Replication of Unimpaired Flow Calculations for Three San Joaquin Basin Tributaries in California's Central Valley

By

AMBER PULIDO B.S. University of California, Davis 2019

INDIVIDUAL CAPSTONE PROJECT REPORT

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Civil and Environmental Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Jay R. Lund, Chair

Jonathan D. Herman

Committee in Charge

2020

1 Introduction	.1
1.1 Terminology	.1
2 Unimpaired Flow Estimates	.3
2.1 DWR Monthly Full Natural Flow (FNF)	.4
2.2 DWR Daily Full Natural Flow (FNF)	.7
2.3 California Central Valley Monthly Historical Unimpaired Flows	.7
2.4 Forecast of Unimpaired Runoff	.8
3 Reproduction of DWR Daily FNF Calculations: April 2018 and 2019	.9
3.1 Procedures	.9
3.1.1 Data Availability	.9
3.1.2 Daily FNF Equations	10
3.1.3 Computational Procedures	12
3.1.4 Stanislaus River	13
3.1.5 Tuolumne River	15
3.1.6 Merced River	22
3.2 Results	23
3.2.1 Stanislaus River	24
3.2.2 Tuolumne River	27
3.2.3 Merced River	31
3.3 Summary	34
4 Summary of the Reproduction of DWR Daily FNF Calculations: WY 2009-2019	36
4.1 Procedures	36
4.2 Summary of Results	37
5 Conclusion	38
A Excerpts from DWR's 2016 Revised Report	39
B Turlock ID and Merced ID Daily Full Natural Flow Spreadsheet Reports, April 2018 and Apr 2019	
C Comparison Graphs for Stanislaus, Tuolumne, and Merced River Datasets, April 2018 and 2019	47
References	53

Contents

List of Figures

2-1 Rivers	Map of locations of full natural flow stations for the Stanislaus, Tuolumne, and Merced
	CDEC Daily FNF and Reproduced (Procedure 1) Daily FNF for the Stanislaus River at win Dam, April 201824
	CDEC Daily FNF and Reproduced (Procedure 1) Daily FNF for the Stanislaus River at win Dam, April 201925
	CDEC Daily FNF and Reproduced (Procedure 1, 2, and 3) Daily FNF for the Tuolumne below La Grange Dam, April 2018
	CDEC Daily FNF and Reproduced (Procedure 1, 2, and 3) Daily FNF for the Tuolumne below La Grange Dam, April 2019
	CDEC Daily FNF and Reproduced (Procedure 1 and 3) Daily FNF for the Merced River Merced Falls Dam, April 2018
	CDEC Daily FNF and Reproduced (Procedure 1 and 3) Daily FNF for the Merced River Merced Falls Dam, April 201932

List of Tables

2-1	Recent and Historical Unimpaired Flow Estimates for California River Basins
2-2	Forecast Unimpaired Flow and Inflow Estimates for California River Basins4
2-3 Locati	Summary of DWR's Division of Flood Management FNF San Joaquin River Tributary ons6
3-1	Datasets Available Online for Stanislaus River Daily FNF Calculation
3-2 April 2	Datasets Used for the Procedure 1 Stanislaus River Daily FNF Calculation (April 2018 and 2019)15
3-3	Datasets Available Online for Tuolumne River Daily FNF Calculation16
3-4 2018).	Datasets Used for the Procedure 1 Tuolumne River Daily FNF Calculation (April
3-5 2019).	Datasets Used for the Procedure 1 Tuolumne River Daily FNF Calculation (April
3-6 2018).	Datasets Used for the Procedure 2 Tuolumne River Daily FNF Calculation (April
3-7 2019.	Datasets Used for the Procedure 2 Tuolumne River Daily FNF Calculation (April
3-8 April 2	Datasets Used for the Procedure 3 Tuolumne River Daily FNF Calculation (April 2018 and 2019)
3-9	Datasets Available Online for Merced River Daily FNF Calculation
3-10 2019).	Datasets Used for the Procedure 1 Merced River Daily FNF Calculation (April 2018 and
3-11 April 2	Datasets Used for the Procedure 3 Merced River Daily FNF Calculation (April 2018 and 2019)
	Comparison of CDEC Daily FNF and Reproduced (Procedure 1) Daily FNF for the laus River at Goodwin Dam, April 201825
	Comparison of CDEC Daily FNF and Reproduced (Procedure 1) Daily FNF for the laus River at Goodwin Dam, April 2019
	Comparison of CDEC Daily FNF and Reproduced (Procedure 1, 2, 3) Daily FNF for the mne River below La Grange Dam, April 2018
	Comparison of CDEC Daily FNF and Reproduced (Procedure 1, 2, 3) Daily FNF for the mne River below La Grange Dam, April 2019
	Comparison of CDEC Daily FNF and Reproduced (Procedure 1 and 3) Daily FNF for the d River below Merced Falls Dam, April 201832

