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ABSTRACT 
 
 
Machine learning techniques were applied to climatic, geologic, and geographic data to 
statistically model natural river flows in dry years in California’s Intermountain and Xeric 
ecoregions. The model is tailored to predict flows during dry years for use as inputs for the 
Sacramento River version of the Drought Water Rights Allocation Model (DWRAT), a water 
rights curtailment model developed at the University of California, Davis. The modeling 
approach builds on a general-purpose statistical model developed by the US Geological Survey 
designed to predict natural flows at national and regional scales. Multiple machine learning 
algorithms were applied, using different techniques to select variables and reduce dimensionality 
and restricting training data to drier years. The ability of the resulting models to predict flows in 
dry water years was evaluated with multiple test metrics. The new models consistently tested as 
well as or superior to the corresponding general-purpose models when used to predict dry year 
flows, and in some cases, they performed far better. This improvement in predicting natural 
flows in dry years allows for more accurate estimation of available water and should help make 
DWRAT more useful for informing water rights curtailment decisions. This research also 
provides a high-level Python package for easily exploring and evaluating various combinations 
of machine learning techniques.  
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CHAPTER 1: INTRODUCTION 
 
Background 

 
For many rivers around the world, actual natural flow rates are unknown because 

extensive development of hydrologic resources through dams, levees, and other water 
infrastructure has substantially altered natural flow regimes, changing the magnitude, timing, and 
variability of river flows. Additionally, the network of monitoring stations is sparse, so natural 
flow rates are often unknown even where the natural flow regime is unaltered (Poff et al., 1997; 
Pringle et al., 2000; Nilsson et al., 2005). However, it is often useful to have estimates of a 
river’s natural flow. For example, approximations of natural flow can be used to estimate 
impacts of development on a watershed (Carlisle et al., 2010) and to assess which water rights 
can be fulfilled during a drought based on their legal structure (Lund et al., 2014; Lord, 2015).  

Several modeling approaches exist for estimating a river’s natural or unimpaired flow, 
including mechanistic and statistical models (Arthington et al., 2006). Mechanistic models are 
detailed simulations of watersheds based on either physical hydrologic principles and historic, 
“pre-disturbance” records of flow or using observed streamflow from current gage measurements 
and “unimpairing” them by adding known diversions back in. Although detailed mechanistic 
models are useful for understanding a watershed’s processes and are the standard approach in 
hydrology, they also have disadvantages. We usually lack pre-disturbance records of flows for 
most streams (Carlisle et al., 2010), and watershed models are often very complex and depend on 
variables that are often difficult or expensive to obtain at sufficient temporal and spatial 
resolution (Eng et al., 2012). Statistical models are constructed with available data about the 
variable of interest (in this case, streamflow) and other variables thought to be relevant. The 
model can then predict the value for the variable of interest across a range of conditions. 
Statistical models can be simpler and faster to develop than mechanistic models, particularly 
when predictor variables are readily available, as is the case for elevation and rainfall (Eng et al., 
2012). Statistical modeling (generally called machine learning in this thesis) has often been used 
to predict observed hydrologic phenomena, but its application to prediction of expected natural 
flows is more recent. Researchers at the US Geological Survey (USGS) have shown it to be 
effective for predicting natural flow at ungaged locations based on available geospatial data. The 
USGS statistical natural flow model is based on reference gages in the region of interest with at 
least 20 years of daily flow data and basin characteristics at each gage, including climatic, 
geographic, and geologic attributes. Using a random forest algorithm, models are trained to 
predict monthly observed flow and other flow variables of interest based on the basin 
characteristics. The trained models can then be used to predict monthly flows at ungaged 
locations using the same set of basin predictor variables (Carlisle et al., 2010). 

The ability of the USGS model to predict natural flow at any point in a watershed is 
useful to the Drought Water Rights Allocation Tool (DWRAT), a water rights curtailment model 
developed by the Center for Watershed Sciences (CWS) at University of California, Davis as a 
research project for the California State Water Resources Control Board (SWRCB). DWRAT 
takes estimates of full natural flow for various points throughout a watershed and, given data on 
local water rights, uses optimization methods to suggest water users to curtail if available water 
is insufficient (Lord, 2015; Lund et al., 2014). USGS researchers modified the original model in 
two key ways before it was initially applied in DWRAT. First, they found that a set of monthly 
regional models (defined by aggregated Level-II ecoregions) generally produced more accurate 
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predictions than statewide models, so the models train on region-specific data from around 
California and portions of Oregon and Nevada (Grantham et al., 2014; Grantham, 2014; Lund et 
al., 2014; Grantham, 2015). Second, they developed a method to estimate natural flow at a daily 
time step (rather than the monthly natural flow predicted by the model) for every sub-basin in the 
watershed. The regionally calibrated predictions of monthly natural flows for each sub-basin 
were used to extrapolate hydrologic estimates of daily natural flow obtained from the National 
Weather Service (NWS) at select gage locations to ungaged sub-basins. This was done by 
calculating the ratio of predicted natural flow values between the gaged and ungaged sub-basins 
and applying it to the NWS daily flow predictions as a scaling factor (Grantham, 2014). While 
the intention of this approach was to obtain natural flow estimates at a daily time step, which the 
current version of DWRAT requires, it also facilitated DWRAT’s use of the natural flow model 
by allowing a user to generate estimates of current natural flow as well as historical natural flow. 
Since as of 2016 the climate data needed for the model (from Oregon State University’s PRISM 
Climate Group) was only available through 2011, the model could only be used to predict natural 
flow up to 2011. Before the flow model is used as input to DWRAT, the scaling factors from a 
year assumed to be representative (the 1977 water year) are used to extrapolate from current 
NWS estimates to all sub-basins around the watershed (Grantham, 2014).  

 
Natural Flow 

 
Before continuing, it is useful to understand exactly what is meant by “natural flow.” Poff 

et al. (1997) define the “natural flow regime” as “the characteristic pattern of a river’s flow 
quantity, timing, and variability” without human alteration. (Others have since divided this 
concept more precisely into “unimpaired flow” and “full natural flow”.) Poff et al. explained that 
flow regimes naturally vary over time (from hour to hour, era to era, and every time step in 
between) and across regions (due to geographic variation in climate, geology, topography, and 
vegetation).  A natural flow regime can be described by five components: magnitude of 
discharge, frequency of occurrence, duration of a given flow condition, regularity or 
predictability, and rate of change between magnitudes, also known as flashiness. This thesis is 
concerned with the first component: magnitude of discharge, meaning rate of flow. 

A key distinction should be drawn between unimpaired flow and full natural flow, which 
describe slightly different natural flows. Unimpaired flow is an estimate of flow that would occur 
without dams and diversions. It assumes the current river channel configuration with levees, 
current upstream and instream vegetation, and current groundwater accretion/depletion rates. It is 
often the result of hydrologic models that adjust measured flows by adding known agricultural 
and urban consumptive water use back in to “unimpair” them. In contrast, full natural flow is the 
theoretical flow of a river in its pre-development state, prior to any human influences, including 
loss of evaporation from drained wetlands and groundwater flows. It makes different 
assumptions than unimpaired flow about river channels, vegetation, evaporation, and surface-
groundwater interactions (Chung & Ejeta, 2011; CA DWR, 2007; Kadir & Huang, 2015).  

To simplify a complicated legal matter to a single sentence, California’s riparian water 
right holders (those whose properties are adjacent to water bodies) are entitled to the full natural 
flow of the water body, while appropriative water right holders (those who divert water to 
storage or a non-adjacent property and have seniority based on their date of first diversion) have 
a right to the remaining unimpaired flow of a water body (Lord, 2015). Table 1.1 compares each 
of these terms, their applications, and associated sources. 
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Table 1.1. Natural Flow Definitions and Applications 
 
Term Definition Uses References 
Unimpaired 
flow 

Estimate of a river’s flow 
assuming its current channel 
configuration, vegetation, 
and surface-groundwater 
interaction 

Water management 
planning, flood 
modeling, appropriative 
water rights assessments 

Chung & Ejeta, 2011; 
CA DWR, 2007; 
Kadir & Huang, 2015 

Full natural 
flow 

Theoretical flow of a river in 
pre-development state 

Environmental impact 
assessments, riparian 
water rights assessments 

Chung & Ejeta, 2011; 
CA DWR, 2007; 
Kadir & Huang, 2015; 
Carlisle et al., 2010 

 
“Natural flow” as used in this thesis is full natural flow as defined above. The models 

used are built with data on flow at USGS reference gages, which are either undisturbed or “least-
disturbed” by human development. This means that anthropogenic impacts on current river 
channels, vegetation, and surface-groundwater impacts are nonexistent or insignificant upstream 
of and at those gage locations. Also, this work predicts flow purely based on natural geographic, 
geologic, and climatic variables, with minimal effects from human development (see Appendix 
A for a full list of variables).  
 
Hypothesis 

 
DWRAT’s curtailment suggestions reflect the underlying natural flow models used to 

estimate water availability. Previous work has made the natural flow model more accurate, but 
further improvements in accuracy, particularly in predicting dry year flows, could be helpful for 
guiding curtailment decisions during droughts. it is worthwhile to evaluate and to improve its 
accuracy for curtailing water rights during droughts. USGS researchers previously used random 
forests (Breiman, 2001) as the modeling method because it has proved relatively robust and 
accurate (Carlisle et al., 2010), but other machine learning techniques may be more effective. 
Additionally, in the same way that the USGS found improved predictive performance by creating 
separate models for different regions, using a dataset restricted to only drier years or to a more 
localized geographic area could further improve predictive performance. This thesis applies 
several machine learning algorithms as well as additional variable selection and dimensionality 
reduction approaches to model dry year flows in the Sacramento River basin. By evaluating and 
characterizing the performance of these various approaches, a more accurate model geared 
toward predicting natural flows during droughts can be created and used as input to DWRAT. 
The Sacramento River was chosen as a test case because it is a basin currently being evaluated 
for application of the DWRAT model. 
 
Significance of Research 
 

With better information about available flows (i.e., the natural water supply), water rights 
curtailments can be suggested more effectively and reliably. Development of multiple alternative 
flow models also provides a range of estimates of natural flow, which would allow for sensitivity 
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testing of DWRAT’s robustness to different flow model inputs. It could also support 
probabilistic analysis of drought curtailments. More generally, models for predicting natural flow 
for dry years are likely more useful for informing curtailment decisions during droughts than a 
general-purpose natural flow model. Also, this research provides a higher-level Python package 
built on top of the existing scikit-learn package for more easily exploring and evaluating various 
combinations of machine learning techniques. 

 
Preview of Results 
 

Restricting the training data to drier years and following the USGS approach of creating 
monthly models for relevant aggregated ecoregions resulted in a set of 24 models (12 monthly 
models for each of the two regions containing the Sacramento watershed). When evaluated on 
their prediction of known dry water year flows, these models consistently tested as better than or 
equivalent to their corresponding general-purpose USGS models on multiple test metrics, and in 
some cases, they performed far better. This is a significant improvement toward predicting 
natural flows in dry years and could help DWRAT suggest improved curtailment decisions. 
However, both the new models and the USGS models tended to underpredict natural flow for the 
main stem of the Sacramento River by a large margin when compared against hydrologically 
calculated 1977 natural flow estimates for several points around the watershed. Since both 
statistical models are trained on data from smaller streams and upper reaches of watersheds, this 
is an experimental extension of the model, and it was not surprising that both models predicted 
very different values than the hydrologic model when extended to new territory. While these 
hydrologic estimates have their own set of modeling simplifications and errors and should not 
treated as a precise performance benchmark, it is interesting to note the difference in predicted 
natural flows. 

Restricting the training data geographically rather than by water year type created a 
single model that only uses data from the Sacramento basin, rather than the set of monthly dry-
year models created for each region. While this model performed well on all test metrics, it 
tended to predict very low flows because of the limited nature of and lack of variability in its 
training and test data, which consist of above-rim flows only. It would be less useful in 
predicting natural flows for the main stem of the Sacramento River. 
 
Limitations and Assumptions 

 
Natural flow is particularly difficult to assess because many locations lack flows recorded 

prior to human development and disruption, including the Sacramento River’s main stem. The 
USGS classifies 18 of its gages in the Sacramento watershed as “reference” gages, meaning their 
historical records represent “hydrologic conditions which are least disturbed by human 
influences” (Falcone, 2011a; Falcone, 2011b). These can be used as an estimate of natural flow 
for those locations. However, as one might expect from their definition, none of these gages lie 
on the main stem of the Sacramento River, so while they can be left out of training data and used 
to test a model’s predictions, they do not represent a natural flow ground truth for the main stem 
of the Sacramento River. This means that the model can be tested for some areas of the 
Sacramento watershed but not all. The model could be tested against predictions generated by a 
mechanistic Sacramento River model based on physical hydrologic principles, but that would 
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still not represent testing against pre-development ground truth. This limitation should be kept in 
mind when applying the model. 

A second limitation in applying the natural flow model is that it can only predict for time 
periods for which predictor variable data are available. Most predictor variables are relatively 
static, unchanging values such as elevation and soil composition, but some predictor variables 
are climate-related values that change each month. This introduces complications when applying 
the flow model to the present day. For example, to predict flow for a month at a point, one needs 
to know that month’s precipitation for the drainage area above that point. This makes it difficult 
to use the model to predict flow for the present day, since the current month’s average 
precipitation is not yet known (although one could use a forecasted value predicted by a weather 
model). Alternatively, a spatial disaggregation process could be used. If a present-day estimate of 
natural flow is known for some point in the watershed, such as those modeled by the National 
Weather Service (NWS) for some locations, then the natural flow model’s predicted historical 
flow between those locations and other points of interest can be used to create flow ratios. These 
flow ratios can then be used to spatially disaggregate an estimate of present-day natural flow at 
one location to other locations. This approach is currently used in DWRAT to get natural flow 
estimates for the current day throughout a watershed (Grantham, 2014). The second approach 
assumes that upstream-downstream ratios of natural flow are consistent across dry years, which 
is difficult to test because of the lack of data on natural flow. Both approaches would depend on 
another model’s estimates, limitations, and assumptions, either from weather forecasting or 
natural flow modeling. This should be kept in mind when applying any historical natural flow 
model to the present day. 
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CHAPTER 2: LITERATURE REVIEW 
 
Natural Flow Models for the Sacramento River 
 

The Sacramento is California’s largest river, carrying 31% of California’s surface water 
runoff and supporting an intensely productive agricultural region with about 2 million acres of 
irrigated farmland (Sacramento River Watershed Program, 2010). It has undergone significant 
human-induced change, making prediction of its natural flows an interesting and valuable 
endeavor (Buer et al., 1989). Previous research on predicting unimpaired and full natural flows 
in the Sacramento watershed has focused on mechanistic hydrologic modeling, rather than 
statistical modeling, and prediction of full natural flow has entered the scene only recently. Table 
2.1 lists other recent research efforts involving the Sacramento watershed that modeled 
unimpaired or full natural flow. Several of the models are subsequently highlighted in greater 
detail. 

