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Abstract

Predicting Unimpaired Flow in Ungauged Basins:
“Random Forests” Applied to California Streams

Predicting and forecasting streamflow at ungauged sites is a grand challenge for hydrology

(Sivapalan et al., 2003). Such predictions are needed for improved streamflow restoration,

flood and drought forecasting, and reservoir release decisions. Traditional hydrologic models

are mechanistic; they require a set of system characteristics such as, basin geometry, channel

slope, and climate conditions, and they use physics-based governing equations for fluid flow

to predict runoff. An alternative approach is to use statistical models to predict water flows

from climate and basin characteristics. Such models are easy to construct, run fast, and

require little expert intervention in calibrating or tweaking parameters, but they have not

been widely used in hydrology. This study used Random Forest (RF) models, a regression-

tree based statistical learning algorithm, to model monthly unimpaired flows in 69 California

basins. The test set error (Coefficient of Determination, R2=0.69, Nash-Sutcliffe Efficiency,

NSE=0.74) from cross-validation reflects the models ability to capture the variations in flow

at a monthly resolution. Next, All predictor variables were ranked based on their relative

importance (i.e., contribution to reducing the prediction errors). The most important vari-

ables were: precipitation, basin drainage area, precipitation lagged one month, month, and

basin relief ratio. The RF model was benchmarked against the Basin Characterization Model

(BCM), a mechanistic model, and a Linear Multivariate Regression (LMR) model with the

same predictor variables as that of the RF model. The RF model out-performs the LMR,

but falls short of the BCM. The RF model quality in predicting unimpaired flow was highly

spatially variable. Model improvement strategies are discussed.

Keywords: statistical learning models; Random Forest; hydrologic prediction; ungauged

basins; watershed management
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Chapter 1

Introduction

We are drowning in data and starving for knowledge

John Naisbitt, “Megatrends”, 1982

1.1 Background
Our ability to extract insights from large diverse datasets has rapidly improved with growing
computing power and sophisticated algorithms. The term “statistical learning” has emerged
to provide a framework that includes simple linear regression and complex algorithmic meth-
ods (James et al., 2013). A main contribution of this field is the development of modeling
techniques that allow for the semi-automatic creation of complex models, with many inter-
acting predictor variables, which are not overfit, and predict well.

These developments allow for more accurate and flexible empirical models to manage
complex systems. For example, in hydrology, runoff formation processes are highly variable,
non-linear, and spatially heterogeneous, which creates a challenge for predicting processes
such as streamflow (Dooge, 1986).

Hydrologic models can be classified as mechanistic (physical process-based) or empiri-
cal (statistical) (Guisan & Zimmermann, 2000). Each approach sacrifices some generality,
realism, cost, and precision for better understanding, predicting, and managing natural re-
sources (Levins, 1966; Klemes, 1982). Hydrologists often develop mechanistic models to
capture complex runoff processes. Such models require considerable effort to collect input
field data and calibration to obtain basin-specific parameters (Singh & Frevert, 2005). As
mechanistic models increase in complexity, it is unclear if hydrologic predictions improve
commensurately (Beven, 2011). Without a unifying approach across these various models,
and considering the increasing availability of environmental data, there is merit in the more
economical predictive power of empirical models.

Initial empirical studies have explored the prediction of streamflow in data-scarce regions
(Shortridge et al., 2016), the prediction of streamflow to fill in the gaps in the gauge record
(Petty & Dhingra, 2017), the prediction of natural flow in the headwaters of California
basins (Carlisle et al., 2010), and the prediction of natural flow of California streams in dry
months (Magnuson-Skeels, 2016). These methods can also be applied to hydrologic predic-
tion with climate changed parameters to assess water supply vulnerability; they can provide
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Figure 1.1: Unimpaired flow is calculated by adding back in diversions, subtracting imports,
accounting for change in storage and evaporation caused by the reservoir.

opportunities for sensitivity and probabilistic analysis by providing a range of estimates.

1.2 Unimpaired Flow
This study investigates the relationships between the response variable: “unimpaired flow”
and the predictor variables: climate and basin characteristics. Before continuing, it is useful
to know how unimpaired flow is defined. Unimpaired flow is the flow that is produced by
the basin in its current state, but, without dams and diversions (California Department of
Water Resources, Bay-Delta Office, 2016). Unimpaired flow calculations are used mostly in
California, where dams have created major changes to the natural flow regime. It is often
calculated by a simple accounting of water in the system (Figure 1.1 and Equation 1.1).

quf = qout − qimp + qdiv + ∆S + qevap (1.1)

Where quf is unimpaired flow, qout is observed guage data, qimp is imported flows, qdiv is
diverted flows, ∆S is the change in storage, and qevap is the evaporation out of the system.

In contrast, “natural flow” is the runoff produced by a basin in its pre-development state
prior to any human alterations (Poff et al., 1997). The differences between unimpaired flow
and natural flows are usually driven by effects of levees, upland land use, wetlands, and
groundwater. This study, however, is only concerned with unimpaired flow; the models are
built with unimpaired flow data from the California Data Exchange Center (CDEC), and
the predictor variables are taken from various sources discussed in Chapter 3.

1.3 Research Questions
Predicting and forecasting streamflow at ungauged sites is a grand challenge for hydrology
(Sivapalan et al., 2003). Such predictions serve as input in many water management models
and are needed for improved streamflow restoration, flood and drought forecasting, and
reservoir release decisions. In this study, a statistical learning model predicts the unimpaired
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flow of California basins on a monthly time step. This report will address the following
questions:

1. What is the relative importance of predictor variables that contribute to unimpaired
flow predictions?

2. How accurate are the statistical learning model’s predictions, and how does the accu-
racy vary?

3. Can statistical learning models give better streamflow predictions compared to mech-
anistic models?

1.4 Limitations & Assumptions
Klemes (1982) warns modelers of the general limitations of empirical modeling, the most
important being: 1) In search of “better calculus”, the modeler may be in danger of over-
fitting (i.e., regarding part of the noise in the data as information); 2) Empirical models
must be regarded as interpolation formulas, and so, they have no justification outside the
range of the underlying datasets (Klemes, 1982). Faced with climate change imposing non-
stationarity on environmental variables like precipitation and temperature, empirical models
for flow should not be used to extrapolate beyond the limits of the variables the model ob-
serves or it will run the risk of large errors; 3) Another drawback is the complexity in model
structure, especially in ensemble statistical learning methods, which are sometimes referred
to as black-box models.

The models in this study were fitted with data on the California Sierra Nevada moun-
tainous basins, as well as some coastal, and southern California basins (Chapter 3.3). These
training data sets more or less span the same hydrologic region (United States Geological
Survey Region No. 18). As such, the model will not be applicable to basins outside this
spatial range.

Another limitation is due to the structural nature of the Random Forest Algorithm.
Chapter 3 discusses how regression-based Random Forest models make predictions by aver-
aging predictions made by multiple regression trees. Therefore, the ensemble model limits
the predictions it makes to the range seen in the training data; in other words, the predictions
do not extrapolate to ranges not seen in the training data. In fact, the averaging dampens
the density function when we compare the observed to the predicted data (Figure 4.2).