	Comparison of CDEC Daily FNF and Reproduced (Procedure 1 and 3) Daily FNF for the River below Merced Falls Dam, April 2019	53
B-1	Turlock ID's daily FNF spreadsheet report for April 20184	-1
B-2	Turlock ID's daily FNF spreadsheet report for April 20194	-2
B-3	Merced ID's daily FNF spreadsheet report (McSwain Reservoir) for April 20184	3
B-4	Merced ID's daily FNF spreadsheet report (McSwain Reservoir) for April 20194	4
B-5 2018	Merced ID's daily FNF spreadsheet report (McClure (Exchequer) Reservoir) for April	5
B-6 2019	Merced ID's daily FNF spreadsheet report (McClure (Exchequer) Reservoir) for April	6
C-1	Comparison Graphs for Stanislaus River Datasets, April 20184	.7
C-2	Comparison Graphs for Stanislaus River Datasets, April 20194	.9
C-3	Comparison Graphs for Tuolumne River Datasets, April 20185	0
C-4	Comparison Graphs for Tuolumne River Datasets, April 20195	1
C-5	Comparison Graphs of Merced River Datasets, April 2018 and 2019	52

Abstract

In December 2018, the State Water Resources Control Board (State Water Board) adopted amendments to the Bay-Delta Plan that include flow objectives for the Lower San Joaquin River (LSJR) and its three salmon-bearing tributaries, requiring that a portion of inflows (% unimpaired flow) for specific rivers remain in the tributaries to protect fish and wildlife for beneficial uses (State Water Resources Control Board, 2018).

This report details the procedures used to estimate daily unimpaired flow (UF) on the Stanislaus, Tuolumne, and Merced Rivers and replicates the UF procedures used to produce daily FNF (referred to as "Full Natural Flow" or FNF) values published on the California Data Exchange Center (CDEC) website. For each river, these procedures are used to reproduce the daily UF computation for a two-month (April 2018 and April 2019) and an 11-year (October 2008-September 2019) period. The two-month period is the main exercise highlighted and described in this report while the 11-year exercise is only summarized. The 11-year exercise is discussed and described further in Pulido et al. (2020).

Reproduced daily UF values were compared to those reported on CDEC. Results of the two-month exercise show that for the Stanislaus, Tuolumne, and Merced Rivers, provisional data used to compute daily FNF sometimes are updated, and the original (unrevised) data are not retained online. Also, this exercise highlights how daily FNF equations are not documented in a formal report, unlike monthly FNF equations.

Procedures and data sources varied from those described by the California Department of Water Resources (DWR) for some tributaries. Access to data and procedures that are not easily available to the public (e.g., published to a website) are necessary for reliable reproducibility of FNF and support implementing an instream flow requirement based on daily FNF. Refinements to improve overall reproducibility of daily FNF computations are proposed for consideration.

Acknowledgments

I want to express my sincere and heartfelt gratitude to my committee members, Jay Lund and Jonathan Herman, for their support throughout my graduate coursework and experience. Additional thanks to Jay for allowing me the opportunity to join this project and discover my interests within the water resources field. I would also like to sincerely thank, Bill Fleenor, for the continuance support during this project and for the amazing stories he told Yara and I.