 
Table 2.1. Previous Sacramento River Full Natural and Unimpaired Flow Modeling Efforts 
 
Source Description Area Model Type 
CA DWR 1980, 
1987, 1994, & 2007 

Unimpaired flow estimates 
dating back to 1921 

Central Valley and 
Sacramento-San 
Joaquin Delta 

Mechanistic 

Fox et al., 2015 Reconstructed natural 
landscape to estimate long-
term annual average outflow 
of the Delta 

Central Valley, 
Sacramento-San 
Joaquin Delta, and 
San Francisco Bay 

Mechanistic 

Gleick 1987 Water-balance model of 
unimpaired runoff 

Sacramento River Mechanistic 

Grantham, 2014; 
Carlisle et al., 2010 

Used USGS reference gages 
to model natural flow of 
various rivers 

Sacramento River, 
among others 

Statistical 

Hay et al., 2011 Used the USGS 
Precipitation-Runoff 
Modeling System (PRMS) 
to simulate streamflow 
under various climate 
change scenarios 

Feather River, among 
others 

Mechanistic 

Huang et al., 2014; 
Kadir & Huang, 
2015 

Used C2VSIM and rainfall-
runoff models to estimate 
both full natural flow and 
unimpaired flow 

Central Valley and 
Sacramento-San 
Joaquin Delta 

Mechanistic 

Koczot et al., 2005 Used precipitation-runoff 
simulation models to predict 
unimpaired streamflow 

Feather River Mechanistic 

MacDonald et al., 
2008 

Predict unimpaired flow 
based on tree rings 

Sacramento River, 
among others 

Statistical 

Meko et al., 2001 Predict unimpaired Sacramento River Statistical 
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Sacramento flow based on 
tree ring widths 

NOAA, 1972 NWS River Forecast 
System (which includes the 
Sacramento Soil Moisture 
Accounting Model and 
other models) 

Sacramento River, 
among others 

Mechanistic 

Flint et al., 2012 California Basin 
Characterization Model 
(BCM) 

California Mechanistic 

 
Starting with observed gage flows and adjusting them for upstream operations, the 

California Department of Water Resources (CA DWR) has released estimates of Central Valley 
unimpaired flow obtained regularly over the past 36 years (CA DWR, 1980; CA DWR, 1987; 
CA DWR, 1994; CA DWR, 2007). Recently, DWR’s Bay-Delta Office has put significant effort 
into modeling both unimpaired and full natural flows for the Central Valley for the first time. 
Flows on the valley floor are modeled using the California Central Valley Groundwater-Surface 
Water Simulation Model (C2VSIM), an integrated surface-groundwater hydrologic model, and 
the “above rim” flows (meaning flows in the upper watersheds, above the rim of the valley) are 
estimated using daily precipitation-runoff models. By removing anthropogenic influences such 
as reservoirs and urban development upstream of a location, replacing the landscape with native 
vegetation, and making allowances for streams overtopping and other mechanistic hydrologic 
processes, full natural flow can be simulated using the same models (Huang et al., 2014; Kadir & 
Huang, 2015).  

Various other mechanistically-based models have been used recently to predict natural 
streamflow in areas of the Sacramento watershed (Fox et al., 2015; Gleick, 1987; Koczot et al., 
2005; Flint et al., 2012; Hay et al., 2011). In contrast, Meko et al. (2001) used a regression 
model to predict historical Sacramento River flows from the year 869 to 1977 based on 
chronologies of tree ring width. Since the training data used to build the model was based on 
unimpaired flow estimated by CA DWR, this model could be more precisely said to predict 
unimpaired flow rather than full natural flow as the terms are now understood. 

 
USGS Natural Flow Model 
 

Researchers at the USGS have effectively used machine learning to predict natural flow 
at ungaged locations based on available geospatial data (Carlisle et al., 2010). This section 
discusses their model and its evolution in more detail, as it directly inspired this thesis. 

USGS researchers first used random forest models (Breiman, 2001) to predict biological 
condition of streams—meaning they classified whether or not the streams had been altered by 
human development—using widely available geospatial data as predictor variables such as land 
cover, topography, climate, soils, societal infrastructure, and potential hydrologic modification. 
Random forests were chosen because they efficiently handle messy data and higher-order 
interactions and often seem to be more accurate than many other machine learning algorithms 
because of the robustness and strength derived from tree-based regression and model averaging 
(Carlisle et al., 2009).  
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Building on this work, USGS researchers later used random forest models and publicly 
available geospatial data to predict various aspects of the natural flow regime, including the base 
flow index, number of flood-free days, daily variability, low and high flow pulses, and—most 
relevant to this thesis and for application in DWRAT—annual runoff of a stream (Carlisle et al., 
2010). Training data came from the GAGES (Geospatial Attributes of Gages for Evaluating 
Streamflow) database (Falcone et al., 2010), which was developed as part of this effort. GAGES 
classifies 6785 USGS stream gages in the conterminous United States with at least 20 complete 
years of streamflow record between 1950 and 2007 and with reliably delineated watershed 
boundaries into “reference” and “non-reference” gages. This split gages into those that are least 
disturbed by human influences upstream and those where flow has been altered by human 
activities. Several hundred watershed and site characteristics, including climate, geology, soils, 
and topography, were then calculated for each gage based on national data sources (Falcone et 
al., 2010). Choosing 1272 of the reference gages from across the country, the USGS researchers 
developed a set of predictive random forest models, each of which contained 2000 individual 
regression trees. Each model used a flow metric calculated based on the gage as the dependent 
variable and 80 of the gage characteristics as the predictor variables. They calculated several 
model evaluation metrics: root mean square error (RMSE) as well as mean and standard 
deviation of the distribution of observed/expected (O/E) ratio values. They then applied the 
models to predict natural flow metrics in three ungaged watersheds as a demonstration (Carlisle 
et al., 2010).  

Since its initial creation, the USGS natural flow model has been refined, expanded and 
applied in various ways. The underlying GAGES database was updated to GAGES-II in 2011. 
Notable changes included increasing the number of gages in the database from 6785 to 9322 by 
adding gages active in water year 2009 and gages in Alaska, Hawaii, and Puerto Rico; correcting 
basin boundaries and updating their characteristics; and adding mean annual precipitation and air 
temperature for 1950-2009 based on 4-km climate data from Oregon State University’s PRISM 
Climate Group (Falcone, 2011a; Falcone, 2011b). In 2012, Eng et al. used a form of the USGS 
natural flow model that included human disturbance variables (e.g., number of dams and road 
density upstream of a gage) to predict likelihood of streamflow alteration.  

Grantham applied this model to California for multiple purposes. The model was trained 
on a subset of 180 reference gages and then applied to generate estimates of mean annual flows 
in Californian rivers. These estimates were compared with the total annual face value of water 
right volumes to assess the degree of over-allocation of California’s water (Grantham & Viers, 
2014). Another paper also used the model to systematically assess which dams warrant 
environmental flows due to hydrologic alteration and improved predictive performance by 
creating separate monthly regional models for the first time. It divided California into three 
subregions following US Environmental Protection Agency (USEPA) Level-II ecoregion 
boundaries: interior mountains, coastal mountains, and the xeric (i.e., desert) region (Grantham 
et al., 2014; Omernik, 1987). The USGS natural flow model’s use as input to DWRAT follows 
the same division into monthly regional models (Grantham, 2014; Lund et al., 2014). 
 
Sub-Basin Extrapolation Process for DWRAT 

 
As of 2016, the climate data needed for the USGS natural flow model was only available 

through 2011, so the method used to scale monthly natural flow estimates to a daily time step 
was also used to generate current daily natural flow estimates before the model’s estimates are 
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used in DWRAT. As applied for use in DWRAT, the method extrapolates from current daily 
point estimates of natural flow from government sources to sub-basins throughout the watershed 
based on ratios of historical estimated natural flow. To use the USGS natural flow model in the 
Sacramento DWRAT model, average monthly flow in cubic feet per second (cfs) is predicted for 
each sub-basin in the watershed for 1977, a year chosen because it was California’s worst 
recorded drought until the current one and because data required by the flow model is available 
for that year. Next, ratios of estimated 1977 flow are calculated between sub-basins containing a 
current daily natural flow estimate from the NWS and the California Data Exchange Center and 
other sub-basins without a current estimate. These ratios are then used to extrapolate from sub-
basins with current daily natural flow estimates to sub-basin outlets around the entire watershed. 
For example, take two hypothetical sub-basins, A and B. A is upstream and had an estimated 
monthly natural flow of 50 cfs in June 1977. B is downstream, has a current daily natural flow 
estimate location near its outlet, and had an estimated monthly natural flow of 100 cfs in June 
1977. Following the sub-basin extrapolation process, the flow ratio between A and B is ½, so if 
the NWS estimate of current daily flow in B is 150 cfs, we extrapolate that A has a current daily 
flow of 75 cfs. (Grantham, 2014). Figure 2.1 shows the location of the six daily natural flow 
estimates for the Sacramento River and their corresponding spheres of influence in the sub-basin 
extrapolation process. 
 
 

 
Figure 2.1. Sacramento daily natural flow estimates and sub-basin extrapolation regions* 

 
This spatial disaggregation process made it possible to run DWRAT at a daily time step 

and to use DWRAT for the present day. However, this approach assumes that upstream-
                                                
* All maps produced for this thesis were made in QGIS (QGIS Development Team, 2015). 
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downstream ratios of natural flow are consistent across years, which is difficult to test because of 
the lack of data on natural flow. It also assumes that 1977 is the most appropriate year to use, 
although that drought may have affected areas differently than the current drought. Finally, it 
depends on the NWS model’s estimates, limitations, and assumptions. Testing these assumptions 
is beyond the scope of this thesis. 
 
Overview of DWRAT 

 
DWRAT is a water rights curtailment model developed by the Center for Watershed 

Sciences at University of California, Davis as a research project for California’s SWRCB. 
DWRAT uses estimates of full natural flow extrapolated to each sub-basin in the watershed as 
described above as input into an integrated set of two linear programming models. Given the 
predictions of available water in each sub-basin, water right holders’ locations and recorded 
demand for water (data provided by the SWRCB for 2010 through 2013), and the legal priority 
system of riparian and appropriative water rights in California, DWRAT uses optimization 
methods to allocate available water given water rights law and available water supplies, 
suggesting ideal curtailments when available water is insufficient. The goal is to support a more 
transparent, precise approach for water rights curtailments when California experiences drought 
conditions. For a more detailed explanation, see Lund et al. (2014) and Lord (2015).  
 
Machine learning and model aggregation 
 

Machine learning is a set of techniques for predicting (i.e., estimating) an output based on 
one or more inputs (if performing supervised machine learning; unsupervised machine learning 
uses inputs without supervising output to examine the structure of the data). The inputs are 
commonly called features, predictors, explanatory variables, independent variables, or x-
variables, and the outputs are referred to as labels, response variables, dependent variables, or y-
variables. These terms can be used interchangeably, although this thesis uses the terms “predictor 
variables” and “dependent variables” for consistency and clarity for a non-machine learning 
audience. Machine learning can be considered a subfield of statistical learning. Statistical 
learning traces back to the earliest form of linear regression—first implemented in the early 
1800s—and has grown to include many more flexible techniques for learning from data. 
Machine learning focuses on prediction from large and complex datasets, not on inference of the 
relations between variables. The algorithms fit a model from sets of “training data.” Their 
accuracy can be assessed with “test data” withheld from the training set by comparing the 
observed values to the model predictions. If the model performs well, it can then be used to 
predict values for other cases for which predictors are available but the response is unknown. 

Since its goal is prediction of a rate of flow, this thesis focuses on machine learning 
techniques that output a continuous quantity rather than a binary, categorical value, so it uses 
regression techniques rather than classification techniques. It uses a variety of general-purpose 
machine learning algorithms: ridge regression, regression trees, random forests, k-nearest 
neighbors, support vector machines, and AdaBoost. This thesis also combines the output of all 
the above algorithms through model averaging and model stacking. A detailed discussion of the 
reasoning behind each of these well-known machine learning methods is beyond the scope of 
this thesis. For more complete discussion of these methods, consult Mitchell (1997), Hastie et al. 
(2009), James et al. (2013), and Wolpert (1992). 
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CHAPTER 3: METHODS 
 

Overview 
 
This chapter describes methods used to test different machine learning algorithms, 

variable selection and dimensionality reduction techniques, and base datasets to discover which 
combinations were most effective in predicting natural flow. It first describes the data used to 
predict natural flow in more detail. This is followed by descriptions of three alternative model 
concepts: a dry-year model to test whether a more curated dataset was helpful in predicting dry 
year natural flows, a wet-year model to see if the pattern held true for predicting wet year natural 
flows, and a Sacramento basin model to examine the effect of geographically restricting the data. 
It concludes with a general discussion of mlutilities, a Python package written for this thesis 
research that facilitates exploring and evaluating the combinations of models and datasets, and 
then details of how mlutilities was applied for natural flow prediction.  
 
Natural Flow Data 
 

The dataset used to develop the natural flow model is the one used in the USGS model of 
natural flow used in DWRAT (Grantham, 2014): flow data from region-specific reference gages 
and basin characteristics from the GAGES-II database spanning the years 1950 to 2011. The 
Sacramento watershed is contained within the Intermountain and Xeric aggregated ecoregions, 
so only those datasets were used in this research when creating the monthly region models. (A 
set of models developed for the coastal mountain region is not considered in this research, being 
outside the Sacramento watershed.) The Intermountain set contains 38 gages (15,780 
observations of average monthly 
flow across 62 years). The Xeric 
dataset contains 60 gages (26,665 
observations across the same years). 
One gage in the northwestern 
Sacramento watershed was classified 
as belonging to the Coastal Mountain 
region for the USGS model used in 
DWRAT. It was left out of the 
Intermountain and Xeric monthly 
regional models, but its 513 
observations were added to the single 
Sacramento basin model. Figure 3.1 
shows the locations of these gages 
around California. 