Furthermore, this method assumes stationarity in the response variable: unimpaired flow.
Given the relatively short gauge records in this study, this assumption is not too egregious.
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Chapter 2

Literature Review

Our responsibility is to do what we can, learn what we can,
improve the solutions, and pass them on.

Richard P. Feynman, “What Do You Care What Other People
Think?”, 1988

2.1 Background in Hydrological Modeling
Since the mid-19th century, with the employment of the “rational method”, empirical re-
lationships have been used in rainfall-runoff modeling (Beven, 2011). According to Todini
(1988), engineers developed the rational method in response to problems in which the design
discharge was of major concern (i.e., urban sewer, land reclamation drainage systems, and
reservoir spillway design). This method, based on the concept of concentration time, calcu-
lates runoff by simply multiplying a runoff coefficient by rainfall intensity and the basin’s
drainage area. It proved only applicable to small or mountainous catchments where the
rainfall duration does normally exceed the concentration time–the time it takes to reach the
maximum discharge of a basin.

To address more complexities in rainfall duration, basin size, and non-uniform charac-
teristics, other methods emerged: in the 1930s, the “unit hydrograph method” materialized;
in the 1950s, mathematical techniques such as Z, Laplace or Fourier transforms led to the
derivation of the response function from the analysis of input and output data; in the 1960s,
grander approaches emerged to model the physical processes of the hydrologic cycle. Mod-
els increasing in complexity over time and lacking a one-to-one relationship between model
and reality (e.g., unrealistic parameter estimates) have led researcher to other ambitious
modeling efforts (Todini, 1988).

In the past two decades, complex statistical learning models, here referred to as “machine
learning”, have been applied to rainfall-runoff modeling. In juxtaposition with physical or
semi-physical models, machine learning models learn from the data itself, with no assump-
tions as to the underlying process. As Solomatine and Ostfeld (2008) explains, most ma-
chine learning techniques that are applied to the rainfall-runoff problem use neural networks
(Minns & Hall, 1996; Dawson & Wilby, 1998; Tokar & Johnson, 1999; Hsu et al., 2002; Hu
et al., 2007; Abrahart et al., 2007; Govindaraju & Rao, 2013). Other studies use support
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vector machines (Asefa et al., 2006; Lin et al., 2006), and tree based algorithms (Iorgulescu
& Beven, 2004; Galelli & Castelletti, 2013; Magnuson-Skeels, 2016).

The wide range of models employed may suggest that no one single modeling method is
useful across all locations, timescales, and problems. The essential arbitrariness in the se-
lection of the form of an empirical model is one of empirical modeling’s drawbacks (Klemes,
1982). Most studies report using one modeling method, which perhaps suggests that re-
searchers are not employing more than one modeling method. Similarly, the application and
comparison of different machine learning models to the ungauged basin problem was not
considered in this study. Such a study could provide insights into the system by revealing
the sensitivity of results to the algorithms employed. Alternatively, this study does bench-
mark the Random Forest model against a mechanistic, and a linear multivariate regression
model.

2.2 Considerations for Empirical Modeling

Cross Validation
Most studies ignore the spatial or temporal structure in the data when devising a cross-
validation strategy. When validation data are randomly selected from the entire spatial
domain, training and validation data from nearby locations will be dependent (due to spatial
autocorrelation). Therefore, if the objective is to project outside the spatial structure of the
training data (e.g., to an ungauged basin), error estimates from random cross-validations
will be overly optimistic (Roberts et al., 2017). The studies, in which a random test-train
split is considered, are most appropriate for predicting flow for a sparsely incomplete gauge
record, and the studies, in which holding out blocks of data in time is considered the cross-
validation strategy, are most appropriate for predicting streamflow in time for that location.
One should not expect to use these cross-validation strategies and get the same predictive
accuracy in a purely ungauged basin problem, where blocks are supposed to be designed
across geographic space. Adding to the complexity, here, the correlation structure in the
gauge data is more complicated than merely proximity of the gauges (i.e., two gauges may
be close in proximity but be fed by two different basins and therefore not as correlated as
gauges on the same river). A blocking cross validation strategy, like the leave-one-group-out
cross-validation (LOGOCV) method explained in Chapter 3, is most appropriate for a study
that intends to model the response variable in locations for which no data was observed.

Spatial Autocorrelation
Most studies fail to examine the spatial autocorrelation of the errors produced by the model;
as such, inferential results can be biased. Either including additional predictor variables,
or choosing a different functional form has to be considered if a strong autocorrelation
is detected in a model. The problem of inference cannot be diagnosed without explicitly
checking for the spatial variability of the residuals, which are supposed to be independent
and not correlated. A simple visual check or a formal test of the significance of Moran’s I or
Geary’s C can help in this regard.
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Chapter 3

Methods

All science is the search for unity in hidden likeness.

Jacob Bronowski, “The Nature of Scientific Reasoning”, 1972

3.1 Model Selection
The choice of a suitable model relies on striking the desired balance between three model
properties: generality, reality, and precision. Model selection shouldn’t solely rely on statis-
tics; some models better reflect physical foundations in hydrology, and conceptual consid-
erations need to include the desired level of trade-off between optimizing accuracy versus
optimizing generality (Guisan & Zimmermann, 2000). Unfortunately, no guide to empirical
model selection exists in hydrology.

Trees generally do not have the same level of predictive accuracy as some of the other
regression and classification approaches (James et al., 2013). However, in recent years,
the popularity of tree learning methods (notably, Random Forest) has increased strongly,
possibly due to the following advantages:

• Decision trees can handle different variable types (quantitative, ordered, categorical or
a mix) (James et al., 2013).

• Decision trees can handle complex relationships between the predictor and response
variables, without any a priori assumption; they can have strong nonlinear relationships
with high order interactions (James et al., 2013).

• Decision trees intrinsically implement feature selection, making them somewhat robust
to irrelevant or noisy variables (Louppe, 2014).

• Decision trees are robust to outliers or errors in the data (Louppe, 2014).

• Due to the Law of Large Numbers, which states that as the number of trees in the forest
increases, the actual ratio of predictions will converge on the theoretical, or expected,
ratio of predictions, Random Forest models are effective in prediction. Injecting the
right kind of randomness makes them accurate classifiers and regressors (Breiman,
2001).
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• A select few trees in the Random Forest model can be displayed graphically, which
make it easier to explain to non-expert users.

• The strength of the individual predictors and their correlations give insight into the
ability of the Random Forest model to predict (Breiman, 2001), and “Partial De-
pendence Plots” can provide further information making Random Forest models a
semi-black-box model.

Given these advantages and due to their ease of application and understanding, Random
Forest models are developed in this study.