Special thanks to Yara Pasner for being a great and hardworking research partner during this project. It was an honor working with her and I am excited to see where she goes after receiving her Ph.D. degree. Also, many thanks to Ellie White for the graduate mentorship and guidance.

I want to acknowledge and thank the following organizations that funded my time as an M.S. student and my research: State Water Resources Control Board and the UC Davis Department of Civil and Environmental Engineering. Additionally, many thanks to members of the staff at Turlock Irrigation District for the expert and earnest cooperation with this study. Also, thanks to the staff at the Department of Water Resources and Steve Nemeth for insights on the Unimpaired Runoff Memorandum.

Chapter 1

Introduction

Calculating unimpaired flow (UF) is done for a variety of purposes including flood management, water supply estimation and allocation, and determining instream flow requirements. Monthly and daily UF is estimated by DWR Division of Flood Management (DWR-DFM) and published to CDEC using the term "Full Natural Flow," (FNF). The State Water Board is now considering using these unimpaired flow estimates for the additional purpose of environmental flow regulations, which will bring additional scrutiny for reproducibility and transparency.

This report provides a detailed description of procedures for estimating daily UF that is reported to CDEC as FNF and examines the reproducibility of daily FNF published on CDEC for the Stanislaus, Tuolumne, and Merced Rivers. Procedures for estimating monthly UF were developed by DWR-DFM and are summarized in an agency report that is available by request to DWR-DFM. Daily UF estimates described in this report are based on procedures for monthly UF estimates described by DWR-DFM and informed by discussions with DWR-DFM staff and staff from a computing agency (Definition #6, Chapter 1.1). Procedures for estimating daily and monthly UF are similar but not always identical due to variations in data availability and the size of equation terms. The detailed description of daily UF estimation procedures and data sources for the Stanislaus, Tuolumne, and Merced Rivers in this report are not available in other agency reports or external reviews. Specific details for estimating daily UF for the three evaluated rivers include equations, detailed description of specific equation terms, flow gages, and data sources. The accuracy of daily UF estimation procedures described in this report were evaluated by comparing results of estimation procedures to published daily FNF on CDEC. This analysis includes a detailed two-month reproduction and a general overview of the 11-year reproduction of daily UF calculations for the Stanislaus, Merced, and Tuolumne Rivers.

1.1 Terminology

This report uses definitions one through five to differentiate common terms used in discussions of UFs. This chapter for terminology includes the definition of UF by DWR-DFM and by DWR Bay-Delta Office (DWR-BDO). For this report, UF and FNF have the same definition though UF is used throughout the report unless DWR-DFM's product of UF, FNF, is referred to in the chapter. Daily FNF is used when referring specifically to daily flow values published to CDEC under that abbreviation.

Definitions six through eight explains differences between computing agency, daily FNF spreadsheet reports, and computing agency data. These terms are used consistently in Chapters 3 and 4 to describe data sources used to compute daily FNF. Lastly, definition nine also is used in Chapters 3 and 4 to present a metric that numerically explains the difference between the reproduced daily FNF and the daily FNF posted on CDEC.

- 1. Gage flows (GF): Flows measured or estimated at a stream gage.
- 2. Unimpaired flows (UF): "Unimpaired runoff or "Full Natural Flow" represents the natural water production of a river basin, unaltered by upstream diversions, storage, or by export or

import of water to or from other watersheds."

(https://cdec.water.ca.gov/snow/current/flow/fnfinfo.html).

"Unimpaired flow is used to describe a theoretically available water supply assuming existing river channel conditions in the absence of (1) storage regulation for water supply and hydropower purposes and (2) stream diversions for agricultural and municipal uses. (DWR-BDO, 2016b). The concept of UF does not incorporate groundwater.