 
 
 

 Figure 3.1. California reference 
gages used in developing natural 

flow models 
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Each reference gage’s recorded average monthly flow rate in cfs is used as the dependent 
variable to be predicted. Following the example set by Grantham (2014), these are treated as 
independent observations, a simplifying assumption which is probably less false when using the 
monthly regional model approach rather than the geographic basin approach. (July’s flow rate in 
year 1 is likely related to July’s flow rate in year 2, but July’s flow rate in year 1 is likely much 
more related to August’s flow rate in year 1.) The flow rates come from the USGS surface water 
database, the National Water Information System (NWIS). Mean monthly flows were calculated 
from the daily flow records for each gage (Grantham, 2016). The predictor variables used to 
predict natural flow rate come from the GAGES-II database (Falcone 2011a) and consist of 210 
different watershed and site characteristics calculated for each gage based on national data 
sources, including information on upstream topography, climate, geology, and soils. Not all of 
these variables were used in every model, but they were the starting set from which the included 
variables were chosen. For a complete list of these variables and their sources, see Appendix A.  

To apply the USGS natural flow model for use in DWRAT, values for the set of predictor 
variables were calculated for locations of interest in the Sacramento River watershed (Grantham, 
2015). These same data were used to apply the natural flow models developed for this thesis. 
More specifically, the USGS has systematically subdivided the United States into hydrologic 
sub-basins, the smallest of which is represented by a hydrologic unit code (HUC) with 12 digits, 
known as a HUC 12. These smallest subcatchments are the unit at which DWRAT currently 
operates, so to supply DWRAT with an estimate of water availability for each subcatchment, 
values for the predictor variables were calculated at the outlet of every HUC 12 sub-basin in the 
Sacramento watershed. The Sacramento sub-basins were specified by designating an outlet HUC 
12 sub-basin at the bottom of the Sacramento River and then using an ArcGIS Python tool that 
finds all sub-basins upstream of the chosen outlet based on their systematic numbering scheme 
(Santos, 2015). Using Threemile Slough (whose 12-digit HUC is 180201630703) as the outlet 
resulted in a total of 768 sub-basins, shown in the map below. 
 

 
 

Figure 3.2. Sacramento Watershed Sub-basins 



 

 13 

 
Proposed Natural Flow Models 
 

Three sets of models were developed: dry-year monthly regional models to test whether a 
more curated dataset was helpful in predicting dry year natural flows, wet-year monthly regional 
models to see if the pattern held true for predicting wet year natural flows, and a Sacramento 
basin model to examine the effect of geographically restricting the data. The first two resulted in 
sets of 24 monthly models for the two aggregated ecoregions of interest (Xeric and 
Intermountain), while the last one was a single model that would hypothetically predict natural 
flow for any month or area of the Sacramento basin. Behind each of these proposed models is the 
idea that a natural flow model for the Sacramento River during drought can serve a narrower 
purpose. The existing USGS flow model is a general-purpose model, built on a dataset of all 
observed flows. Rather than using all the data, using only data from drier time periods could 
make the flow model more accurate for low-flow years. Whatever power is lost by the decreased 
sample size and variation might be more than compensated for by a “higher-quality” dataset that 
includes only the conditions of interest for prediction.  

To test if dry-year models predicted dry year flows better than models using all years, the 
first step was to select relatively dry years. Annual precipitation data for the Sacramento 
drainage from 1950 to 2011 was used to rank water years from driest to wettest (NOAA, 2015). 
This assumed that years when the Sacramento watershed was relatively dry would also be 
relatively dry in the rest of California. All water years on the drier half of the ranking list were 
designated as dry years, while all water years on the wetter half of the ranking list were 
designated as wet years. The full dataset could then be reduced to a dry dataset of just those 
observations in dry years.  

Model performance was evaluated using five-fold cross-validation. In this process, each 
observation is randomly assigned to one of five bins. Models are built with the data from four 
bins (80% of the data) and then evaluated using the data from the remaining bin (20%). This is 
repeated five times such that the data in each of the five bins is used once for evaluation. The test 
performance metrics calculated for each test bin can be averaged to give a more stable estimate 
of each statistic to estimate how the model performs on previously unseen data. 

To correctly compare performance of a dry-year model to an all-year model, both models 
had to be evaluated based on their predictions for the same test dataset, even though their 
training datasets differed. Five-fold cross-validation had to be adapted slightly to handle 
comparing two datasets at once and ensure model comparability. For each fold, a 20%/80% 
test/train random split was performed on the dry dataset as in the standard five-fold cross-
validation process described above. The 80% bin was the dry-year model’s training set. The 20% 
bin was considered a “universal” test set. All observations in the full, all-year dataset not in the 
universal test set became the all-year model’s training set for that fold. Figure 3.3’s Venn 
diagram depicts how the all-year data, dry-year data, and universal test set datasets overlap. 
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Figure 3.3. Venn Diagram of Dataset Partition in One Fold of Five-Fold Cross Validation 
 

This process guaranteed that both modeling approaches were tested on how well they 
predicted the same dry year flows. Repeating this process for each bin of the dry dataset, sending 
the data through the sequence of chosen data transformations and machine learning algorithms 
(detailed in the final section of this chapter), and calculating performance metrics for each 
modeling combination based on its success or failure in predicting for the test set performed a 
five-fold cross-validation. The averaged performance metrics from each fold provided a stable 
test estimate of model performance. Redoing five-fold cross-validation for the wet years and 
creating a wet year universal test set then tested whether or not using a more curated dataset also 
helped more accurately predict wet year natural flows. 

The process for the Sacramento basin model was simpler, performing 5-fold cross-
validation for a single dataset rather than for two. The first few steps—performed using QGIS 
(2015)—were to determine which gages are in the Sacramento watershed and which aggregated 
ecoregions they belong to. For the latter, USEPA Level II ecoregions were aggregated following 
the guidelines from Falcone et al. (2010), since that paper’s original shapefiles were unavailable 
(USEPA, 2008). There are 18 reference gages belonging to two aggregated ecoregions in the 
Sacramento watershed, with 11 of these in the full dataset made available for this thesis. Three of 
these 11 belong to the Xeric aggregated ecoregion; the remaining eight belong to the 
Intermountain aggregated ecoregion. Their distribution appears in the below map. 
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Figure 3.4. Sacramento Watershed Reference Gages in their Aggregated Ecoregions 
 
Next, monthly regional datasets from the original USGS flow model were combined into 

a single dataset, adding columns containing binary variables that designated whether or not a 
given observation occurred in a given month or a given region. The dataset was subset to only 
observations whose station ID numbers matched the gages found to be in the Sacramento 
watershed in the process detailed above. As mentioned in the previous section, one gage in the 
northwestern Sacramento watershed (Clear Creek at French Gulch, ID #11371000) was 
classified as belonging to the Coastal Mountain region for the USGS model used in DWRAT, 
but it fell into the Intermountain region for this analysis based on the Falcone et al. (2010) 
aggregated ecoregions diagram. This Sacramento-specific dataset (with 4124 independent 
observations) was then randomly split into 5 folds, each fold was sent through the sequence of 
chosen data transformations and machine learning algorithms (detailed in the final section of this 
chapter), and performance metrics were calculated for each modeling combination based on that 
fold’s test set predictions. Once again, the 5-fold cross-validation meant that the test performance 
metrics for each fold could be averaged to give a more stable estimate of each statistic to 
estimate how the model performs on previously unseen data. 
 
Using mlutilities to Experiment with Machine Learning Approaches 

 
This research provides a higher-level Python 3.x package called mlutilities built on top of 

the existing scikit-learn machine learning package for more easily experimenting with and 
evaluating various combinations of machine learning techniques. Scikit-learn is a Python 
package that integrates a wide range of machine learning algorithms for medium-scale 
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supervised and unsupervised problems (Pedregosa et al., 2011). Mlutilities uses the scikit-learn 
structure but adds functionality that facilitates manipulating datasets in multiple ways and 
applying various machine learning algorithms to evaluate their performance. It also makes 
extensive use of the pandas package for data manipulation. This section provides some brief 
examples of how mlutilities can be used in general to facilitate understanding how it was applied 
to predict natural flow. The full code for mlutilities can be seen at 
https://github.com/brmagnuson/ (as well as the code applying the package to this research). 

Most mlutilities operations are built around a DataSet object, which is instantiated by 
giving it a description, pointing toward a comma-separated values file, and specifying 
information about the location of the dependent variable/predictor variables columns if 
necessary. The code below shows a simple example of reading in a dataset and splitting it into a 
training set and a testing set. 
 
	  
#	  Read	  data	  sets	  
myData	  =	  mlutilities.types.DataSet('My	  Training	  Data',	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  pathToData)	  
splitData	  =	  mlutilities.dataTransformation.splitDataSet(myData,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  testProportion=0.3,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  randomSeed=89271)	  
trainingData	  =	  splitData.trainDataSet	  
testingData	  =	  splitData.testDataSet	  
	  

 
Once a DataSet has been created, the tuneModels function is used to tune (e.g., calibrate) 

one or more models for one or more training DataSets. It expects a list of Datasets and a list of 
TuneModelConfigurations, which contain the necessary information to tune each individual 
model. For example, the below code sets up two models, a random forest model with possible 
tree numbers of 50, 75, and 100 and a k-nearest neighbor model that uses either 2 or 5 nearest 
neighbors. (These code snippets are purely for demonstration and were not used in the research 
for this thesis, so these potential parameter values are just arbitrary examples.) The tuneModels 
function performs a default 5-fold cross-validation grid search for each TuneModelConfiguration 
across all the possible combinations of supplied parameters (using scikit-learn’s default values 
for unspecified parameters). By default, the internal cross-validation grid search is scored based 
on R2. It then returns a list of TuneModelResults, which contain the best set of model parameters 
for each model.  
 
	  
#	  Tune	  models	  for	  training	  data	  set	  
tuneScoringMethod	  =	  'r2'	  
	  
rfParameters	  =	  [{'n_estimators':	  [50,	  75,	  100]}]	  
rfMethod	  =	  mlutilities.types.ModellingMethod('Random	  Forest',	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  sklearn.ensemble.RandomForestRegressor)	  
rfConfig	  =	  mlutilities.types.TuneModelConfiguration('Tune	  Random	  Forest',	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rfMethod,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rfParameters,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tuneScoringMethod)	  
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knnParameters	  =	  [{'n_neighbors':	  [2,	  5]}]	  
knnMethod	  =	  mlutilities.types.ModellingMethod('K	  Nearest	  Neighbors',	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  sklearn.neighbors.KNeighborsRegressor)	  
knnConfig	  =	  mlutilities.types.TuneModelConfiguration('Tune	  KNN',	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  knnMethod,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  knnParameters,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tuneScoringMethod)	  
	  
predictorConfigs	  =	  [rfConfig,	  knnConfig]	  
tunedModelResults	  =	  mlutilities.modeling.tuneModels([trainingData],	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  predictorConfigs)	  
	  

 
Once the models have been tuned using training data, they can be applied to testing data 

using the applyModels function and their results scored on one or more performance metrics 
using the scoreModels function. For this demonstration, R2 and the mean observed/expected ratio 
value were chosen as the performance metrics. Functions to evaluate the mean and standard 
deviation of the observed/expected ratio were created in mlutilities to supplement the existing 
scikit-learn performance metrics such as R2 and mean squared error. 
 
	  
#	  Apply	  tuned	  models	  to	  some	  test	  data	  
applyModelConfigs	  =	  []	  
for	  tunedModelResult	  in	  tunedModelResults:	  
	  	  	  	  applyModelConfig	  =	  mlutilities.types.ApplyModelConfiguration(	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tunedModelResult.description,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tunedModelResult.modellingMethod,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tunedModelResult.parameters,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trainingData,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  testingData)	  
	  	  	  	  applyModelConfigs.append(applyModelConfig)	  
applyModelResults	  =	  mlutilities.modeling.applyModels(applyModelConfigs)	  
	  
#	  Score	  test	  results	  
r2Method	  =	  mlutilities.types.ModelScoreMethod('R	  Squared',	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  sklearn.metrics.r2_score)	  
meanOEMethod	  =	  mlutilities.types.ModelScoreMethod('Mean	  O/E',	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  mlutilities.modeling.meanObservedExpectedScore)	  
testScoringMethods	  =	  [r2Method,	  meanOEMethod]	  
testScoreModelResults	  =	  mlutilities.modeling.scoreModels(applyModelResults,	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  testScoringMethods)	  
	  

 
To easily display results, scoreModelResults can be converted to a pandas DataFrame, 

which can be printed out, written to a CSV file, or visualized. 
 
	  
scoreModelResultsDF	  =	  mlutilities.utilities.createScoreDataFrame(	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  testScoreModelResults)	  
mlutilities.utilities.barChart(scoreModelResultsDF,	  'R	  Squared',	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  'R	  Squared	  for	  Each	  Model',	  'ExampleData/rSquared.png', '#2d974d')	  
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The output of the above barChart function generates a simple chart with a bar for each 

model, numbered by its index in the results DataFrame. 
 

 
 

Figure 3.5. Example Random Forest vs. K-Nearest Neighbor R2 
 
Mlutilities also allows for DataSets to be scaled from 0 to 1 before any models are used, 

as some machine learning algorithms perform better with numbers reduced to this range, and for 
other DataSets to be scaled using the same scaling process. Use of the scaleDataSet and 
scaleDataSetByScaler functions is demonstrated below. 

 
#	  Scale	  data	  
scaledTrainingData,	  scaler	  =	  mlutilities.dataTransformation.scaleDataSet(	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trainingData)	  
scaledTestingData	  =	  mlutilities.dataTransformation.scaleDataSetByScaler(	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  testingData,	  scaler)	  
	  

 
Likewise, mlutilities can be used to perform feature engineering (a term coined for this 

thesis to refer to the set of possible variable selection and dimensionality reduction techniques) 
on a DataSet before a model is applied. This consists of either variable selection approaches, 
such as using a variance threshold technique to only keep predictor variables that have relatively 
high variance or specifying a list of predictor variables to keep, or variable extraction 
approaches, such as principle component analysis (PCA) or independent component analysis 
(ICA) to generate a reduced set of predictor variables through dimensionality reduction. The 
same feature engineering process can then be used to transform another DataSet as well. The 
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below code demonstrates this process, using PCA to create new DataSets with 5 principle 
components. 
 