3.2 Model Development
All data processing and model development for this study was done in R, a statistical pro-
gramming language, (R Core Team, 2017), and used the following packages: sp (Pebesma
& Bivand, 2005; R. S. Bivand et al., 2013), raster (Hijmans, 2016), rgeos (R. Bivand &
Rundel, 2017), rgdal (R. Bivand et al., 2017), dismo (Hijmans et al., 2017), geosphere

(Hijmans, 2017), and randomForest (Liaw & Wiener, 2002).
Model development followed the steps depicted in Figure 3.1. First, the test and training

dataset was split randomly (20/80 split) to get the optimal value of the model parameters
and a first cut at the variable importance list. The tuning parameters gleaned from the
first step were then applied to the models developed next: the “ungauged basin” problem.
Here, a different test-train splitting method was applied: the leave-one-group-out cross-
validation (LOGOCV) method, which effectively replicates the ungauged basins problem.
In this method, the data for the basin to be modeled was left out of the training data and
becomes the test set. The training data is then the data from all the other basins. This
process was repeated for all basins in the study. Therefore, for model evaluation purposes,
one Random Forest model exists for each basin. With the developed models and the test
set, we calculated model measures of fit: the Absolute Error (AE), Relative Error (RE),
Root Mean Square Error (RMSE), RMSE standard deviation ratio (RSR), Coefficient of
Determination (R2), Nash-Sutcliffe Efficiency (NSE), and Percent Bias (PBIAS) (Equations
3.1 to 3.7).

AE = Y sim
i − Y obs

i (3.1)

RE = 2 ∗ Y
sim
i − Y obs

i

Y sim
i + Y obs

i

(3.2)

RMSE =

√∑n
i=1

(
Y sim
i − Y obs

i

)2
n

(3.3)

RSR =
RMSE

STDEV obs

=

√∑n
i=1

(
Y sim
i − Y obs

i

)2√∑n
i=1

(
Y obs
i − Y obs

i

)2 (3.4)
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Figure 3.1: Research design.

R2 =

∑n
i=1

(
Y sim
i − Y obs

i

)2
∑n

i=1

(
Y obs
i − Y obs

i

)2 (3.5)

NSE = 1 −
∑n

i=1

(
Y sim
i − Y obs

i

)2∑n
i=1

(
Y obs
i − Y obs

i

)2 (3.6)

PBIAS =

∑n
i=1

(
Y obs
i − Y sim

i

)
∗ 100

n
∑n

i=1 Y
obs
i

(3.7)

Where Y obs
i are the observed unimpaired flows, and Y sim

i are the predicted or simulated
unimpaired flows, and n is the number of observations.

3.3 Study Area & Response Variable
This study used the monthly unimpaired flows dataset developed and maintained by the
California Data Exchange Center (CDEC). The data spans 69 California basins (Figure 3.2)
from 1982 to 2014. It can be downloaded with the sharpshootR package in R (Beaudette,
2016). It has approximately 18,500 monthly streamflow observations in acre-feet (AF) and
as a continuous variable can be used for regression type studies (Figure 3.3, and Appendix
A).
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(a) The cumulative distribution function. (b) The cumulative distribution function in log
space.

Figure 3.3: Distributions of the response variable: approximately 18,500 unimpaired flows
in acre-feet (AF).

3.4 Predictor Variables
Predictor attributes were calculated for each observation point (Table 3.1). A total of 28 pre-
dictor variables were selected based on the knowledge of basin characteristics and processes
that influence a watershed’s response to precipitation: evaporation (temperature); snowfall
(cumulative sum of precipitation below 2◦C); storage in soil (with soil and land cover pa-
rameters); antecedent conditions (with lagged precipitation and temperature parameters);
and groundwater processes (with geology and depth to restricted layer).

The climate data were derived from the Parameter elevation Regression on Independent
Slopes Model (PRISM) dataset, which contains gridded rasters for the continental United
States at 4km resolution from 1891 to 2014. The temperature variable and its lagged
forms are the basin averaged PRISM tmean variable, which in turn was calculated by the
mean of the monthly minimum temperatures and the monthly maximum temperatures. The
precipitation variable and its lagged forms are the basin averaged PRISM ppt variable,
which is a measure of total precipitation (rain and snow).

Low flows in some Sierra Nevada basins exhibit a “memory” effect in which they depend
on the current and previous year’s snowpack (Godsey et al., 2014). Since we did not want
to include 24 lagged precipitation parameters in the Random Forest model, we developed
a snow variable. The snow variable was the cumulative sum of precipitation, starting in
October of each water year, for temperatures under 2◦C.

Basin shape can affect the peak discharge; peak discharge for a circular basin arrives
sooner than for an elongated basin of the same area. Because of how the tributary network
in a circular basin is organized, the flows in a circular basin enter the main stem at roughly the
same time, so more runoff is delivered to the outlet together, sooner. In an elongated basin,
because of the mismatch in timing, peak runoff is more attenuated, except for some slow
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moving streams. The shape parameter, calculated by basin length divided by basin width,
and the compactness parameter, calculated by basin area divided by (basin perimeter)2,
account for this phenomenon. Although, this phenomenon is more pronounced in runoff on
a smaller time step, we included these parameters in the final model to see their rankings in
the variable importance list.

Basin hypsometric information was derived from the Shuttle Radar Topography Mission
(SRTM) 90m model, which is a gridded raster of static elevation at a 3arc−second resolution.
The vertical error of the model is reported to be less than 16m. The mean basin elevation
and basin relief ratio parameters (Pike & Wilson, 1971) were calculated from this dataset.
Basin relief ratio is calculated by the difference in maximum and minimum elevations divided
by basin length.

Soil properties were derived from the POLARIS dataset, a Soil Survey Geographic
Database (SSURGO) processed dataset at a 3arc − second resolution. Percent clay, silt,
and sand, saturated hydraulic conductivity, lambda and n pore size, available water
content, and depth to restricted layer information was averaged for each basin.

The land cover property was derived from the California Vegetation (CALVEG) dataset,
which includes the following land cover types: urban (URB), barren (BAR), shrub (SHB),
conifers (CON), hardwoods (HDW), water (WAT), mix (MIX) and agriculture (AGR). The
percent vegetated parameter, is the percent of land in a basin that is not covered by
URB, BAR, and WAT. The dominant basin geology parameter taken from the Natural
Resources Conservation Service (NRCS) dataset rocktype2 variable. Here, the percent of
basin area in each rock type category was calculated and the dominant class is preserved.

Table 3.1: Summary of the variables used in the implementation of the Random Forest
model.

