f l a t t e n ( y_pred )−K$ f l a t t e n ( y_true ) ) /K$ f l a t t e n (
y_true+1) , 2) )

5 re turn (mod_loss )
6 }

WLSE loss is de�ned as follows:

1 wlse ← f unc t i on ( y_true , y_pred , f lood_vect , alphad , betad , a lphaf , b e ta f ) {
2 alpha_vect ← i f e l s e ( f lood_vect==0, alphad , a lpha f )
3 beta_vect ← i f e l s e ( f lood_vect==0, betad , be ta f )
4 K ← backend ( )
5 alpha_vect_cte ← K$ constant ( alpha_vect , dtype= ' f l o a t 3 2 ' )
6 beta_vect_cte ← K$ constant ( beta_vect , dtype= ' f l o a t 3 2 ' )
7 alpha_loss ← K$ transpose ( alpha_vect_cte ) *K$ cas t (K$pow(K$minimum(0 , K$

f l a t t e n ( y_pred )−K$ f l a t t e n ( y_true ) ) , 2) , dtype= ' f l o a t 3 2 ' )
8 beta_loss ← K$ transpose ( beta_vect_cte ) *K$ cas t (K$pow(K$maximum(0 , K$ f l a t t e n

( y_pred )−K$ f l a t t e n ( y_true ) ) , 2) , dtype= ' f l o a t 3 2 ' )
9 mod_loss ← K$sum( alpha_loss + beta_loss ) *10^−6
10 re turn (mod_loss )
11 }

WLSE wrapper is de�ned as follows:

1 wlse_wrapper_stochast ic ← custom_metric ( "wlse " , f unc t i on ( y_true , y_pred ) {
wlse ( y_true , y_pred , f lood_vect=t r a i n s e t pv s [ , "FLOOD" ] , alphad=0.00001 ,
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betad=0.00005 , a lpha f =0.00005 , be ta f =0.00001) })

LINEXE loss is de�ned as follows:

1 l i n e x e ← f unc t i on ( y_true , y_pred , f lood_vect , phid , ph i f ) {
2 phi_vect ← i f e l s e ( f lood_vect==0, phid , ph i f )
3 K ← backend ( )
4 phi_vect_cte ← K$ constant ( phi_vect , dtype= ' f l o a t 3 2 ' )
5 exp_loss ← K$exp (K$ transpose ( phi_vect_cte ) *K$ cas t (K$ f l a t t e n (10^−6* ( y_true−

y_pred ) ) , dtype= ' f l o a t 3 2 ' ) )
6 l i n_ l o s s ← K$ transpose ( phi_vect_cte ) *K$ cas t (K$ f l a t t e n (10^−6* ( y_true−y_pred

) ) , dtype= ' f l o a t 3 2 ' ) + 1
7 mod_loss ← 10^6* (K$mean( exp_loss−l i n_ l o s s ) )
8 re turn (mod_loss )
9 }

LINEXE wrapper is de�ned as follows:

1 l inexe_wrapper_stochast ic ← custom_metric ( " l i n e x e " , f unc t i on ( y_true , y_pred )
{ l i n e x e ( y_true , y_pred , f lood_vect=t r a i n s e t pv s [ , "FLOOD" ] , phid=1.0 ,
ph i f =−1.5})

The NN model is speci�ed as follows:

1 nnmodel ← keras_model_sequential ( ) %>% # can use : " r e l u " , " s igmoid " , " softmax"
2 layer_dense ( un i t s =64, a c t i v a t i o n=" r e l u " , input_shape=dim( t r a i n s e t pv s )

[ [ 2 ] ] ) %>%
3 layer_dense ( un i t s =64, a c t i v a t i o n=" r e l u " ) %>%
4 layer_dense ( un i t s=1) # number o f outputs , here we j u s t want one

p r ed i c t i on

To compile the model and de�ne loss functions we have:

1 nnmodel %>%
2 compi le ( opt imize r="rmsprop" , l o s s =[ chosen from l o s s f unc t i on s de f ined

above ] , met r i c s=c ( "mae" ) )