- **3. "Full Natural Flows (FNF)":** Term used by DWR on CDEC for estimated daily and monthly unimpaired flows at specific locations. Despite its name, FNF is not "natural" flow, as it does not account for changes in upstream runoff, evapotranspiration, floodplain storage, and groundwater seepage from flood infrastructure and land development normally included in pre-development "natural flow" estimates. Daily and monthly FNF estimates produced by DWR-DFM are estimates of unimpaired flow.
- 4. Natural flows (NF): Flows that would have occurred at a gage location without human management of land and water, including effects on groundwater pumping and seepage, wetlands, and levees usually not included in UF estimates.
- 5. Impairment: Term used in this document to describe diversion, export, imports, reservoir evaporation, and reservoir storage change datasets that are input datasets needed to calculate daily and monthly FNF. Impairments to UF cumulatively result in GF.
- 6. Computing Agency: CDEC uses the term computing agency to refer to local water agencies or other organizations that calculate daily FNF.
- 7. Daily FNF Spreadsheet Reports: Spreadsheet documents generated by computing agencies and sent to DWR-DFM daily that report the daily FNF values and all data used to compute daily FNF. Daily FNF spreadsheet reports contain provisional data used to compute daily FNF. Data from these reports are uploaded onto CDEC by DWR-DFM. In this document, daily FNF spreadsheet reports refer to Turlock ID and Merced ID spreadsheet reports. These reports were requested and obtained from DWR-DFM for the April 2018 and April 2019 study. The data contained within these spreadsheet reports were used for the Tuolumne and Merced River daily FNF reproductions presented in Chapter 3.
- 8. Computing Agency Data: Data that were obtained from computing agencies, which may include datasets that are not available online. Computing agency data may or may not be provisional depending on data management practices of the computing agency. In this document, computing agency data refer to Tuolumne River flow and impairment datasets obtained from Turlock ID for WY 2009-2019. These datasets were used for the Tuolumne River daily FNF reproduction presented in Chapter 4.
- **9. Discrepancy:** Defined as the difference between FNF reported on CDEC and the reproduced FNF value on a given day. Here, a positive discrepancy indicates the reproduced value is less than the CDEC FNF value on that day, whereas a negative discrepancy indicates the reproduced FNF is exceeding the CDEC FNF value.

Chapter 2 Unimpaired Flow Estimates

This chapter describes daily and monthly UF estimates routinely developed by DWR-DFM, DWR-BDO, and CNRFC. Daily and monthly UFs are estimated for locations in the Bay-Delta watershed by several agencies, including DWR-DFM, DWR-BDO, and the California-Nevada River Forecast Center (CNRFC). DWR-BDO and DWR-DFM calculate recent and historic UF while CNRFC calculates forecasts of unimpaired inflow.

Estimates of UF are made using two general types of hydrologic modeling, causal (physical processbased) and empirical (statistical) (Guisan and Zimmermann, 2000), summarized in Tables 2-1 and 2-2. Water balance (physical) approaches generally adjust a measured release from a reservoir (gaged outflow) to estimate UF. The gaged flow measurements are adjusted for water operations such as diversions, storage, return flows, or imports from other water basins to estimate UF. Statistical models often use regression or other curve-fitting methods based on historical data or estimates for past years and preceding months to estimate UF for time periods of interest, sometimes including future time periods.

Table 2-1 summarizes the DWR-DFM and DWR-BDO UF products, producing agency, update frequency, flow estimation basis, and the intended purpose for the products. Daily and monthly UF estimates are developed regularly by DWR-DFM. DWR-BDO maintains a separate set of monthly UF estimates for modeling and planning, based on adjustments to DWR-DFM's methods; these are updated once every few years.

Table 2-2 presents similar information for DWR-BDO UF and CNRFC forecasts of unimpaired inflow. Unimpaired runoff and inflow estimates are made regularly by DWR-DFM and CNRFC, respectively. DWR-DFM's unimpaired runoff forecasts are made seasonally for the February to May period for reservoir and water project operation. CNRFC's unimpaired inflow forecasts are made daily year-round for routine weather, streamflow, and flood forecasting.