Type Variable Description Source

Response Unimpaired
Flow

monthly estimated unimpaired flows, in AF CDEC
(Beaudette,
2016)

Time Month categorical: Jan, Feb, ..., Dec -

Ordinal Month numerical distance till June: Jan:6, Feb:5, ..., Dec:6

Season categorical: Fall, Winter, Spring, Summer

Year numeric

Climate Temperature,
Lag 1, 2 and 3
Months

temperature and lagged monthly temperature, in ◦C PRISM
(Edmund,
2015)

Precipitation,
Lag 1, 2 and 3
Months

precipitation and lagged monthly precipitation, in
mm

Snow cumulative precipitation of the same water year for
temperatures bellow 2 ◦C, in mm

Hypsometric Relief Ratio (max(elev) - min(elev))/ basin length in, m/m SRTM90
(Jarvis et al.,
2008)

Mean Elevation mean basin elevation, in m
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Type Variable Description Source

Basin
Boundaries

Area basin drainage area, in m2 NHD2PLUS
(McKay et al.,
2012)

Shape basin length/basin width, in m/m

Compactness basin area/(basin perimeter)2, in m2/m2

Soil % Clay percent clay in surface layer, in % POLARIS
(Chaney et
al., 2016)

% Silt percent silt in surface layer, in %

% Sand percent sand in surface layer, in %

Sat. Hydraulic
Conductivity

hydrologic conductivity of surface layer, in cm/hr

Lambda pore size distribution index (brooks-corey)

N measure of the pore size distribution (van genuchten)

Available water
content

, in m3/m3

Land Cover Vegetated Percent of area in the basin vegetated in % CALVEG
(Forest Ser-
vice, USDA,
Pacific South-
west Region,
2006)

Ground Wa-
ter

Dominant Geol-
ogy

dominant rock type in basin, categorical NRCS (NRCS,
USDA, 2006)

Depth to Re-
stricted Layer

in cm POLARIS
(Chaney et
al., 2016)

Before developing the machine learning model we inspected the cross correlation of the
predictor variables (Figure 3.4) and their correlation with monthly average flow (Figure 3.5).
As expected the drainage area of a basin and precipitation are more positively correlated with
monthly unimpaired flow. These variables should become important in the Random Forest
model. Also, the partial correlations of predictor variables with flow showed that most of the
information content lies within drainage area, precipitation, and some measures of infiltration
(i.e., lambda pore size, n pore size, and saturated hydraulic conductivity). The correlated
variables were not removed from the Random Forest model, because, in such models the
dimensionality of a problem is not a concern, and Random Forests intrinsically implement
feature selection, making them somewhat robust to multi-collinearity in the variables. As
explained in Chapter 3.5, the mtry input parameter is designed to have a diversifying effect
on the estimates of multiple trees, and it effectively decorrelates the trees.

3.5 Tree Building Algorithms
Regression and classification trees are used for predicting continuous and categorical data,
respectively. Classification and Regression Trees (CARTs) involve stratifying or segmenting
the predictor space, into a number of regions, using a series of if-then statements (Figure
3.6). At each internal node in the tree, a test is made to one of the inputs. Depending
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Figure 3.4: Correlation matrix of predictor variables showing groupings in the dataset.

on the outcome of the test (or split rule), the algorithm goes to either the left or the right
sub-branch of the tree. Eventually the algorithm arrives at a terminal node, which contains
a prediction. The prediction for a given observation is the mean or the mode of the training
observations in the region to which it belongs (Breiman et al., 1984).

In essence, tree building algorithms are a series of split rules. The split rule is found using
a greedy top-down search for recursively splitting of the data into binary partitions. It is
greedy, because, the split rule at each internal node is selected to maximize the homogeneity
of its child nodes, without consideration of nodes further down the tree, yielding only locally
optimal trees (Grubinger et al., 2011). For regression trees, the mean of all the observation
points that fall within a branch is considered the prediction of that branch in the tree. The
best tree is one which has the minimum test error rate calculated by the Residual Sum of
Squares (RSS).

Since trees have a finite number of terminal nodes (CARTs are pruned based on a com-
plexity parameter, α), the prediction of these methods are discrete, and therefore, not par-
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(a) Pearson’s Correlation (b) Partial Correlations

Figure 3.5: Correlation of predictor variables with monthly flow volumes. Drainage area and
precipitation correlate the most with flow.

Figure 3.6: An example CART. In Random Forests multiple CARTs are built with random-
ization applied to the training data and the predictor variables to split on.
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ticularly suited to modeling a continuous variable. However, CARTs main problem is the
model’s high variance; trees grown on different subsets of the training set will produce differ-
ent predictions. This phenomenon is one of the major drawbacks of CARTs. Methods such
as bagging (Breiman, 1996), random forests (Breiman, 2001), boosting (Friedman, 2001) and
bumping (Grubinger et al., 2010) attempt to improve the prediction accuracy of trees with
the idea that combining and averaging trees reduces variance.

A Random Forest consists of an assemblage of unpruned CART models. Each CART
model is different because it is grown on: 1) a new training set: in each bootstrap training
set, about one-third of the instances are left out; and 2) using random feature selection:
each time a split in a tree is considered, a random sample of predictors is chosen as split
candidates from the full set of predictors. This process de-correlates the trees. Suppose there
is one very strong predictor in the dataset, along with other moderately strong predictors.
Then, in the collection of trees, most or all trees will use this strong predictor in the top
split. Consequently, all trees will look quite similar. So, the predictions from the trees will be
highly correlated. However, by forcing each split to consider only a subset of the predictors
makes the resulting trees less variable and more reliable (James et al., 2013). This strategy,
using a random selection of features to split each node, introduces some randomness that
improves the accuracy of the predictions of the trees as a whole and yields error rates that
are robust with respect to noise (Breiman, 2001).

Estimates of Input Parameters for the Random Forest Model
The randomForest library, written by Liaw and Wiener (2002), constructs Random Forest
models using the randomForest function. This function takes in tuning parameters such as
mtry, ntree, sampsize, and maxnodes:

mtry: In Random Forest models, internal estimates monitor error, strength and corre-
lation, which are used to show the response to increasing the number of features used in
the splitting (Figure 3.7a). Here, this parameter was set to 18 out of the full 28 predictor
variables available.

ntree: The generalization error of a forest of trees depends on the strength of the in-
dividual trees in the forest and the correlation between them (Breiman, 2001). This error
converges to a limit as the number of trees in the forest increases (Figure 3.7b). Here, the
number of trees was set to 250.

sampsize: In Random Forest models, the trees are built on a bootstrap sample of the
training data, a sample equal in size to the original dataset, but selected with replacement.
Therefore, some rows are not selected, and others are selected more than once. Here, the
sample size is set to the default value: length of training set.

maxnodes: Using the maximum number of terminal nodes, the user can “prune” the trees
back to a smaller version of itself. Here, we used the default value, which is a function of
nodesize or the allowed minimum number of observations in each node. The default value
for nodesize is 5.

These parameters can be fixed by the user or optimized. The benefit of optimizing the
parameters become evident when overfitting is concerned (Breiman, 2001). Figure 3.8 shows
that, with the exception of mtry, the optimal parameters are the default parameters for this
study.
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(a) Based on the out-of-bag-error estimate, the
optimal value of mtry is 18.

(b) The optimal value of ntree is approximately
150 or more.

Figure 3.7: Tuning parameters to consider before building the Random Forest model: mtry
and ntree. mtry is the number of random subset of parameters to use when building the split
rule at each node, and ntree is the number of trees to include in an Random Forest model,
in order to achieve stability in the predictions of unimpaired flow.