Fitting is done with the following lines of code for symmetric losses:

1 nnmodel %>%
2 f i t ( t r a in s e tpv s , t r a i n s e t r v , epochs=100 , batch_size=25, verbose=1,

v a l i d a t i o n_sp l i t =0.2)

Fitting is done with the following lines of code for asymmetric losses:

1 nnmodel %>%
2 compi le ( opt imize r="rmsprop" , l o s s =[ chosen from wrappers de f ined above ] ,

met r i c s=c ( "mae" ) )
3 nnmodel %>%
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4 f i t ( t r a in s e tpv s , t r a i n s e t r v , epochs=1000 , batch_size=nrow ( t r a i n s e t pv s ) ,
s h u f f l e=FALSE, verbose=1)

Lastly, predictions come from the following lines of code:

1 p r ed i c t i o n s ← nnmodel %>% pred i c t ( t e s t s e t p v s )
2 # s in c e the output l ay e r was s p e c i f i e d to be un i t=1, no need to average the

r e sponse s
3 p r ed i c t i o n s ← p r ed i c t i o n s [ , 1 ]
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Statistical Learning for Unimpaired Flow Prediction in Ungauged Basins

Abstract

All science is the search for unity in hidden likeness (Bronowski, 1988). There are two
practical reasons to approximate processes that produce such hidden likeness: (1) prediction
for interpolation or extrapolation to unknown (often future) situations; and (2) inference
to understand how variables are connected or how change in one a�ects others. Statistical
learning tools aid prediction and at times inference. In recent years, rapidly growing comput-
ing power, the advent of machine learning algorithms, and more user-friendly programming
languages (e.g., R and Python) support applying statistical learning methods to broader
societal problems.

This dissertation develops statistical learning models, generally simpler than mechanistic
models, to predict unimpaired �ows of California basins from available data. Unimpaired
�ow is the �ow produced by the basin in its current state, but without human-created or op-
erated water storage, diversion, or return �ows (California Department of Water Resources,
Bay-Delta O�ce, 2016). The models predict unimpaired �ows for ungauged basins, an Inter-
national Association of Hydrological Sciences �grand challenge� in hydrology. In Predicting
Ungauged Basins (PUB), the models learn from information at gauged points on a river and
extrapolate to ungauged locations.

Several issues arise in this prediction problem: (1) How we view hydrology and how we
de�ne observational units determine how data is pre-processed for statistical learning meth-
ods. So, one issue is in deciding the organization of the data (e.g., aggregate vs. incremental
basins). Such data transformation or pre-processing is explored in Chapter 2. (2) Often,
water resources problems are not concerned with accurately predicting the expectation (or
mean) of a distribution but require better estimates of extreme values of the distribution
(e.g., �oods and droughts). Solving this problem involves de�ning asymmetric loss functions,
which is presented in Chapter 3. (3) Hydrologic observations have inherent dependencies and
correlation structure; gauge data are structured in time and space, and rivers form a network
of �ows that feed into one another (i.e., temporal, spatial, and hierarchical autocorrelation).
These characteristics require careful construction of resampling techniques for model error
estimation, which is discussed in Chapter 4. (4) Non-stationarity due to climate change may
require adjustments to statistical models, especially for long-term decision-making. Chapter
5 compares unimpaired �ow predictions from a statistical model that uses climate variables
representing future hydrology to projections from climate models.

These issues make Predicting Ungauged Basins (PUB) a non-trivial problem for statis-
tical learning methods operating with no a priori knowledge of the system. Compared to
physical or semi-physical models, statistical learning models learn from the data itself, with
no assumptions on underlying processes. Their advantages lie in their fast and easy develop-
ment, simplicity of use, lesser data requirements, good performance, and �exibility in model
structure and parameter speci�cations. In the past two decades, more sophisticated statis-
tical learning models have been applied to rainfall-runo� modeling. However, with these



methods, there are issues such as the danger of over�tting, their lack of justi�cation outside
the range of underlying data sets, complexity in model structure, and limitations from the
nature of the algorithms deployed.
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