	  
#	  Perform	  feature	  engineering	  
pcaConfig	  =	  mlutilities.types.FeatureEngineeringConfiguration('PCA	  n5',	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  'extraction',	  sklearn.decomposition.PCA,	  {'n_components':	  5})	  
	  
pcaTrainingData,	  transformer	  =	  mlutilities.dataTransformation.\	  
	  	  	  	  engineerFeaturesForDataSet(trainingData,	  pcaConfig)	  
pcaTestingData	  =	  mlutilities.dataTransformation.engineerFeaturesByTransformer(	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  testingData,	  transformer)	  

 
Mlutilities also provides a way to average or stack models to test improvement due to 

model aggregation. An example of building a StackingEnsemble is shown below. The 
tunedModelResults for the random forest and k-nearest neighbors models are processed to 
extract the tuned model configurations. These are then used as the base predictors for the 
stacking ApplyModelConfiguration, with the random forest model arbitrarily chosen (by 
specifying predictorConfigs[0]) as the second-level model that predicts based on the base 
predictors’ results. (An AveragingEnsemble can also be created in a similar way. For that 
approach, rather than using a second-level model, the base predictors’ results are all averaged 
together for a final prediction. By default, a regular arithmetic mean is calculated, but if desired, 
the user can specify weights for each base predictor, which results in a weighted average 
instead.) 

 
	  
#	  Create	  stacking	  ensemble	  
predictorConfigs	  =	  []	  
for	  tunedModelResult	  in	  tunedModelResults:	  
	  	  	  	  predictorConfig	  =	  mlutilities.types.PredictorConfiguration(	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tunedModelResult.modellingMethod.description,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tunedModelResult.modellingMethod.function,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tunedModelResult.parameters)	  
	  	  	  	  predictorConfigs.append(predictorConfig)	  
	  
stackMethod	  =	  mlutilities.types.ModellingMethod('Stacking	  Ensemble',	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  mlutilities.types.StackingEnsemble)	  
stackParameters	  =	  {'basePredictorConfigurations':	  predictorConfigs,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  'stackingPredictorConfiguration':	  predictorConfigs[0]}	  
stackApplyModelConfig	  =	  mlutilities.types.ApplyModelConfiguration(	  
	  	  	  	  'Stacking	  Ensemble',	  stackMethod,	  stackParameters,	  trainingData,	  testingData)	  
	  
stackResult	  =	  mlutilities.modeling.applyModel(stackApplyModelConfig)	  
	  

 
Using mlutilities to Predict Natural Flow 
 

Combining all the above techniques together in sequence allows for exploration of a great 
variety of dataset-algorithm combinations and evaluating how they perform relative to each 
other. The dataset for each proposed model was randomly split into testing/training sets for 5-
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fold cross validation as detailed above. (Throughout the research, a constant random seed was 
used whenever randomness came into play to ensure reproducible results.) Each fold was sent 
through the same sequence of scaling the data, using multiple variable selection and 
dimensionality reduction techniques, tuning various machine learning algorithms to the resulting 
datasets, applying the same combinations to the matching test sets, and then scoring the 
combination’s predictive performance. The resulting test performance metrics for each fold were 
averaged to give a more stable estimate of each statistic to estimate how the model performs on 
previously unseen data. This high-level sequence can be seen in the below flow diagram. The 
rest of this section details each step in the sequence. 

 

 
 

Figure 3.6. Sequence of Applying Dataset-Model Combinations to a Given Dataset Fold 
 
Each predictor variable column of the original dataset (or datasets, in the case of a dry-

year/wet-year model that starts with both the full dataset and a reduced dataset) is linearly scaled 
from 0 to 1, and the same scaling math is applied to a matching copy of the test dataset. (The test 
dataset’s values may go beyond 0 and 1, since its scaling is still based on the range of the 
training dataset.) The original and scaled training datasets, all of which have more than 200 
predictor variables, are then sent through four different feature engineering approaches to reduce 
to a smaller subset of predictor variables. The same transformation is then applied to the 
matching copy of the test dataset. The four chosen feature engineering approaches (methods to 
select variables or reduce dimensionality) were: 

 
1. PCA for 20 components. 
2. PCA for 50 components. 
3. Removing all predictor variables with a variance below a 0.08 threshold. 
4. Retaining a list of predictor variables that, based on their definitions, were thought 

to be most relevant to predicting natural flows. (This method was referred to as 
“Expert Selection” in the code, although the author professes only rudimentary 
expertise in hydrology.) These consisted of various predictor variables recording 
information about precipitation, temperature, soil, and topography. Appendix B 
contains a full list of variables retained in this feature selection approach. 

 
These scaling and feature engineering operations rapidly multiplied the number of 

datasets to be sent through the next step in the sequence, model tuning. Figure 3.7 shows how a 
training dataset multiplied for a given dry-year monthly regional model because of creating the 
reduced dataset and then applying data transformation methods to each dataset. After starting 
with a single dataset, the scaling and feature engineering steps result in a total of 20 different 
datasets. 
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Figure 3.7. Dataset Transformation for a Given Monthly Regional Model Dataset 
 
Six different machine learning algorithms are then tuned for each training dataset using 

5-fold cross-validation and a grid search across the given parameter space. These algorithms 
were chosen as the full set of available scikit-learn regression algorithms that could process the 
dataset quickly, although ridge regression was chosen as the only linear model. Table 3.1 shows 
the algorithms and their possible parameter sets; unspecified parameters used default values. 
Algorithms employing randomness were passed a random seed of 47392 (a randomly chosen 
number) to ensure repeatable results. 

 
Table 3.1. Chosen Scikit-learn Algorithms and Their Possible Parameter Sets 
 
Algorithm Possible Parameters 
AdaBoost n_estimators: 50, 100 

learning_rate: 0.5, 1.0 
random_state: 47392 

Decision Tree max_features: ‘sqrt’, ‘auto’ 
random_state: 47392 

K-Nearest Neighbors n_neighbors: 2, 5, 10 
metric: ‘minkowski’ 
weights: ‘uniform’, ‘distance’ 

Random Forest n_estimators: 50, 75, 100 
max_features: 10, ‘sqrt’ 
random_state: 47392 

Ridge Regression alpha: 0.0, 0.1, 0.5, 1.0 
normalize: True, False 

Support Vector Machine C: 1.0, 10.0 
epsilon: 0.1, 0.2 
kernel: ‘rbf’, ‘sigmoid’ 
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Once the six base machine learning algorithms are tuned, they are used to build three 
more ensemble models. For more details on ensemble methods, see Wolpert (1992), Breiman 
(1996), Clarke (2003), and Sill et al. (2009). The three chosen ensemble models consist of:  

 
1. An averaging ensemble that averages the predictions of each base algorithm 

weighted by that algorithm’s estimated R2 from the tuning process (as long as R2 
> 0). 

2. A stacking ensemble that uses the base algorithm with the highest estimated R2 
from the tuning process to predict natural flow based on the predictions of all base 
algorithms, meaning that for the second-level model, the predictor variables 
consisted of the flow predictions from each of the 6 models in Table 3.1.  

3. A stacking ensemble identical to the above except that it also includes all the 
original predictor variables that the base algorithms were training on in the first 
level as predictor variables in the second-level model. 

 
This results in 9 machine learning algorithms for each training dataset. Each algorithm is 

trained on the full training dataset with the tuned parameters and then applied to the test dataset 
to make predictions for known but previously unseen data. These predictions, or expected values, 
are then compared to the actual observed values and used to calculate five different model 
performance metrics (which are later averaged across folds for each dataset-model combination 
to get a more stable estimate of each metric): 

 
1. R2 
2. Mean O/E value 
3. Standard deviation of O/E values 
4. Mean squared error (MSE) 
5. Root mean squared error (RMSE) 

 
R2 measures the proportion of variation in the observed data explained by the model. 

There are multiple definitions of R2, but throughout this thesis, the formula used for R2 is: 
 

𝑅! = 1−   
𝑆𝑢𝑚  𝑜𝑓  𝑠𝑞𝑢𝑎𝑟𝑒𝑑  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠
𝑇𝑜𝑡𝑎𝑙  𝑠𝑢𝑚  𝑜𝑓  𝑠𝑞𝑢𝑎𝑟𝑒𝑠  

 
This means that negative R2 values are possible when a model fits the data worse than simply 
predicting the dependent variable’s observed mean. The O/E metrics give an idea of if the model 
tends to over- or under-predict flow and by how much of a relative margin. The RMSE gives the 
magnitude of the average error in flow prediction in cfs.  

This set of scores could then be averaged for each dataset-algorithm combination with the 
corresponding scores from the other folds, resulting in a list of estimated performance metrics for 
each dataset-algorithm combination. R2 was treated as the primary metric, meaning the dataset-
algorithm combination with the highest R2 was then chosen as the “best” model, although it was 
worthwhile to examine each best model’s performance on the other performance statistics to 
ensure it performed well on all dimensions. Performing this process for each monthly regional 
scenario resulted in a set of 48 best models (12 monthly models for 2 regions for both the dry-
year approach and the wet-year approach), while performing it for the Sacramento River basin, a 
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second method of restricting the data added to this research near the end of the process, resulted 
in a single best model.  

These best models could then be evaluated relative to the USGS natural flow models’ 5-
fold cross-validated estimated test performance on the same datasets. If model performance had 
increased by using the best model derived from trying all the combinations, then the new models 
could be treated as more accurate predictors of dry year natural flows than the existing USGS 
models. 

 
A Note on Combinatorics 

 
Employing more feature engineering and machine learning algorithms in the modeling 

sequence expands the number of combinations to try. During initial development, only two 
feature engineering methods and three machine learning algorithms were used to streamline code 
testing, and a single fold took only 1-2 minutes to run on a personal computer thanks to 
parallelization. However, once all combinations were added in, a single fold took approximately 
9 minutes to run on a personal computer, so the code to try out all the combinations was run 
using an Amazon Web Services server with 36 cores. This decreased a fold’s run time by almost 
an order of magnitude to only 1 minute. The results were the downloaded from the cloud for 
further analysis. 

Considering that running the above sequence for the Sacramento basin as well as for dry 
and wet years in the Intermountain and Xeric regions required training models an estimated 
52,920 times,* making full use of parallelization techniques and cloud computing was essential 
for timely performance. 
 
 

                                                
* (2 wet/dry scenarios * 12 months * 2 regions  + 1 Sacramento basin approach)  * (20 datasets * 
9 machine learning algorithms * (5 parameter tuning trainings + 1 model application training)) = 
52,920 model trainings 
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CHAPTER 4: RESULTS 
 

Overview 
 

This chapter describes the results of developing the various proposed natural flow models 
and how they compared to the original USGS natural flow model used in DWRAT. Some 
detailed results output by mlutilities are presented first, using the dry-year July Intermountain 
scenario as a representative example. Next, overall model performance is discussed, showing 
improvement relative to the USGS natural flow model when predicting for dry years and that the 
monthly regional model set approach is better than the geographic basin approach. The chapter 
concludes with an experimental application of the new models to the main stem of the 
Sacramento River.  

 
Example Case: Dry-Year Intermountain July Output 

 
The mlutilities package produces a large amount of data for any given model run. This 

section discusses only the dry-year Intermountain July results as a representative example. 
Examining detailed output for a dry July in the Intermountain ecoregion is an interesting 
example because July tends to be the start of the dry season, after the snowmelt period is over 
and low baseflow conditions start, and because most of the Sacramento River’s water comes 
from the Sierra Nevada Mountains. If curtailments were to happen in a year, they would usually 
be underway by July. Appendix C has charts of cross-validation results for each scenario (the 
dry-year regional monthly models, the wet-year regional monthly models, and the 
geographically-restricted Sacramento basin model). 

First, we examine results for a single fold to see the low-level results before averaging for 
cross-validation estimates. Table 4.1 shows the top output of mlutilities for one of the five folds 
to show mlutilities’ most detailed outputs; the averaged, cross-validated results are in Table 4.2. 
Because 180 model-dataset combinations were tried, only those with the highest 10 R2 values are 
shown here. The first column describes the base data and any transformations applied to it. 
(“Features selected via…” means that the predictor variables were selected via the named feature 
engineering method.) The second column names the modeling method used. (“Stacking OF 
Ensemble” refers to a stacking model that, in addition to the base algorithms’ predictions, also 
includes as predictor variables all the original predictor variables that the base algorithms were 
training on in the first level as predictor variables in the second-level model.) The remaining 
columns display the models’ performance metric results; RMSE gives the average magnitude of 
the error in cubic feet per second. These results are specific to this fold and will look somewhat 
different once the results for each model-dataset combination have been averaged across the five 
folds. 

 
Table 4.1. Top 10 Dry-year July Intermountain Models from Fold 2 
 
Base DataSet Model Method R2 Mean 

O/E 
Std. Dev. 
O/E 

MSE RMSE 
(cfs) 

Dry Years Scaled Stacking Ensemble 0.889 1.137 0.842 5729.818 75.696 
Dry Years Random Forest 0.887 0.851 0.471 5800.291 76.160 
Dry Years Scaled Random Forest 0.887 0.851 0.471 5800.711 76.162 
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Dry Years Scaled Averaging 
Ensemble 

0.872 -0.046 12.633 6588.165 81.168 

Dry Years Scaled Stacking OF 
Ensemble 

0.870 0.893 0.472 6700.249 81.855 

Dry Years 
features selected 
via Variance 
Threshold .08 

Random Forest 0.868 0.815 0.469 6812.465 82.538 

All Years Scaled 
features selected 
via PCA n50 

K Nearest 
Neighbors 

0.867 0.803 0.409 6863.459 82.846 

Dry Years Averaging 
Ensemble 

0.862 0.838 2.750 7098.036 84.250 

Dry Years Stacking Ensemble 0.854 1.022 0.748 7540.411 86.836 
All Years Scaled K Nearest 

Neighbors 
0.849 0.798 0.408 7759.998 88.091 

 
For this fold, most of the best-performing models are dry-year models, and scaling 

appeared to increase predictive accuracy, although PCA and the variance threshold method each 
make an appearance. The stacked ensemble model had the highest R2 value of 0.889, which 
seems to be a respectable result. However, based on the mean O/E results, it tends to under-
predict flow, since a ratio greater than 1 means that the observed value is larger than the 
predicted value. Other ensembles, random forests, and k-nearest neighbors are the other top 
performers.  