Figure 3.8: Optimal tuning parameters in the Random Forest model predicting unimpaired
flow. Reducing sampsize and increasing maxnodes increases the error of the model. The
optimal parameters are default parameters.
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Figure 3.9: Variable importance of the Random Forest model predicting unimpaired flow.
The variables that most contributed to the reduction in prediction error are precipitation,
basin drainage area, precipitation lagged one month, month, and basin relief ratio.

Variable Importance
In building Random Forest models, internal estimates are used to measure variable impor-
tance (Figure 3.9). These estimates answer the first research question: “What is the relative
importance of predictor variables that contribute to unimpaired flow predictions?”. The
variable importance list shows how much each variable that explains unimpaired flow (e.g.,
basin size, shape, topography, and soil properties) improves the model’s predictive capabili-
ties (i.e., node purity or goodness-of-fit). Moreover, the variable importance list can serve as
a guide for parameter selection and accuracy for modeling runoff processes in other studies.

Models used to benchmark the Random Forest model are explained in the following
sections.

3.6 Linear Multivariate Regression
A regression with more than one explanatory variable is called a multiple regression. In
contrast to simple linear regression where the mean is modeled as a straight line, it is
now modeled as a function of several predictor variables (Equation 3.8). These predictor
variables can be continuous (e.g., precipitation), discrete (e.g., ordinal month) or categorical
(e.g., dominant geology).

Y obs
i = β0 + β1X1i + β2X2i + · · · + βiXki + εi i = 1, · · · , k (3.8)

Where βi, the partial regression coefficient, is the change in mean for Y obs
i when variable Xi

increases by 1 unit, while holding the k− 1 remaining independent variables constant. This
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is also referred to as the slope of Y obs
i with variable Xi holding the other predictors constant.

Given the model, the fitted values can be estimated by Equation 3.9.

Y sim
i = β0 + β1X1i + β2X2i + · · · + βiXki (3.9)

The unknown parameters in Equation 3.8 and 3.9 are: β0, the overall mean, and βk, the
regression coefficients. To find the best fit, much like simple linear regression, we need to es-
timate the unknown parameters by minimizing the residual sum of squares (RSS) (Equations
3.10 and 3.11).

εi = Y obs
i − Y sim

i (3.10)

RSS =
n∑

i=1

e2i

=
n∑

i=1

(Y obs
i − Y sim

i )2

=
n∑

i=1

(Y obs
i − β0 + β1X1i + β2X2i + · · · + βiXki)

(3.11)

The lm() function in R constructs linear multivariate regression models. This model was
built with the same predictor variables explained in Chapter 3.4 and the same method as
explained in Chapter 3.2.

3.7 Basin Characterization Model
The California Basin Characterization Model (Flint et al., 2013) applies a monthly regional
water-balance model to simulate hydrologic responses of some California basins including
those that drain into the state. The model was developed at a 270m spatial resolution,
using monthly data. It mechanistically models the pathways of precipitation into evapo-
transpiration, infiltration into soils, runoff, or percolation below the root zone to recharge
groundwater. The evapotranspiration component is derived through the use of potential
evapotranspiration equations that rely on the calculation of solar radiation using slope, as-
pect, topographic shading, and atmospheric parameters. The soil storage component of
the model uses soil properties to calculate how much soil moisture is available for plant
evapotranspiration. Soil storage is independent from the other hydrologic dynamics, except
that groundwater recharge, calculated as infiltration below the zone of evapotranspiration,
is calculated only from surplus, after soil moisture capacity has been filled. Groundwater
recharge is also tied to runoff, and the relationship between the two is driven by the level of
permeability of bedrock. Model outputs are calculated for each grid cell, allowing results to
be summarized for a variety of planning units including hillslopes, watersheds, ecoregions,
or political boundaries (Flint et al., 2013).

Parameters in the model have been calibrated using a total of 159 relatively unimpaired
watersheds for the California region. As a result of calibration, predicted basin discharge
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closely matches measured data for validation watersheds. The model’s recharge and runoff
estimates, combined with estimates of snowpack and timing of snowmelt, provide a basis for
assessing variations in water availability. This great modeling effort has been supported by
numerous federal, state, and local agencies, and international organizations.
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Chapter 4

Results

The Universe is under no obligation to make sense to you.

Neil deGrasse Tyson, “Astrophysics for People in a Hurry”, 2017

The test data is run through the trees in the Random Forest model. Figure 4.1 shows
the predicted versus observed values in normal and log space for the combined test sets.
Appendix B shows this plot disaggregated by basin. These plots show that the model is
over-predicting low flows and under-predicting high flows.

Also, when comparing the probability density’s of the observed and predicted unim-
paired flows, we see the averaging of predictions made by trees in the Random Forest model
dampening the probability density of unimpaired flow (Figure 4.2).

(a) Predicted vs. observed. (b) Predicted vs. observed in log space.

Figure 4.1: Predicted vs. observed on the test set for all basins combined. Model results
show the over-prediction of low flows and the under-prediction of high flows.
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Figure 4.2: The probability density function shows a dampening effect produced by averaging
predictions to arrive at an ensemble prediction.

4.1 Model Evaluation
Here, we answer the second research question: “How accurate are the statistical learning
model’s predictions, and how does the accuracy vary?”. To get a numerical estimate of the
model’s performance, any statistical measure of model fit can be applied. In the combined
test set, the Random Forest model performed as follows:

• Mean Absolute Error (AE): 1,700 AF

• Mean Relative Error (RE): 0.52

• Root Mean Square Error (RMSE): 123,000 AF/month

• RMSE standard deviation ratio (RSR): 0.51

• Coefficient of Determination (R2): 0.69

• Nash-Sutcliffe Efficiency (NSE): 0.74

• Mean Percent Bias (PBIAS): 0.05 %.

According to Moriasi et al. (2007), the performances in RSR and NSE constitute a “good”
model evaluation. Appendix C gives a detailed breakdown of these model performance
metrics by basin.

21



(a) Coefficient of Determination (R2) (b) Nash-Sutcliffe Efficiency (NSE)

(c) Root Mean Square Error (RMSE) (d) RMSE standard deviation ratio (RSR)

(e) Absolute Error (AE) (f) Relative Error (RE)

Figure 4.3: The Random Forest model developed here is most suited to modeling higher
flows, which typically occur in larger basins.

4.2 Model Error for Various Categories
Calculating the measures of model fit for various categories shown in Figure 4.3, can help
diagnose problem areas in the model. For our purposes, basins with drainage areas smaller
than the average, approximately 2,700m2 or 29,000ft2, are considered small basins, and the
flows less than the average flows, approximately 100,000AF/month, are considered low flows.
In this model, the higher R2 values for the training set indicates the model is overfitting
(Figures 4.3a, 4.3c, and 4.3e). Also, the model performs worse on low flows and smaller
basins (Figures 4.3b, 4.3d, and 4.3f). This phenomenon could be due to the RSS performance
measure of the randomForest algorithm, which pushes the model to accurately model high
flows at the expense of lower flows (Figure 4.4).
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(a) Residuals vs. unimpaired flow. (b) The probability density function of the resid-
uals.

Figure 4.4: Lower absolute error at higher flows show the Random Forest model accurately
predicting high flows at the expense of low flows.

4.3 Spatial Distribution of Model Errors
Figures 4.5 and 4.6 show the spatial distribution of the errors and the models spatially
heterogeneous ability for accurately predicting unimpaired flow. These plots show that
predicting flow in the headwater basins need to be improved. Figure 4.6b shows a ridge
down the middle of California where on the western side the model is accurately predicting
flows (same area we typically observe high flows and large basins) and on the eastern side it
is performing worse. Figure 4.5b shows the standard deviation of the absolute error, which
is in essence a wetness parameter, with a higher standard deviation expected in northern
basins.

4.4 Benchmarking
Next, we compared the test set R2 of the Random Forest model, reflecting the model’s ability
to capture the variation of flow, with that of the Basin Characterization Model, for basins
that overlap the two studies. We also compared the test set R2 of the Random Forest model
with that of a linear multivariate regression model explained in Chapter 3.6. For detailed
results see Appendix E.

The results of the comparison answer the third research question: “Can statistical learn-
ing models give better streamflow predictions compared to mechanistic models?”. The Ran-
dom Forest model out-performs the mechanistic model in two basins (the Stanislaus River
at Melones Reservoir and the Feather River near Oroville), and it out-performs the simple
linear multivariate regression model in all basins (Figure 4.7). The latter result is expected
since we know runoff processes are not linear and are too complex to be modeled using a
linear multivariate regression model. However, we expected the Random Forest model to,
at the very least, be on par with the mechanistic model, which in most basins it was not.
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(a) Mean absolute error (AE) of the test set. (b) Standard deviation of the absolute error of the
test set.

Figure 4.5: The spatial distribution of the absolute error. The absolute error is spatially
autocorrelated. Model improvement strategies should consider adding data to the model or
switching to another modeling method.

(a) Mean relative error (RE) of the test set. (b) Coefficient of determination (R2).

Figure 4.6: The spatial distribution of the relative error (RE) and the coefficient of deter-
mination (R2) statistics show that model modification strategies should consider improving
predictions in the headwater basins.
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Figure 4.7: Benchmarking. R2 comparisons on the test set of the three models show the
variability in the performance of machine learning models compared to more complex mech-
anistic and simpler linear regression models.
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Chapter 5

Conclusions

The real purpose of the scientific method is to make sure nature hasn’t
misled you into thinking you know something you actually don’t know.

Robert M. Pirsig, “Zen and the Art of Motorcycle Maintenance”, 1974

5.1 Next Steps
This statistical learning application shows a small potential to “learn” from existing envi-
ronmental data and produce a model that is easy to build and convenient to run. In this
case, the statistical learning approach compares favorably to the mechanistic model only in
terms of cost of construction, and there is much left to be desired in predictive accuracy.
Some strategies, to improve upon this study, are:

1) Reducing the dimensionality of the dataset. Adding noise features that are not
truly associated with the response will worsen the fitted model, and consequently increase
test set error. This is because noise features increase the dimensionality of the problem,
exacerbating the risk of having trees in the forest that do not make splits on the variables that
better describe flow. Referring back to the variable importance list (Figure 3.9), the prime
candidates for eliminating or modifying are those that fall low on the variable importance
list. The reason for which may be that the information content of these variables are housed
in other variables higher on the list.

2) On the other hand, we can also improve the model by including more data that
provides information about the hydrologic cycle not quite captured by this dataset. Among
possible datasets are: the Moderate Resolution Imaging Spectroradiometer (MODIS) evap-
otranspiration dataset, the California Irrigation Management Information System (CIMIS)
reference evapotranspiration dataset, and the Soil Conservation Survey (SCS) method of
reducing hydrologic soil types into one “curve number”.

3) Another possible improvement strategy is adding in a dataset that covers the prob-
lematic areas of the model, the headwater basins. The United States Geological Survey
GAUGESII dataset includes reference basins that are generally small, have low flows and
are located in the headwaters. The addition of this dataset, although costly in implementa-
tion effort, might improve results.
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4) Lastly, due to the overfitting problem observed, strategies can be devised for limiting
the depth of the trees in the forest. Although the randomForest function does not
have a tree-depth parameter, proxy parameters exist that can somewhat replicate what this
parameter is intended to do: i) nodesize: increasing the node size increases the minimum
number of observations that must fall within a branch. This parameter stops the further
splitting of nodes into smaller ones and effectively reduces the depth of the tree. ii) maxnodes:
decreasing the maximum number of terminal nodes will decrease the number of branches in
the tree and effectively builds a smaller or simpler tree. Other Random Forest algorithms
that have a tree-depth parameter can remedy this problem as well: max.depth in xgboost,
nodedepth in randomForestSRC, and nLevel in Rborist

5) Because the Random Forest algorithm uses the RSS error in evaluating trees, the
model is more sensitive to error in high flows. This problem may be remedied by weighted
sampling strategies, log-transforming the data, or making multiple overlapping models for
different classes.

6) Another option is to turn to other statistical learning algorithms: neural net-
works; support vector machines; and ridge regression.

The importance of understanding the processes that govern runoff formation and the
general behavior of statistical learning algorithms becomes evident in model improvement.

5.2 Empirical Modeling for Ungauged Basins
The major challenges in this study were mostly data related: 1) gathering, in formats that are
easy to process with languages like python and R; 2) cleaning; and 3) processing. Discipline-
specific repositories, curated by university libraries, could help in this regard and prevent
“data rot” usually seen in federal and state government agencies. These repositories can as-
sist in discovering, accessing, and acquiring different types of data. They can help researchers
understand, develop, and apply strategies for organizing and managing their study’s data,
and they can help in locating standards for documentation so that the study’s output data
can be discovered, understood, and reused. Most importantly repositories curated by li-
braries can aid in the preservation of the input, intermediary, and output data and its
scholarly value over time.

On the technical side of empirical modeling, studies in water resources management
should carefully examine the structures within the data and their modeling purposes. Re-
searchers should take care when devising test-train splitting strategies for structured data
(i.e., data that has a spatial, temporal or hierarchical structure). To remedy this problem,
blocking strategies, already employed in ecology, should be applied to empirical modeling
with water data.

Also, statistical learning studies should try to employ more than one algorithm. Thus,
researchers in the field of water resource management can develop a heuristic, which informs
them as to the modeling methods most appropriate with specific data sets. The various
algorithms can be tested at different spatial and temporal ranges and resolutions.