To understand several general trends for the full spread of results for the same fold from 
the dry-year July Intermountain model, the below figures graph R2 versus mean O/E and show 
how different dataset-model combinations performed relative to each other. The left portion of 
each figure represents the full results set, while the right portion is zoomed in to show detail for 
the main cluster of results. Negative R2 values are possible when a model fits the data worse than 
simply predicting the dependent variable’s observed mean. Negative mean O/E values occur 
when using linear models such as ridge regression that extrapolate beyond the range of observed 
values for the dependent variable in the training set. Figure 4.1 shows that for this fold, dry-year 
datasets as a group tended to have much better R2 values than all-year datasets, although their 
mean O/E values range more widely from the ideal value of 1. In fact, many of the all-year 
datasets result in a negative R2 value for the test data.  
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Figure 4.1. Dry vs. All Approach, Dry-year July Intermountain Fold 2 Test Performance* 

 
Figure 4.2 shows that for this fold, an ensemble model performs best. Ensemble model 

methods* generally perform well in terms of R2, although there are a few poor performers. Using 
ensemble methods seems to stabilize the mean O/E values. In contrast, non-ensemble methods 
have a broad range of performance metric values. 

 

 
 

Figure 4.2. Ensemble vs. Base Models, Dry-year July Intermountain Fold 2 Test Performance 
 
Now, moving on to the cross-validation results for the dry-year Intermountain July 

scenario, we can see how the final results changed from those of an individual fold. The top 10 
models ranked by R2 value are shown in Table 4.2. 

 
                                                
* All graphs in this thesis were made using Python’s matplotlib library (Hunter, 2007). 
* Averaging ensembles and the two versions of stacked ensembles. Technically, random forests 
are an ensemble of multiple decision trees, but “ensemble” is used here to mean the modeling 
methods employed to combine the results of six different base modeling methods. 
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Table 4.2. Top 10 Cross-validated Dry-year July Intermountain Models 
 

Base DataSet Model Method R2 Mean 
O/E 

Std. Dev. 
O/E 

MSE RMSE 
(cfs) 

Dry Years features 
selected via PCA n50 

Stacking Ensemble 0.784 0.891 0.687 8006.155 85.999 

Dry Years features 
selected via PCA n50 

Stacking OF 
Ensemble 

0.767 1.246 1.855 8506.871 89.280 

Dry Years Stacking Ensemble 0.766 0.875 0.694 8271.001 88.602 
Dry Years Stacking OF 

Ensemble 
0.763 1.250 1.832 8654.498 90.711 

Dry Years features 
selected via Variance 
Threshold .08 

Stacking OF 
Ensemble 

0.762 1.253 1.833 8929.398 90.528 

Dry Years features 
selected via Variance 
Threshold .08 

Stacking Ensemble 0.760 0.885 0.658 8962.852 90.347 

Dry Years features 
selected via PCA n50 

Decision Tree 0.752 4.354 23.863 8307.093 90.063 

All Years features 
selected via Expert 
Selection 

K Nearest 
Neighbors 

0.749 1.026 1.643 9588.479 94.562 

Dry Years Scaled Stacking OF 
Ensemble 

0.747 0.968 0.863 8642.635 90.340 

Dry Years features 
selected via PCA n50 

Averaging 
Ensemble 

0.747 0.542 0.530 9277.459 93.269 

 
In general, R2 values have decreased somewhat (from a top value of 0.889 to 0.784) with 

proportionate increases in MSE and RMSE. This shows the stabilizing effect of using multiple 
test sets, rather than relying on a single test set that a model is better-suited to by chance than it 
would be to other random test sets. The O/E metrics seem to have remained fairly consistent. 
Once again, dry-year datasets predominate. PCA and variable selection using a variance 
threshold have a much stronger presence than they did in Fold 2, as do the various ensemble 
modeling methods. A stacking ensemble remains the top performer. 

Graphs of the full cross-validation estimates show the same broad trends. Dry-year 
datasets tend to perform much better than all-year datasets, many of which have negative test R2 
values (showing that these results were not a fluke of a single test set). Ensemble methods seem 
to have moved up in the ranks, with fewer poor performers as in Fold 2. (As one might suspect, 
the remaining poor performers are trained on an all-year dataset.) See Figures 4.3 and 4.4. The 
left portion of each figure represents the full results set, while the right portion is zoomed in to 
show detail for the main cluster of results. 

 



 

 28 

 
 

Figure 4.3. Dry vs. All Approach, Dry-year July Intermountain Cross-Validation Estimates 
 

 
 

Figure 4.4. Ensemble vs. Base Models, Dry-year July Intermountain Cross-Validation Estimates 
 

It is also worth looking at an example of how scaling and feature engineering affected 
model performance. Figure 4.5 demonstrates how scaling and feature engineering methods 
affected performance of the best model for the July Intermountain scenario, a stacking ensemble 
trained on a dry-year dataset and with predictor variables selected via PCA with 50 components. 
The points represent what one could consider the best model’s “relatives”—all the combinations 
of different versions of the dry-year dataset with a stacking ensemble—and show their 
performance in terms of R2 and mean O/E value.  
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Figure 4.5. Effect of Scaling and Feature Engineering on Dry-year July Intermountain Models 
 
At least for this scenario, there seem to be few easily distinguishable trends in how 

scaling, dimensionality reduction, and variable selection affected performance. Although PCA 
with 50 components performed best based on R2 for the July Intermountain scenario, not every 
dataset that employed PCA performed well, and the original dry-year dataset with no scaling, 
dimensionality reduction, or variable selection was the second-best R2 performer among the 
relatives. However, in this scenario, all base datasets that combined scaling with some form of 
feature engineering—either dimensionality reduction or variable selection—are in the bottom 
five of the relatives ranked by R2. While the “expert selection” method (choosing specific 
predictor variables that, based on their definitions, were thought to be most relevant to predicting 
natural flows) resulted in generally respectable performance metrics, validating the list of chosen 
predictor variables as an acceptable one, it was far from the top performer among the best 
model’s relatives. 
 
Best Monthly Regional Models 
 

This section presents overall results and general trends in model performance for all best 
monthly regional models (meaning the model with the top R2 value for each month in each 
region).  

For the dry-year Intermountain scenario, the top-ranked model for two-thirds of the 
months was trained on a dry-year dataset, with the notable exception of three spring months: 
April, May, and June (as well as November). This difference might be explained by these months 
representing the peak season of Sierra runoff flow, when the snowpack melts and releases 
torrents of water to rivers. High runoff months likely see more variable flows, so training the 
model on the complete dataset would give the model more of these variable examples to learn 
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from. However, for the dry-year Xeric scenario, nearly all the top-ranked models were trained on 
the full all-year dataset. Likewise, for the wet-year scenario, most top-ranked models were also 
trained on the full all-year dataset rather than the more restricted wet-year dataset. See Figure 
4.6. In these cases, then, the greater variation and power of additional data must have been more 
important than the type of that data. 
 

 
 

 
 

Figure 4.6. Best Monthly Regional Models: Restricted vs. Complete Datasets 
 
Across all scenarios, the stacking ensemble approach—most often including the original 

predictor variables as part of the second-level model, although not always—was by far the most 
frequent top performer. (See Figure 4.7.) It was the top performer for three-quarters of the dry 
scenarios and five-sixths of the wet scenarios. This demonstrates the power of stacking models 
together and allowing them to correct for each other’s biases. Random forests were the next-most 
frequent top performer, reinforcing that the USGS chose well when using it for their natural flow 
model (Carlisle et al., 2010), followed by averaging ensembles and k-nearest neighbors. 
Unsurprisingly, the single linear model, ridge regression, was never a top performer. This makes 
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sense, as streamflow is hardly a linear phenomenon. Support vector machines, AdaBoost, and 
single decision trees also never made an appearance as top-performing algorithms. 
 

 
 

 
 

Figure 4.7.Best Monthly Regional Models: Stacked vs. Non-stacked Models 
 
Of the 48 best monthly regional models, 23 of their training datasets used scaling, 

although that was combined with a feature engineering method in only 3 of the best models. This 
continued the trend seen in the detailed results for the dry-year July Intermountain scenario that 
it was usually better to either scale or engineer predictor variables rather than to do both. The 
“expert selection” variable selection method topped the list 6 times, reinforcing that the list of 
predictor variables chosen based on their definitions and likelihood to affect natural flow was a 
respectable one. The variance threshold method of variable selection proved far more popular 
than dimensionality reduction, as it showed up four times more often than PCA’s two top model 
showings. Approximately one quarter of the time, it was best to simply do nothing and use all the 
predictor variables, at least according to R2 rankings.  

Appendix D contains complete tables of best monthly regional models. Each scenario’s 
performance metrics were averaged by region and are briefly summarized in Table 4.3. The 
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highest R2 values were obtained for the dry-year Intermountain models on average, and the 
lowest for the dry-year Xeric models, but the average R2 values are quite respectable across the 
board. The magnitude of the average error seems reasonable, especially when predicting for 
larger streams. The dry-year models tend to have mean O/E values below 0, meaning they over-
predict flow slightly, while the wet-year models tend to under-predict flow. The wet-year Xeric 
scenario has an egregiously high average standard deviation of the O/E values, but this is due to 
the October model’s results; the average of all other months’ values for that column is 4.409. 

 
Table 4.3. Best Monthly Regional Model Average Performance 
 
Scenario Region Mean Performance Metrics 
  R2 Mean O/E Std. Dev. O/E  MSE RMSE (cfs) 
Dry Intermountain 0.830 0.900 0.722 9,259 71 

Xeric 0.720 0.699 2.038 656 17 
Wet Intermountain 0.782 1.056 0.864 41,160 165 

Xeric 0.754 3.260 28.957 4,600 46 
 
Comparison to USGS Models for Dry-year Prediction 
 

Given all these models, are they any more accurate in predicting for dry years than the 
models created by the USGS? This question was answered by recreating the original model in 
Python using the variables and random forest parameters from Grantham (2014) and running it 
through the exact same cross-validation process. Because the random shuffling and splitting of 
the data into folds had been done based on a known seed value to initialize the randomization 
and ensure repeatability, the USGS models saw the same training and testing data, so its 
estimated test performance is directly comparable to that of the above models. Figure 4.8 
compares the dry-year performance of the new models to those of the USGS models for the 
Intermountain region. 

 

 
 

Figure 4.8. Performance Comparison with USGS Models for Dry Years: Intermountain Region 
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The new Intermountain models have higher R2 values than the USGS models in every 
month. In some months, particularly July, August, December, and January, the improvement in 
model fit is quite large. The USGS model actually gets a negative R2 value for December. For all 
except March and November, the mean O/E value is closer to the ideal of 1. This all 
demonstrates that the new models appear to be more accurate when predicting for dry years than 
the USGS models. Seen below, Figure 4.9 demonstrates that the new models make fewer 
improvements for the Xeric region over the USGS models. In this case, eight months show an 
improved R2 for the new models, while November through February show a slight decrease in 
R2. Mean O/E values show some improvements for the summer and early winter months but not 
in the spring. 

 

 
 

Figure 4.9. Performance Comparison with USGS Models for Dry Years: Xeric Region 
 
These comparisons demonstrate the value of the improvements added to the modeling 

process for dry-year prediction. While the gains are not dramatic in every case, they generally 
point to fairly equivalent or improved accuracy, and predictions for some months should now be 
much improved. Given that water right curtailments are likely to occur in July and August if they 
occur for any month in a year, using the new flow models would likely improve DWRAT’s 
suggested curtailment decisions compared to using the USGS model as input to DWRAT. 

This process was not repeated for the wet-year models, since creating a more accurate 
dry-year model was the focus of this research. Therefore, the wet-year models cannot be said to 
be more accurate than the USGS models at this time. 
 
Best Sacramento Basin Model 
 

Restricting the data geographically to the Sacramento basin rather than by month and 
region resulted in a single best model that uses only the 11 Sacramento watershed reference 
gages for which predictor variable information was available as training data. While the monthly 
regional models developed for this research had shown improved accuracy over the USGS 
natural flow model, it seemed worthwhile to see if even further accuracy gains could be eked out 
by restricting the training data geographically. Its performance and that of the four next-best 
models are presented in Table 4.4. 
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Table 4.4. Top 5 Sacramento Basin Models 
 
Base DataSet Model 

Method 
R2 Mean 

O/E 
Std. Dev. 
O/E 

MSE RMSE 
(cfs) 

Sacramento Basin 
Scaled 

Stacking OF 
Ensemble 

0.841 0.849 0.520 5648.109 74.707 

Sacramento Basin 
Scaled 

Stacking 
Ensemble 

0.820 1.018 0.806 6376.173 79.531 

Sacramento Basin, 
Variance Threshold .08 

Stacking OF 
Ensemble 

0.816 0.802 0.612 6514.261 80.067 

Sacramento Basin 
Scaled 

Averaging 
Ensemble 

0.815 0.443 5.103 6522.098 80.425 

Sacramento Basin Averaging 
Ensemble 

0.814 0.365 4.620 6564.478 80.675 

 
These are very encouraging estimated test performance metrics—one of the higher test R2 

value for any best model and a mean O/E near 1. As was seen with the monthly regional models, 
scaling or variable selection via the variance threshold method tended to do better most often, 
and some form of stacking ensemble predominated.  

However, concerns about the generalizability of this model to the entire watershed arose 
due to the small number of and lack of diversity in Sacramento basin reference gages. When the 
model was applied to predict for sub-basin outlets across the entire Sacramento basin as detailed 
in the next section, the predicted flow rates were often extremely and unrealistically low, so the 
approach was not pursued further. (However, following the USGS approach and using runoff per 
unit of drainage area as the dependent variable rather than measured flow rate might improve the 
model’s application, as discussed in the next section.) As shown in Figure 3.4, most reference 
gages were concentrated in two general areas of the watershed and were often on upper reaches 
of streams. Restricting the training data to only those reference gages in the Sacramento basin 
appears to have taken too much variation out of the data and resulted in a heavily biased model. 
Apparently, a natural flow model does not benefit from Sacramento-specific idiosyncrasies 
captured in the available data. While the results of the dry-year modeling process showed that in 
some cases, using a more curated dataset is helpful, a too-limited dataset with insufficient 
variation can make a worse model. In this case, using the traditional, “more data is better” 
approach is superior, so basing the models on the larger ecoregions is a better approach. 