Future endeavors may include ways to employ statistical learning methods in mechanistic
models, when accuracy of predictions is of more concern than interpretability. For example,
ensemble learning methods can be used to calibrate hydrologic and water quality parameters,
a difficult step in developing traditional mechanistic models. In principle, statistical learning
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is about embracing noise, variability, and even errors in the data. It is precisely for this reason
that they offer the potential for a more “intelligent” model than traditional approaches.
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Appendix A

Unimpaired Flow Data Used in
Modeling

Time series plots of unimpaired flow for all CDEC basins are housed here.
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Appendix B

Detailed Random Forest Model
Results By Basin

Predicted versus observed plots disaggregated by basins are housed here.
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Appendix C

Detailed Measures of Random Forest
Model Performance

Model performance tables are housed here.

Table C.1: Random forest model fit summary for the combined data sets.

Statistical Measure Train
Set

Test
Set

High
Flows

Low
Flows

Large
Basins

Small
Basins

No. of Observation 1,260,448 18,536 4,312 14,224 291,563 13,523

Mean AE 152 1729 -44088 15618 139 -3426

Mean RE 0.24 0.52 -0.11 0.71 0.24 0.60

RMSE (AF) 32955 123348 241961 45599 32619 103107

RSR 0.14 0.51 0.61 1.90 0.14 0.50

R2 0.94 0.69 0.60 0.26 0.94 0.61

NSE 0.98 0.74 0.63 -2.60 0.98 0.75

Mean PBIAS 0.00 0.05 0.00 0.09 0.00 0.09

Table C.2: Random forest model fit summary by basin.

CDEC
ID

No.
Train
Set

No.
Test
Set

Mean
AE

Sd AE Mean
RE

R2 RMSE NSE RSR Mean
PBIAS

AMA 18436 100 26369 32353 0.69 0.94 41612 0.88 0.35 174

AMF 18152 384 -90321 163756 -0.03 0.44 186826 0.56 0.66 104

AMK 18426 110 136 13059 0.81 0.68 13001 0.85 0.39 219

AMN 18404 132 -21126 46702 -0.02 0.37 51096 0.52 0.69 18

ANM 18158 378 8814 10244 1.22 0.32 13504 -3.95 2.22 1315

ANT 18180 356 5562 5203 1.24 0.45 7611 -1.92 1.71 827

ASP 18152 384 9036 13192 1.78 0.10 15976 -88.68 9.47 4949

ASS 18152 384 800 10297 0.75 0.64 10315 0.74 0.51 1583

ASV 18412 124 11354 12312 1.44 0.25 16712 -7.96 2.99 42998

CSN 18152 384 16928 25136 1.03 0.73 30277 0.70 0.55 947

CYO 18367 169 19107 22654 1.61 0.31 29584 -6.52 2.74 3741
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CDEC
ID

No.
Train
Set

No.
Test
Set

Mean
AE

Sd AE Mean
RE

R2 RMSE NSE RSR Mean
PBIAS

DAV 18178 358 9684 6417 1.49 0.35 11612 -6.90 2.81 3308

EFC 18152 384 11187 38394 0.26 0.22 39943 -1.11 1.45 174

ERS 18152 384 94081 408151 0.91 0.49 418335 0.64 0.60 1639

EWR 18152 384 4106 6274 0.53 0.78 7491 0.47 0.73 118

FPL 18381 155 -84870 118117 -0.65 0.47 145136 0.49 0.71 -47

FPR 18416 120 19472 74470 0.14 0.39 76673 -0.39 1.18 29

FRD 18178 358 7135 4463 1.54 0.44 8412 -3.90 2.21 3474

FTC 18429 107 75840 60095 1.77 0.12 96588 -42.82 6.62 3551

FTO 18152 384 126960 251732 0.41 0.72 281643 0.49 0.71 67

FTP 18418 118 25418 24002 0.74 0.55 34889 -0.51 1.23 561

KGC 18388 148 63025 73211 1.33 0.20 96415 -3.58 2.14 1187

KGF 18152 384 10953 53529 0.20 0.84 54570 0.91 0.30 31

KGP 18428 108 -7505 35285 0.00 0.89 35914 0.96 0.19 4

KLO 18152 384 97237 181884 0.55 0.69 206036 0.73 0.52 141

KRB 18152 384 18294 39972 0.53 0.64 43913 0.64 0.60 102

KRI 18152 384 13766 27022 0.29 0.90 30295 0.82 0.43 44

KRK 18380 156 34140 27611 0.60 0.79 43852 0.50 0.71 110

KWT 18152 384 17630 24790 0.61 0.77 30393 0.57 0.65 126

LNV 18416 120 -5194 8490 -0.37 0.51 9923 0.51 0.70 -25

MBS 18416 120 652 6891 0.41 0.48 6893 0.66 0.58 79

MDP 18380 156 -11731 37209 0.20 0.44 38900 0.59 0.64 66

MKM 18152 384 -12277 43328 0.23 0.54 44980 0.68 0.56 80

MKW 18512 24 21058 20389 1.58 0.27 29015 -12.40 3.66 1065

MRC 18152 384 40665 47491 0.62 0.79 62475 0.66 0.58 121

MSS 18152 384 -33668 30088 -0.57 0.72 45127 0.48 0.72 -39

NCD 18152 384 -678 20035 1.06 0.54 20021 0.72 0.53 375

NPH 18152 384 8143 7655 1.41 0.67 11170 0.19 0.90 4465

OWL 18152 384 2168 7906 0.06 0.42 8188 -0.49 1.22 30

PLK 18437 99 10708 8310 1.03 0.40 13528 -3.13 2.03 363

PSH 18152 384 154495 132149 0.47 0.54 203191 -0.85 1.36 69

RRH 18152 384 -1120 73088 1.05 0.52 73001 0.71 0.54 4235

SBB 18152 384 -304917 366164 -0.56 0.48 476132 0.49 0.71 -43

SCC 18152 384 -373 11287 0.52 0.44 11278 0.62 0.61 412

SCU 18405 131 -1623 10815 -0.06 0.72 10895 0.52 0.69 3

SDT 18152 384 -36091 54947 -0.63 0.34 65680 0.34 0.81 -42

SIS 18152 384 -127369 167921 -0.33 0.64 210587 0.72 0.53 -27

SJF 18152 384 -5275 69269 0.10 0.74 69380 0.86 0.37 18

SNS 18152 384 10195 33311 0.23 0.89 34794 0.91 0.29 201

SQS 18481 55 16296 35337 0.35 0.16 38620 -9.70 3.27 122

SRS 18152 384 -3940 41304 0.01 0.78 41438 0.84 0.40 7

SSP 18221 315 -3303 21186 0.60 0.28 21409 0.44 0.75 397

STB 18408 128 -5480 22885 0.39 0.62 23445 0.79 0.45 92
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CDEC
ID