 
Case Study: Application of New Best Models for Use in the Sacramento DWRAT 

 
Can the models developed based on reference gages be generalized to the entire 

Sacramento watershed? To answer this question, the new dry-year monthly regional models were 
applied to predict natural flow for the outlet of every sub-basin in the Sacramento basin for the 
1977 calendar year. The year 1977 was chosen because the Sacramento DWRAT uses ratios of 
1977 natural flow estimates to spatially disaggregate current natural flow estimates at six 
locations to every sub-basin outlet in the watershed, as mentioned in Chapter 2. The 
Intermountain models were used to predict for any sub-basin in the Intermountain region as well 



 

 35 

as any Xeric sub-basin downstream of an Intermountain sub-basin (found using Santos, 2015). 
The Xeric models were used to predict for the remaining Xeric sub-basins. Since the 
Intermountain sub-basins tended to have more flow, this prevented a sudden drop in predicted 
natural flow rates at the Intermountain-Xeric border. This process accounted for a Xeric sub-
basin being downstream of Sierra runoff and tried to maintain hydrologic logic in a statistical 
model. In total, 90 Xeric sub-basins were included in the Intermountain region in this way. They 
are highlighted in white in Figure 4.10. 

 

 
 
Figure 4.10. Map of Xeric Sub-basins Downstream of Intermountain Sub-basins 

 
As Carlisle et al. (2010) noted when developing the original USGS model, in cases where 

the predictor variables were not within the scope of the reference sites used in training the model, 
the model should be applied with caution. As they stated, “we believe the models can be applied 
to all stream segments…that occur within the experience of the reference sites we identified.” 
Since this case study applies the model to locations that have no parallel in the set of reference 
gages—for example, there are no reference gages on the main stem of a river as large as the 
Sacramento—this case study has moved into purely experimental territory. The performance 
metrics estimated based on the test data are at best a guess at how well the model will perform 
when applied to new situations. 

 Keeping this warning in mind, the flows generated by the model were compared to those 
estimated by traditional hydrologic modeling to get a sense of how well the model generalizes 
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for the entire Sacramento watershed. Historical monthly full natural flow estimates were 
obtained for the six gage locations used in the sub-basin extrapolation process (mapped in Figure 
2.1). Three of the locations lie on the Sacramento River (SACC0, SBB, and SIS), and the other 
three are on major tributaries. See Table 4.5. 

 
Table 4.5. Natural flow estimation locations for the Sacramento River 
 
Gage Name Basin Location Source 

SIS Sacramento-Inflow Shasta Upper reaches of the 
Sacramento River 

(CA DWR, 2016b) 

SBB Sacramento River above 
Bend Bridge 

Sacramento River (CA DWR, 2016b) 

FTO Feather River at Oroville Eastern tributary  (CA DWR, 2016b) 
YRS Yuba River near Smartville Eastern tributary (CA DWR, 2016b) 
AMF American River at Folsom Eastern tributary (CA DWR, 2016b) 
SACC0 Sacramento Valley Water 

Resources Index 
Near the Sacramento River’s 
outlet 

(CA DWR, 2016a) 

 
The first five locations represent hydrologically-modeled estimates at actual gage 

locations. The last location, SACC0, is an index that aggregates four upstream natural flow 
estimates: the Sacramento River at Bend Bridge (SBB), the Feather River at Oroville (FTO), the 
Yuba River at Englebright, and the American River at Folsom (AMF) (CA DWR, 2016). The 
historical estimates are available in monthly acre-feet. By converting these to average daily 
natural flow estimates in cfs, they could be directly compared to the statistical models’ 
predictions for those locations.  

At first, the results of generalizing the model were not encouraging. Other than a spike in 
predicted natural flow for May and a smaller spike in July, results from the best models 
developed in the previous sections of this chapter were much lower than the hydrologic 
estimates. While the hydrologic estimates have their own errors and should not be treated as a 
precise performance benchmark, such a large difference in estimates seemed concerning. The 
USGS models’ predictions were also generally lower than the hydrologic estimates for locations 
on the Sacramento River, although they sometimes overpredicted for tributary locations. Neither 
set of models seemed to follow the traditional hydrologic model’s estimates and general shape. 
Figure 4.11 shows each model’s estimates for each comparison location with Sacramento River 
locations on the left and tributary locations on the right.  
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Figure 4.11. Comparison of 1977 Flow Estimates at Six Sacramento River Gages 
 
This means that the “best models” as conceptualized thus far in this thesis performed 

better than the USGS models for the test data, but they did not generalize well to the main stem 
of the Sacramento River or its major tributaries. However, neither model seems to match the 
hydrologic model reliably. This is a concern for the Sacramento DWRAT, although since both 
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statistical models were developed based on data for smaller streams and upper reaches of larger 
rivers and cannot be guaranteed to generalize well to larger rivers, these findings are not 
unexpected. 

The USGS had found improved performance by using runoff per unit of drainage area as 
the dependent variable, rather than simply flow rate (Grantham, 2015). One of the available 
predictor variables was the total drainage area that feeds to a gage in square kilometers 
(drain_sqkm). Dividing the measured flow (qmeas) by drain_sqkm resulted in a new variable 
that represented the amount of runoff generated per square kilometer draining to a location. After 
removing drain_sqkm from the list of available predictor variables and training the model to 
predict this scaled runoff unit, the predictions were multiplied by drain_sqkm to convert them 
back to an estimate of flow in cfs. Early on in this research, this process had not improved 
estimated test performance when experimented with for the month of July as part of the 
mlutilities sequence, so the models generated for this thesis had been developed to predict qmeas, 
not qmeas/drain_sqkm. 

When, as an experiment for this case study, this process was left out of the USGS model, 
meaning it was trained to predict qmeas instead of qmeas/drain_sqkm, the resulting 1977 natural 
flow predictions for the Sacramento watershed were very similar to those generated by the new 
best models in magnitude. Continuing the experiment, the new best models were retrained to 
predict qmeas/drain_sqkm rather than qmeas. The 1977 predictions were much improved but did 
not lead to a very smooth curve, jumping between high and low flows across months. Rather 
than using different models for each month, a consistent model for each monthly region scenario 
was chosen based on general performance characteristics found in this chapter: a dry-year, scaled 
dataset combined with a stacking ensemble. Using this new process, the predictions for 1977 
were dramatically improved. See Figure 4.12 for details.   
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Figure 4.12. Comparison of 1977 Flow Estimates at Six Sacramento River Gages with Modified 

Dependent Variable & Consistent Model 
 

The new models’ 1977 predictions now seem to mimic the temporal pattern of the 
hydrologic model’s estimates at SBB, SACC0, and AMF, although the predictions are still lower 
for the first of those two locations and higher at AMF. The new models tend to overpredict in the 
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spring when compared with the hydrologic model’s estimates at SIS, FTO, and YRS, but the 
magnitudes are much improved relative to those shown in Figure 4.11. Using qmeas/drain_sqkm 
as the dependent variable and a consistent model seems to help consciously enforce hydrologic 
logic and make sure that locations with large drainage areas have larger flows. However, on 
average, both statistical models still predict much lower natural flows than the hydrologic model 
does on the main stem of the Sacramento River, as Table 4.6 shows. While their predictions tend 
to be closer (although too high) for tributary locations, as would be expected for statistical 
models developed for small streams and upper reaches of large rivers, neither model consistently 
predicts natural flows close to the hydrologic model’s predictions. 
 
Table 4.6. Statistical Models’ Difference from Hydrologic Models (cfs) 
 
Location Mean of 

Modified 
Difference 

Standard Deviation 
of Modified 
Difference 

Mean of USGS 
Difference 

Standard Deviation 
of USGS 
Difference 

SIS -1267 2072 -1649 1283 
SBB -3622 698 -2499 1364 
SACC0 -4469 1152 -2628 3517 
FTO 198 1536 -128 761 
YRS 226 590 421 875 
AMF 191 449 300 668 

 
What do these results mean for DWRAT? This case study only compares flow at one 

location in the basin, so no conclusive recommendation can be made. Since neither the USGS 
models nor the new models seem to predict well for the main stem of the river, switching the 
Sacramento DWRAT to the new flow models does not appear to be worthwhile. Modifying the 
models to predict qmeas/drain_sqkm seems helpful, but it would require further study and a 
rigorous estimation of the model’s performance on unseen test data to understand its accuracy. 
More importantly, if we can treat the SACC0 estimate as a guideline, both the USGS and the 
new statistical models seem to drastically underpredict summer flows on the main stem of the 
Sacramento River. This highlights a common difficulty in machine learning. Models can only be 
applied with confidence to situations for which they have been trained and on which they have 
been tested. By definition, random forest predictions can only be combinations of observed 
dependent variable values from the training data, so it will never predict a flow value higher than 
a flow it has seen before. The same is true for the k-nearest neighbors and decision tree 
algorithms. Since decision trees were used as the base estimator for AdaBoost in this research, 
this is true for AdaBoost as well. In contrast, parametric statistical models like ridge regression 
can extrapolate, but prediction of natural flow does not seem to be a linear phenomenon, making 
those extrapolations relatively unhelpful. Therefore, without new training data that better covers 
natural flow of large rivers, neither model will likely predict well for the main stem of the 
Sacramento River. 

DWRAT’s spatial disaggregation process to update the estimated historical flows to the 
current day corrects for these problems to some extent, although if flow estimates for the main 
stem of the Sacramento River are too low, the ratios of estimated historical flows between sub-
basins are likely also too low. This would mean that natural flows for sub-basins near a 
hydrologically estimated natural flow gage are in the right neighborhood, but natural flows for 
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sub-basins at the upper limits of a natural flow gage’s spatial disaggregation region (see Figure 
2.1) are likely too high. By using these scaling ratios, DWRAT may be over-predicting tributary 
flows using either set of natural flow models. Smaller spatial disaggregation regions likely 
experience less of this problem. Because the Sacramento DWRAT uses six estimated natural 
flow gages, those spatial disaggregation regions are kept from growing too large. Including 
additional estimated natural flow gages would further mitigate the issue. Until a detailed 
mechanistic model can be used to estimate natural flow for each sub-basin outlet in the 
Sacramento basin, DWRAT is limited to the statistical models and their limitations. 
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CHAPTER 5: CONCLUSIONS 
 

Discussion of results 
 

After exploring many combinations of datasets and machine learning approaches and 
testing their performance, some general conclusions can be drawn. The utility of stacking 
ensemble models to correct for biases of their underlying base predictors and to generate more 
accurate predictions for unseen test data was demonstrated for multiple scenarios. Using a more 
restricted, curated dataset was helpful in some cases, and is an approach worth considering when 
trying to create a targeted model such as dry-year natural flow prediction rather than a general-
purpose model for predicting flows across all water year types. The new models generally were 
more accurate than the original USGS models for dry years, particularly in the Intermountain 
region. However, because both are trained on reference gage flows generally located in upper 
reaches of streams, neither the USGS models nor the new models seem to predict natural flow of 
the main stem of the Sacramento River well when this was attempted experimentally and 
compared to the natural flow estimates of a traditional hydrologic natural flow model (although 
the hydrologic model has its own set of simplifications and errors). This is not unexpected, 
however, considering the premise of a statistical model. When the USGS models’ outputs are 
used in DWRAT, the spatial disaggregation process likely corrects some of this problem. Using a 
dependent variable that enforces some degree of hydrologic logic—such as runoff generated per 
unit of drainage area (qmeas/drain_sqkm)—also appears to help in generating usable natural 
flow estimates for DWRAT. 

Restricting the training data to drier years and following the USGS approach of creating 
monthly models for relevant aggregated ecoregions resulted in a set of 24 models (12 monthly 
models for each of the two aggregated ecoregions containing the Sacramento watershed). In all 
scenarios, stacking ensemble models tended to perform best on withheld test data. Random 
forests were the next-most frequent top performer, indicating that the original models are still 
well-performing models in many cases.  

The monthly Intermountain scenarios often benefitted from training on a dry-year dataset, 
demonstrating that using a more targeted dataset to train the model can be helpful. This contrasts 
with the usual expectation in statistics and machine learning that “more data is better.” The main 
exceptions were the high-runoff spring months, which likely see more variable flows. Perhaps 
this is because training the model on the complete dataset gave the model more variable 
examples from which to learn. In contrast, the dry-year monthly Xeric scenarios did not benefit 
from using a more restricted, curated dataset in most months. The wet-year/dry-year disparity in 
the Intermountain region is probably much greater than in the Xeric region. Given this, including 
wet years in the dataset when training a model to predict for dry years in the Xeric region 
probably does not bias model predictions as strongly toward wet years as it seems to in the 
Intermountain region. When examined to test the effect of restricting the data in the other 
direction, the wet-year scenarios also followed the traditional “more data is better” axiom. Most 
of their top-ranked models for both regions were also trained on the full all-year dataset. In 
predicting for wet years, then, the greater variation and power of additional data must have been 
more important than the type of that data. Restricting the data geographically was also unhelpful. 
This approach resulted in models that performed well on geographically-restricted test data but 
that could only predict very low flows when applied because of the lack of variation in the 
training data.  
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When evaluated on their prediction of known dry water year flows, the monthly regional 
models consistently tested as better than or equivalent to their corresponding general-purpose 
USGS models on multiple test metrics, and in some cases, they performed far better. This is a 
significant improvement toward predicting natural flows in dry years and could make DWRAT a 
more useful tool for suggesting curtailment decisions. As was explored in the experimental case 
study at the end of Chapter 4, however, applications of a statistical natural flow model beyond 
the situation it was trained for can lead to untrustworthy results and should be treated as suspect. 
Measures to correct for likely errors are important, such as the spatial disaggregation process that 
spreads current, validated, multiple hydrologic estimates of natural flow around a basin based on 
ratios of the statistical model’s historical predictions. 
 
Limitations  
 

The caveats from Chapter 1 bear repeating and are true for both the USGS model and the 
new models developed in this research. An expected value for natural flow is particularly 
difficult to assess because many locations lack flows recorded prior to human development and 
disruption, including the main stem of the Sacramento River. The USGS reference gages used to 
train the model can be left out of training data and used to test a model’s predictions, but they 
only represent a particular type of location. Training the model to predict for those locations does 
not mean that it will predict well for all locations, as Carlisle et al. (2010) also indicated. 
Predictions can be evaluated against the result of more traditional mechanistic hydrologic models 
of natural flow, as was done for the main stem of the Sacramento River, but those models have 
their own uncertainties and errors and should not be treated as ground truth. 
 
Recommendations for further research 
 

This thesis has built on the work of Carlisle et al. (2010) and Grantham (2014) and lays a 
path for further inquiries. One clear next step would be to rerun much of the analysis with the 
dependent variable discovered to perform more logically in Chapter 4’s case study: runoff 
generated per unit of drainage area (qmeas/drain_sqkm). At this point, a clear understanding of 
how it would affect test performance during the model development process is unknown but 
would be helpful for those who wish to apply the model. The idea of restricting data could be 
explored further. Rather than a simple wet-dry categorization, a three-category continuum of dry, 
average, and wet years might be more helpful. This research examined multiple performance 
metrics but chose the “best” model for each scenario based only on its estimated R2 value, but 
creating a process that choses the best model based on multiple metrics might select better 
models, since they would have been shown to perform across multiple dimensions. Also, this 
research created a wealth of models for every scenario, and although some dataset-algorithm 
combinations proved to be truly terrible, there were many good models that performed well, even 
though one was chosen as best. Some of the well-performing models could perhaps be used to 
generate a probability distribution or an envelope of possible numbers rather than a single flow 
value for a given point. 

Using the same basic framework to create monthly regional models but finding new 
sources to supplement the training data with information on natural flow of larger rivers would 
help make the models more accurate for larger rivers like the Sacramento. Perhaps estimates of 
natural flow from a mechanistic hydrologic model like the Sacramento Valley Water Resources 
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Index could be included as training observations—although they would not represent a ground 
truth, they would be an expertly developed estimate that could enlarge the applicable scope of 
the model. Alternatively, the model could be made to predict unimpaired flow rather than natural 
flow if trained on calculations of unimpaired flow rather than only on reference gages. 

On the subject of applying the model, an evaluation of the spatial disaggregation model 
that uses ratios of the historical natural flow estimates as a basis for disaggregating current 
natural flow estimates from mechanistic hydrologic models from a single point to the rest of the 
watershed could be interesting. It rests on the premise that ratios of downstream and upstream 
flows are fairly consistent across years and that the ratios for any drought year are probably 
similar to those of 1977, but this may not be the case. This analysis was beyond the scope of this 
thesis and would have been difficult to do with the existing dataset, but it would be an important 
part of evaluating the trustworthiness of the natural flow estimates fed into DWRAT. 

 
Conclusions 
 

This thesis demonstrates the power of stacking ensemble models to correct for the biases 
of their underlying base predictors and to generate more accurate predictions for unseen test data 
in multiple scenarios. Although statistics and machine learning usually expect more data to be 
better, the monthly Intermountain scenarios often benefitted from training on a dry-year dataset, 
demonstrating that using a more targeted dataset to train the model can be helpful at times. The 
new models generally tested as more accurate than the original USGS models for dry years, 
particularly in the Intermountain region, although because of the scope of their training data and 
the nature of statistical modeling, both models can only be applied to streams’ upper reaches 
with confidence.  

A river’s natural flow is an important quantity that we often can only do our best to 
estimate. Even with their limitations, further research into statistical models of natural flows to 
supplement more traditional hydrologic models can lend additional insights and foster more 
rapid development of usable models. Better information on natural flows can improve decision-
making on both environmental problems and water rights curtailment, issues which will likely 
only grow in importance in California over time.  
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APPENDIX A: DATA USED IN MODELING 

 
All variables were calculated using publicly available datasets. For further details, see Falcone 
(2011a). These variables were mapped to their sources in consultation with Grantham (2016); 
any errors are my own. Most variables describe the total, average, or percentage value for the 
area draining to that point (for example, “DRAIN_SQKM” is the total drainage area that feeds to 
a gage). Some variables are simple ID keys and were not used in prediction. “Year” and 
“STAID” were never used as predictor variables. “Month” was ignored as superfluous in the 
monthly regional models but was transformed into 11 binary variables indicating month 
(January-November) to be used as a predictor variable in the Sacramento basin model. “IntMnt” 
was ignored as superfluous in the monthly regional models but was used as a binary variable 
indicating if a location was within the Intermountain aggregated ecoregion for the Sacramento 
basin model. 
 
Variable Definition Source 
anorthositic Rock type Reed & Bush, 2001 
APR_PPT7100_CM Long term average precipitation for 

that month (1971-2000) 
Falcone, 2011b 

APR_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

AUG_PPT7100_CM Long term average precipitation for 
that month (1971-2000) 

Falcone, 2011b 

AUG_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

AWCAVE Soil water capacity USDA, 2008 
BDAVE Soil average bulk density USDA, 2008 
BFI_AVE Average base flow index Wolock, 2003 
CaO_pct Mean percent of rock's CaO content Olson & Hawkins, 2012 
CLAYAVE Soil average clay content USDA, 2008 
CONTACT Subsurface flow contact time Wolock et al., 1989 
DEC_PPT7100_CM Long term average precipitation for 

that month (1971-2000) 
Falcone, 2011b 

DEC_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

DRAIN_SQKM Drainage area USGS, 2008 
ELEV_MEAN_M_BASIN
_30M 

Mean watershed elevation USEPA, 2008 

ET Evapotranspiration Falcone, 2011b 
FEB_PPT7100_CM Long term average precipitation for 

that month (1971-2000) 
Falcone, 2011b 

FEB_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

gneiss Rock type Reed & Bush, 2001 
granitic Rock type Reed & Bush, 2001 
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HGA Soil hydrologic group A USDA, 2008 
HGAC Soil hydrologic groups A & C USDA, 2008 
HGAD Soil hydrologic groups A & D USDA, 2008 
HGB Soil hydrologic group B USDA, 2008 
HGBC Soil hydrologic groups B & C USDA, 2008 
HGBD Soil hydrologic groups B & D USDA, 2008 
HGC Soil hydrologic group C USDA, 2008 
HGCD Soil hydrologic groups C & D USDA, 2008 
HGD Soil hydrologic group D USDA, 2008 
HGVAR Soil hydrologic group VAR USDA, 2008 
HLR1 Hydrologic landscape region 1 Wolock et al., 2004 
HLR10 Hydrologic landscape region 10 Wolock et al., 2004 
HLR11 Hydrologic landscape region 11 Wolock et al., 2004 
HLR12 Hydrologic landscape region 12 Wolock et al., 2004 
HLR13 Hydrologic landscape region 13 Wolock et al., 2004 
HLR14 Hydrologic landscape region 14 Wolock et al., 2004 
HLR15 Hydrologic landscape region 15 Wolock et al., 2004 
HLR16 Hydrologic landscape region 16 Wolock et al., 2004 
HLR17 Hydrologic landscape region 17 Wolock et al., 2004 
HLR18 Hydrologic landscape region 18 Wolock et al., 2004 
HLR19 Hydrologic landscape region 19 Wolock et al., 2004 
HLR2 Hydrologic landscape region 2 Wolock et al., 2004 
HLR20 Hydrologic landscape region 20 Wolock et al., 2004 
HLR3 Hydrologic landscape region 3 Wolock et al., 2004 
HLR4 Hydrologic landscape region 4 Wolock et al., 2004 
HLR5 Hydrologic landscape region 5 Wolock et al., 2004 
HLR6 Hydrologic landscape region 6 Wolock et al., 2004 
HLR7 Hydrologic landscape region 7 Wolock et al., 2004 
HLR8 Hydrologic landscape region 8 Wolock et al., 2004 
HLR9 Hydrologic landscape region 9 Wolock et al., 2004 
intermediate Rock type Reed & Bush, 2001 
IntMnt Presence in Intermountain 

aggregated ecoregion 
Falcone, 2011a 

JAN_PPT7100_CM Long term average precipitation for 
that month (1971-2000) 

Falcone, 2011b 

JAN_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

JUL_PPT7100_CM Long term average precipitation for 
that month (1971-2000) 

Falcone, 2011b 

JUL_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

JUN_PPT7100_CM Long term average precipitation for 
that month (1971-2000) 

Falcone, 2011b 

JUN_TMP7100_DEGC Monthly average temperature by Falcone, 2011b 
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water year 
KFACT_UP Soil average K-factor USDA, 2008 
LPerm Mean hydraulic conductivity Olson & Hawkins, 2012 
MAR_PPT7100_CM Long term average precipitation for 

that month (1971-2000) 
Falcone, 2011b 

MAR_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

MAY_PPT7100_CM Long term average precipitation for 
that month (1971-2000) 

Falcone, 2011b 

MAY_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

MgO_pct Mean percent of rock's MgO 
content 

Olson & Hawkins, 2012 

Month Month Falcone, 2011b 
NO10AVE Soil material < 0.07 mm USDA, 2008 
NO200AVE Soil material < 2 mm USDA, 2008 
NO4AVE Soil material < 5 mm USDA, 2008 
NOV_PPT7100_CM Long term average precipitation for 

that month (1971-2000) 
Falcone, 2011b 

NOV_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

OCT_PPT7100_CM Long term average precipitation for 
that month (1971-2000) 

Falcone, 2011b 

OCT_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

OMAVE Soil average organic matter USDA, 2008 
p0 Monthly average precipitation, 

current month 
PRISM Climate Group, 
2011 

p1 Monthly average precipitation, 
previous month 

PRISM Climate Group, 
2011 

p10 Monthly average precipitation, 10 
months ago 

PRISM Climate Group, 
2011 

p11 Monthly average precipitation, 11 
months ago 

PRISM Climate Group, 
2011 

p12 Monthly average precipitation, 12 
months ago 

PRISM Climate Group, 
2011 

p2 Monthly average precipitation, 2 
months ago 

PRISM Climate Group, 
2011 

p2sum Sum of monthly average 
precipitation from previous 2 
months 

PRISM Climate Group, 
2011 

p3 Monthly average precipitation, 3 
months ago 

PRISM Climate Group, 
2011 

p3sum Sum of monthly average 
precipitation from previous 3 
months 

PRISM Climate Group, 
2011 
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p4 Monthly average precipitation, 4 
months ago 

PRISM Climate Group, 
2011 

p5 Monthly average precipitation, 5 
months ago 

PRISM Climate Group, 
2011 

p6 Monthly average precipitation, 6 
months ago 

PRISM Climate Group, 
2011 

p6sum Sum of monthly average 
precipitation from previous 6 
months 

PRISM Climate Group, 
2011 

p7 Monthly average precipitation, 7 
months ago 

PRISM Climate Group, 
2011 

p8 Monthly average precipitation, 8 
months ago 

PRISM Climate Group, 
2011 

p9 Monthly average precipitation, 9 
months ago 

PRISM Climate Group, 
2011 

PERDUN Dunne overland flow Wolock, 2003 
PERHOR Horton overland flow Wolock, 2003 
PERMAVE Soil permeability USDA, 2008 
PPTAVG_BASIN Annual average precipitation Falcone, 2011b 
PRECIP_SEAS_IND Monthly preciptiation variability Falcone, 2011b 
qmeas Average monthly flow rate Falcone, 2011b 
quarternary Rock type Reed & Bush, 2001 
RFACT Rainfall/runoff factor USDA, 2008 
ROCKDEPAVE Average soil thickness USDA, 2008 
RUNAVE7100 Average annual runoff (1970-2000) Falcone, 2011b 
S_pct Mean percent of rock's S content Olson & Hawkins, 2012 
SANDAVE Soil average sand content USDA, 2008 
sedimentary Rock type Reed & Bush, 2001 
SEP_PPT7100_CM Long term average precipitation for 

that month (1971-2000) 
Falcone, 2011b 

SEP_TMP7100_DEGC Monthly average temperature by 
water year 

Falcone, 2011b 

SGEO1 Surficial geology class 1 Hunt, 1979 
SGEO10 Surficial geology class 10 Hunt, 1979 
SGEO11 Surficial geology class 11 Hunt, 1979 
SGEO12 Surficial geology class 12 Hunt, 1979 
SGEO13 Surficial geology class 13 Hunt, 1979 
SGEO14 Surficial geology class 14 Hunt, 1979 
SGEO15 Surficial geology class 15 Hunt, 1979 
SGEO16 Surficial geology class 16 Hunt, 1979 
SGEO17 Surficial geology class 17 Hunt, 1979 
SGEO18 Surficial geology class 18 Hunt, 1979 
SGEO19 Surficial geology class 19 Hunt, 1979 
SGEO2 Surficial geology class 2 Hunt, 1979 
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SGEO20 Surficial geology class 20 Hunt, 1979 
SGEO21 Surficial geology class 21 Hunt, 1979 
SGEO22 Surficial geology class 22 Hunt, 1979 
SGEO23 Surficial geology class 23 Hunt, 1979 
SGEO24 Surficial geology class 24 Hunt, 1979 
SGEO25 Surficial geology class 25 Hunt, 1979 
SGEO26 Surficial geology class 26 Hunt, 1979 
SGEO27 Surficial geology class 27 Hunt, 1979 
SGEO28 Surficial geology class 28 Hunt, 1979 
SGEO29 Surficial geology class 29 Hunt, 1979 
SGEO3 Surficial geology class 3 Hunt, 1979 
SGEO30 Surficial geology class 30 Hunt, 1979 
SGEO31 Surficial geology class 31 Hunt, 1979 
SGEO32 Surficial geology class 32 Hunt, 1979 
SGEO33 Surficial geology class 33 Hunt, 1979 
SGEO34 Surficial geology class 34 Hunt, 1979 
SGEO35 Surficial geology class 35 Hunt, 1979 
SGEO36 Surficial geology class 36 Hunt, 1979 
SGEO37 Surficial geology class 37 Hunt, 1979 
SGEO38 Surficial geology class 38 Hunt, 1979 
SGEO39 Surficial geology class 39 Hunt, 1979 
SGEO4 Surficial geology class 4 Hunt, 1979 
SGEO40 Surficial geology class 40 Hunt, 1979 
SGEO41 Surficial geology class 41 Hunt, 1979 
SGEO42 Surficial geology class 42 Hunt, 1979 
SGEO43 Surficial geology class 43 Hunt, 1979 
SGEO44 Surficial geology class 44 Hunt, 1979 
SGEO45 Surficial geology class 45 Hunt, 1979 
SGEO5 Surficial geology class 5 Hunt, 1979 
SGEO6 Surficial geology class 6 Hunt, 1979 
SGEO7 Surficial geology class 7 Hunt, 1979 
SGEO8 Surficial geology class 8 Hunt, 1979 
SGEO9 Surficial geology class 9 Hunt, 1979 
SILTAVE Soil average silt content USDA, 2008 
SLOPE_PCT_30M Mean watershed slope USEPA, 2008 
STAID Gage ID Falcone, 2011b 
T_AVG_BASIN Long-term average max annual 

temperature (1970-2000) 
Falcone, 2011b 

T_MAX_BASIN Long-term average annual 
temperature (1970-2000) 

Falcone, 2011b 

T_MIN_BASIN Long-term average min annual 
temperature (1970-2000) 