No.
Train
Set

No.
Test
Set

Mean
AE

Sd AE Mean
RE

R2 RMSE NSE RSR Mean
PBIAS

SVC 18416 120 -11358 19146 -0.15 0.45 22193 0.52 0.69 -14

SWH 18355 181 9969 16555 1.79 0.15 19285 -23.91 4.99 6605

THT 18416 120 5036 6389 0.37 0.60 8114 0.14 0.93 61

TLG 18152 384 -42470 82911 0.05 0.61 93059 0.76 0.49 204

TLM 18418 118 -5080 17926 0.11 0.77 18559 0.81 0.44 196

TLN 18405 131 11197 61633 0.71 0.42 62410 0.51 0.70 818

TNL 18152 384 -16023 63954 0.22 0.60 65850 0.71 0.54 64

TRF 18152 384 73193 38960 1.32 0.54 82892 -2.71 1.93 1114

WFC 18152 384 9635 10317 0.98 0.43 14107 -1.87 1.69 242

WWR 18152 384 -2093 15211 0.37 0.40 15334 0.58 0.64 82

YBG 18380 156 -10868 23468 -0.23 0.61 25794 0.74 0.51 1

YBJ 18416 120 -7580 12439 -0.32 0.37 14522 0.36 0.80 45

YBM 18427 109 10542 12562 1.26 0.36 16355 -2.62 1.90 998

YBS 18409 127 -8895 26395 0.12 0.50 27755 0.64 0.60 62

YCB 18383 153 8700 11615 0.75 0.50 14482 -0.58 1.26 333

YRS 18152 384 -34307 93642 -0.12 0.64 99615 0.80 0.45 -1

(a) Mean AE of the test set. (b) Mean RE of the test set.

Figure C.1: The spatial autocorrelation of the residuals.
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(a) R2 of the test set. (b) NSE of the test set.

Figure C.2: The spatial performance of the model.

(a) RMSE of the test set. (b) RSR of the test set.

Figure C.3: The spatial distribution of the test set errors
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Figure C.4: Mean PBIAS of the test set.
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Appendix D

Random Forest Partial Plots

Partial plots, in the order given by the variable importance list, are housed here.
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Appendix E

Detailed Measures of Linear
Multivariate Regression Model
Performance

Model performance table is housed here.

Table E.1: Linear multivariate regression model fit summary by basin.

CDEC ID No.
Train Set

No. Test
Set

R2 RMSE NSE RSR Mean
PBIAS

AMA 18436 100 0.79 67797 0.68 0.57 31

AMF 18152 384 0.30 214659 0.42 0.76 351

AMK 18426 110 0.20 101450 -8.41 3.07 326

AMN 18404 132 0.53 68084 0.14 0.93 -1184

ANM 18158 378 0.07 127537 -440.13 21.00 14354

ANT 18180 356 0.04 138002 -959.48 30.99 16096

ASP 18152 384 0.01 136892 -6583.45 81.14 -493323

ASS 18152 384 0.22 132449 -42.63 6.61 -136761

ASV 18412 124 0.02 117560 -442.57 21.06 -78414

CSN 18152 384 0.53 71562 -0.68 1.30 -453

CYO 18367 169 0.16 64066 -34.26 5.94 -16912

DAV 18178 358 0.04 79212 -366.54 19.17 -46512

EFC 18152 384 0.07 121164 -18.42 4.41 -1126

ERS 18152 384 0.06 699226 0.00 1.00 1020

EWR 18152 384 0.08 71256 -46.65 6.90 552

FPL 18381 155 0.40 133254 0.57 0.65 43

FPR 18416 120 0.31 85009 -0.71 1.31 -8

FRD 18178 358 0.04 68408 -322.73 17.99 -13267

FTC 18429 107 0.17 67979 -20.71 4.66 2728

FTO 18152 384 0.20 336912 0.28 0.85 28

FTP 18418 118 0.18 113174 -14.92 3.99 -6008

KGC 18388 148 0.17 96328 -3.57 2.14 -1940

KGF 18152 384 0.29 152664 0.30 0.84 4
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CDEC ID No.
Train Set

No. Test
Set

R2 RMSE NSE RSR Mean
PBIAS

KGP 18428 108 0.26 156939 0.29 0.84 43

KLO 18152 384 0.11 604578 -1.35 1.53 579

KRB 18152 384 0.54 82087 -0.27 1.12 247

KRI 18152 384 0.59 63159 0.20 0.89 106

KRK 18380 156 0.48 98852 -1.54 1.59 -430

KWT 18152 384 0.41 69501 -1.23 1.49 -16

LNV 18416 120 0.04 84574 -34.47 5.96 -685

MBS 18416 120 0.06 65652 -29.61 5.53 -1349

MDP 18380 156 0.27 94431 -1.39 1.54 -1283

MKM 18152 384 0.60 72546 0.18 0.91 -1187

MKW 18512 24 0.06 106706 -180.30 13.46 -10206

MRC 18152 384 0.58 95270 0.21 0.89 500

MSS 18152 384 0.45 77048 -0.51 1.23 1

NCD 18152 384 0.57 44949 -0.43 1.20 1778

NPH 18152 384 0.13 111523 -79.25 8.96 49064

OWL 18152 384 0.04 64680 -91.85 9.64 -451

PLK 18437 99 0.06 107592 -260.44 16.17 2835

PSH 18152 384 0.30 146260 0.04 0.98 63

RRH 18152 384 0.51 185711 -0.85 1.36 30289

SBB 18152 384 0.08 662161 0.02 0.99 -1

SCC 18152 384 0.21 89952 -23.01 4.90 2393

SCU 18405 131 0.11 112202 -49.43 7.10 66

SDT 18152 384 0.55 85349 -0.11 1.05 -333

SIS 18152 384 0.14 357235 0.21 0.89 13

SJF 18152 384 0.29 147602 0.37 0.80 141

SNS 18152 384 0.62 78131 0.57 0.66 505

SQS 18481 55 0.05 203412 -295.89 17.23 276

SRS 18152 384 0.86 53013 0.74 0.51 -64

SSP 18221 315 0.23 82325 -7.30 2.88 -38485

STB 18408 128 0.21 133246 -5.66 2.58 1140

SVC 18416 120 0.26 75141 -4.47 2.34 -867

SWH 18355 181 0.03 87966 -517.26 22.77 -243022

THT 18416 120 0.06 73510 -69.82 8.42 -1224

TLG 18152 384 0.34 142496 0.43 0.75 212

TLM 18418 118 0.23 94022 -3.95 2.23 -3527

TLN 18405 131 0.36 111728 -0.57 1.25 -3153

TNL 18152 384 0.77 87590 0.49 0.71 213

TRF 18152 384 0.39 58005 -0.82 1.35 -1173

WFC 18152 384 0.05 79888 -91.08 9.60 -1443

WWR 18152 384 0.15 69167 -7.46 2.91 76

YBG 18380 156 0.28 108706 -3.64 2.16 -770

YBJ 18416 120 0.10 111670 -36.88 6.15 -10361

YBM 18427 109 0.04 119752 -193.22 13.94 -16066

50



CDEC ID No.
Train Set

No. Test
Set

R2 RMSE NSE RSR Mean
PBIAS

YBS 18409 127 0.22 110385 -4.63 2.37 -3084

YCB 18383 153 0.06 137000 -140.76 11.91 -8585

YRS 18152 384 0.47 176506 0.37 0.79 -197
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