Falcone, 2011b 

t0 Monthly average air temperature, PRISM Climate Group, 
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current month 2011 
t1 Monthly average air temperature, 

previous month 
PRISM Climate Group, 
2011 

t10 Monthly average air temperature, 10 
months ago 

PRISM Climate Group, 
2011 

t11 Monthly average air temperature, 11 
months ago 

PRISM Climate Group, 
2011 

t12 Monthly average air temperature, 12 
months ago 

PRISM Climate Group, 
2011 

t2 Monthly average air temperature, 2 
months ago 

PRISM Climate Group, 
2011 

t3 Monthly average air temperature, 3 
months ago 

PRISM Climate Group, 
2011 

t4 Monthly average air temperature, 4 
months ago 

PRISM Climate Group, 
2011 

t5 Monthly average air temperature, 5 
months ago 

PRISM Climate Group, 
2011 

t6 Monthly average air temperature, 6 
months ago 

PRISM Climate Group, 
2011 

t7 Monthly average air temperature, 7 
months ago 

PRISM Climate Group, 
2011 

t8 Monthly average air temperature, 8 
months ago 

PRISM Climate Group, 
2011 

t9 Monthly average air temperature, 9 
months ago 

PRISM Climate Group, 
2011 

UCS Mean uniaxial compressive strength Olson & Hawkins, 2012 
ultramafic Rock type Reed & Bush, 2001 
volcanic Rock type Reed & Bush, 2001 
wb0 Monthly runoff estimate from water 

balance model, current month 
Wolock & McCabe, 1999 

wb1 Monthly runoff estimate from water 
balance model, previous month 

Wolock & McCabe, 1999 

wb10 Monthly runoff estimate from water 
balance model, 10 months ago 

Wolock & McCabe, 1999 

wb11 Monthly runoff estimate from water 
balance model, 11 months ago 

Wolock & McCabe, 1999 

wb12 Monthly runoff estimate from water 
balance model, 12 months ago 

Wolock & McCabe, 1999 

wb2 Monthly runoff estimate from water 
balance model, 2 months ago 

Wolock & McCabe, 1999 

wb3 Monthly runoff estimate from water 
balance model, 3 months ago 

Wolock & McCabe, 1999 

wb4 Monthly runoff estimate from water 
balance model, 4 months ago 

Wolock & McCabe, 1999 

wb5 Monthly runoff estimate from water 
balance model, 5 months ago 

Wolock & McCabe, 1999 
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WB5100_ANN_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_APR_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_AUG_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_DEC_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_FEB_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_JAN_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_JUL_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_JUN_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_MAR_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_MAY_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_NOV_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_OCT_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

WB5100_SEP_MM Average monthly runoff (1950-
2010) 

Falcone, 2011b 

wb6 Monthly runoff estimate from water 
balance model, 6 months ago 

Wolock & McCabe, 1999 

wb7 Monthly runoff estimate from water 
balance model, 7 months ago 

Wolock & McCabe, 1999 

wb8 Monthly runoff estimate from water 
balance model, 8 months ago 

Wolock & McCabe, 1999 

wb9 Monthly runoff estimate from water 
balance model, 9 months ago 

Wolock & McCabe, 1999 

WD_APR_BASIN Number of wet days Falcone, 2011b 
WD_AUG_BASIN Number of wet days Falcone, 2011b 
WD_BASIN Average annual wet days Falcone, 2011b 
WD_DEC_BASIN Number of wet days Falcone, 2011b 
WD_FEB_BASIN Number of wet days Falcone, 2011b 
WD_JAN_BASIN Number of wet days Falcone, 2011b 
WD_JUL_BASIN Number of wet days Falcone, 2011b 
WD_JUN_BASIN Number of wet days Falcone, 2011b 
WD_MAR_BASIN Number of wet days Falcone, 2011b 
WD_MAY_BASIN Number of wet days Falcone, 2011b 
WD_NOV_BASIN Number of wet days Falcone, 2011b 
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WD_OCT_BASIN Number of wet days Falcone, 2011b 
WD_SEP_BASIN Number of wet days Falcone, 2011b 
WDMAX_BASIN Max annual wet days Falcone, 2011b 
WDMIN_BASIN Min annual wet days Falcone, 2011b 
WTDEPAVE Average depth to water table USDA, 2008 
Year Year Falcone, 2011b 
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APPENDIX B: LIST OF PREDICTOR VARIABLES RETAINED BASED ON 
DEFINITIONS 

 
As part of the feature engineering step explained in Chapter 3, a list of specific predictor 

variables (from the comprehensive list in Appendix A) was used to perform an informed variable 
selection for each model, in addition to using PCA with 20 components, PCA with 50 
components, and a variance threshold of 0.8. These tables show the contents of each list of 
chosen predictor variables for each proposed model. 

For both the dry-year/wet-year models, the same set of 34 predictor variables was 
selected: 

 
Variable Definition 
DRAIN_SQKM Drainage area 
ELEV_MEAN_M_BASIN_30M Mean watershed elevation 
p0 Monthly average precipitation, current month 
p1 Monthly average precipitation, previous month 
p2 Monthly average precipitation, 2 months ago 
p3 Monthly average precipitation, 3 months ago 
p4 Monthly average precipitation, 4 months ago 
p5 Monthly average precipitation, 5 months ago 
p6 Monthly average precipitation, 6 months ago 
p7 Monthly average precipitation, 7 months ago 
p8 Monthly average precipitation, 8 months ago 
p9 Monthly average precipitation, 9 months ago 
p10 Monthly average precipitation, 10 months ago 
p11 Monthly average precipitation, 11 months ago 
p12 Monthly average precipitation, 12 months ago 
p2sum Sum of monthly average precipitation from previous 2 

months 
p3sum Sum of monthly average precipitation from previous 3 

months 
p6sum Sum of monthly average precipitation from previous 6 

months 
PERMAVE Soil permeability 
RFACT Rainfall/runoff factor 
t0 Monthly average air temperature, current month 
t1 Monthly average air temperature, previous month 
t2 Monthly average air temperature, 2 months ago 
t3 Monthly average air temperature, 3 months ago 
t4 Monthly average air temperature, 4 months ago 
t5 Monthly average air temperature, 5 months ago 
t6 Monthly average air temperature, 6 months ago 
t7 Monthly average air temperature, 7 months ago 
t8 Monthly average air temperature, 8 months ago 
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t9 Monthly average air temperature, 9 months ago 
t10 Monthly average air temperature, 10 months ago 
t11 Monthly average air temperature, 11 months ago 
t12 Monthly average air temperature, 12 months ago 
WD_BASIN Average annual wet days 

 
For the Sacramento basin model, the above list of 34 predictor variables was retained, 

plus the below 12 predictor variables: 
 

Variable Definition 
IntMnt Binary indicating presence in Intermountain ecoregion 
jan Binary indicating occurrence of flow in January 
feb Binary indicating occurrence of flow in February 
mar Binary indicating occurrence of flow in March 
apr Binary indicating occurrence of flow in April 
may Binary indicating occurrence of flow in May 
jun Binary indicating occurrence of flow in June 
jul Binary indicating occurrence of flow in July 
aug Binary indicating occurrence of flow in August 
sep Binary indicating occurrence of flow in September 
oct Binary indicating occurrence of flow in October 
nov Binary indicating occurrence of flow in November 
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APPENDIX C: CROSS-VALIDATION RESULTS FOR EACH SCENARIO 
 
Dry-Year Regional Monthly Models 
 
Intermountain Monthly Models 
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Xeric Monthly Models 
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Wet-Year Regional Monthly Models 
 
Intermountain Monthly Models 
 

 
 



 

 71 

 
 

 
 

 
 



 

 72 

 
 

 
 

 
 



 

 73 

 
 

 
 

 
 



 

 74 

 
 

 
 
Xeric Monthly Models 
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Sacramento Model 
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APPENDIX D: DETAILS OF BEST MONTHLY REGIONAL MODELS 
 

These tables detail the base dataset and modeling method combination chosen as “best” 
(based on its R2 value) for each monthly regional scenario as well as its estimated test 
performance metrics. 
 
Best Dry-Year Intermountain Models for Each Month 
 
Month Base DataSet Model 

Method 
R2 Mean 

O/E 
Std. 
Dev. 
O/E 

MSE RMSE 
(cfs) 

Jan  Dry Years Scaled Stacking OF 
Ensemble 

0.812 0.904 0.564 690.790 25.902 

Feb  Dry Years Stacking OF 
Ensemble 

0.752 0.926 0.686 2901.184 50.814 

Mar  Dry Years, Expert 
Selection 

Random 
Forest 

0.815 0.812 0.430 4616.699 65.426 

Apr  All Years, Expert 
Selection 

Stacking 
Ensemble 

0.854 0.916 0.483 19688.253 138.999 

May  All Years Stacking OF 
Ensemble 

0.928 1.023 0.778 34197.542 182.207 

Jun  All Years, Expert 
Selection 

K Nearest 
Neighbors 

0.873 1.011 1.011 38603.548 195.324 

Jul  Dry Years, PCA n50 Stacking 
Ensemble 

0.784 0.891 0.687 8006.155 85.999 

Aug  Dry Years Scaled, 
PCA n20 

Random 
Forest 

0.881 0.778 0.550 545.025 21.277 

Sep  Dry Years Scaled, 
Expert Selection 

Averaging 
Ensemble 

0.768 0.705 1.341 508.578 21.159 

Oct  Dry Years Scaled Stacking OF 
Ensemble 

0.862 1.073 1.061 328.793 17.567 

Nov  All Years Scaled Stacking OF 
Ensemble 

0.778 0.743 0.455 610.925 24.365 

Dec  Dry Years Scaled Stacking 
Ensemble 

0.851 1.024 0.619 409.535 19.694 

 
 
Best Dry-Year Xeric Models for Each Month 
 
Month Base DataSet Model 

Method 
R2 Mean 

O/E 
Std. 
Dev. 
O/E 

MSE RMSE 
(cfs) 

Jan  All Years, Expert 
Selection 

Stacking 
Ensemble 

0.629 0.616 0.880 1246.150 34.475 

Feb  All Years, Variance 
Threshold .08 

Stacking OF 
Ensemble 

0.735 0.642 0.585 3501.843 57.141 
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Mar  All Years Stacking OF 
Ensemble 

0.734 0.600 0.534 1890.997 40.557 

Apr  All Years Stacking OF 
Ensemble 

0.743 0.542 0.515 236.831 15.064 

May  All Years, Variance 
Threshold .08 

Stacking OF 
Ensemble 

0.766 0.548 0.542 50.886 6.873 

Jun  All Years Stacking OF 
Ensemble 

0.781 0.453 0.493 12.615 3.385 

Jul  All Years Scaled Stacking OF 
Ensemble 

0.811 0.650 1.361 2.899 1.684 

Aug  All Years Scaled Stacking OF 
Ensemble 

0.758 1.271 9.502 2.535 1.555 

Sep  All Years, Variance 
Threshold .08 

Random 
Forest 

0.650 0.651 2.037 4.633 2.118 

Oct  Dry Years Scaled Stacking OF 
Ensemble 

0.725 1.197 4.613 5.332 2.162 

Nov  All Years Stacking OF 
Ensemble 

0.689 0.515 0.667 199.921 12.307 

Dec  Dry Years, Variance 
Threshold .08 

Averaging 
Ensemble 

0.616 0.707 2.728 721.460 25.115 

 
 
Best Wet-Year Intermountain Models for Each Month 
 
Month Base DataSet Model 

Method 
R2 Mean 

O/E 
Std. 
Dev. 
O/E 

MSE RMSE 
(cfs) 

Jan  All Years Scaled Stacking OF 
Ensemble 

0.625 1.092 0.717 35513.983 177.415 

Feb  Wet Years Scaled Averaging 
Ensemble 

0.698 0.821 0.826 18041.230 131.488 

Mar  All Years Scaled Stacking OF 
Ensemble 

0.829 1.054 0.452 12316.922 110.517 

Apr  All Years Scaled, 
via Expert Selection 

Random 
Forest 

0.861 0.935 0.403 33528.940 173.316 

May  All Years, Variance 
Threshold .08 

Stacking OF 
Ensemble 

0.910 1.032 0.505 119626.081 336.743 

Jun  All Years Stacking OF 
Ensemble 

0.937 1.119 0.881 114379.293 323.183 

Jul  Wet Years Stacking 
Ensemble 

0.821 1.159 2.402 120571.644 334.724 

Aug  All Years, Variance 
Threshold .08 

Random 
Forest 

0.808 0.907 0.589 12426.334 108.453 

Sep  All Years Scaled Stacking 
Ensemble 

0.668 1.209 0.930 8649.976 86.035 

Oct  All Years Scaled Stacking OF 0.755 1.034 0.873 885.746 28.110 
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Ensemble 
Nov  All Years Stacking 

Ensemble 
0.771 1.019 0.817 2313.822 45.884 

Dec  All Years Scaled Stacking 
Ensemble 

0.701 1.286 0.982 15670.291 119.312 

 
 
Best Wet-Year Xeric Models for Each Month 
 
Month Base DataSet Model 

Method 
R2 Mean 

O/E 
Std. 
Dev. 
O/E 

MSE RMSE 
(cfs) 

Jan  All Years, Variance 
Threshold .08 

Stacking OF 
Ensemble 

0.757 1.140 1.009 15818.753 120.102 

Feb  All Years, Variance 
Threshold .08 

Stacking OF 
Ensemble 

0.776 0.902 0.797 19421.435 132.405 

Mar  All Years Scaled Stacking OF 
Ensemble 

0.736 0.968 0.680 9960.594 97.347 

Apr  All Years Scaled Stacking OF 
Ensemble 

0.698 0.968 0.817 4703.123 65.993 

May  All Years Scaled Stacking OF 
Ensemble 

0.764 0.995 0.725 449.808 20.367 

Jun  All Years Scaled Stacking OF 
Ensemble 

0.818 1.185 1.639 66.212 8.095 

Jul  All Years Scaled Stacking OF 
Ensemble 

0.845 1.161 2.585 16.638 3.853 

Aug  All Years Scaled Stacking OF 
Ensemble 

0.843 2.330 16.66
3 

6.522 2.497 

Sep  Wet Years Scaled K Nearest 
Neighbors 

0.854 3.279 21.08
7 

3.669 1.881 

Oct  All Years Stacking OF 
Ensemble 

0.555 24.43
4 

298.9
87 

134.464 9.337 

Nov  All Years, Variance 
Threshold .08 

Stacking OF 
Ensemble 

0.623 0.792 1.144 801.180 26.431 

Dec  Wet Years Stacking 
Ensemble 

0.779 0.971 1.350 3819.094 58.608 

 
 