Product	Agency	Update	Estimation basis	Purpose
		Frequency		
FNF – daily	DWR-DFM	Mostly daily, 5	Water balance	Flood forecasting
		times a week		
FNF - monthly	DWR-DFM	Once a month	Water balance	Flood forecasting
UF - monthly	DWR-BDO	Every few years	Water balance	Water supply
				planning and delivery

Table 2-1: Recent and Historical Unimpaired Flow Estimates for California River Basins

	Forecast	Update	Estimation	Purpose
Product and Agency	period	Frequency	basis	
UF – DWR-DFM's	Seasonal	Monthly from	Statistical	Forecasting for
Bulletin 120		February to May		flood risk
Unimpaired Inflow –	5-day	Daily	Statistical -	Data sharing
CNRFC	-		Deterministic	_
Unimpaired Inflow –	365-day	Daily	Statistical -	Data sharing
CNRFC			Probabilistic	

Table 2-2: Forecast Unimpaired Flow and Inflow Estimates for California River Basins

The daily FNF estimates described in Table 2-1 are calculated by DWR-DFM for some rivers, and by local computing agencies for other rivers.

FNF estimates computed by DWR-DFM for some rivers (like Stanislaus River) are calculated daily using input data available online. Because FNF for the Tuolumne and Merced Rivers is computed by computing agencies, daily FNF is reported to CDEC through an email exchange: DWR-DFM receives daily FNF spreadsheet reports (Definition #7, Chapter 1.1) for the Tuolumne and Merced Rivers from respective local FNF computing agencies every weekday, except holidays and breaks. For weekends and breaks, computing agencies send daily FNF spreadsheet reports on the following business day. DWR-DFM typically posts daily FNF data to CDEC five times per week, but can vary with staff availability and flood operations.

2.1 DWR Monthly Full Natural Flow (FNF)

Monthly FNF estimates are published by DWR-DFM on the CDEC website for seventy-seven river basins for flood forecasting (Source: <u>https://cdec.water.ca.gov/cdecstations</u>).

The monthly FNF values for the Stanislaus, Tuolumne, and Merced Rivers are reported here: <u>http://cdec.water.ca.gov/reportapp/javareports?name=FNFSUM</u>.

Equations 2-1 through 2-3 are used to compute monthly FNF for the Stanislaus, Tuolumne, and Merced Rivers. These equations are adapted from DWR's Unimpaired Runoff Memorandum (DWR-DFM, 2016). This report was provided by DWR-DFM and is not available online. DWR's Unimpaired Runoff Memorandum is a foundational source created by DWR-DFM to describe how monthly FNF is calculated by the California Cooperative Snow Surveys program; coordinated by DWR-DFM, for each of the major streams for which monthly FNF estimates are made, and some additional coastal streams needed to estimate the overall statewide runoff. Relevant excerpts from this report are presented in Appendix A.

Equation 2-1: Monthly FNF Equation for Stanislaus River at Goodwin Dam

$$FNF_{S_{M}} = Q_{S_{M}} + X_{S1_{M}} + X_{S2_{M}} + X_{S3_{M}} + X_{S4_{M}} + D_{S_{M}} + E_{S_{M}} + \Delta S_{S1_{M}} + \Delta S_{S2_{M}} + \Delta S_{S3_{M}} + \Delta S_{S4_{M}} + \Delta S_{S5_{M}} + \Delta S_{S6_{M}} + \Delta S_{S7_{M}} + \Delta S_{S8_{M}}$$

Where:

 FNF_{S_M} = Monthly FNF for Stanislaus River at Goodwin Dam (ac-ft)

 $\begin{array}{l} Q_{S_M} = \text{Monthly Measured Gage Flow for Stanislaus River at Goodwin Dam (ac-ft)}\\ X_{S1_M} = \text{Monthly Export from Goodwin N Main Canal (ac-ft)}\\ X_{S2_M} = \text{Monthly Export from Goodwin S Main Canal (ac-ft)}\\ X_{S3_M} = \text{Monthly Export from Farmington Central ID Canal (ac-ft)}\\ X_{S4_M} = \text{Monthly Export from Farmington Stockton E Canal (ac-ft)}\\ D_{S_M} = \text{Monthly Diversion from Tuolumne Canal (ac-ft)}\\ E_{S_M} = \text{Monthly Evaporation from New Melones Reservoir (ac-ft)}\\ \Delta S_{S1_M} = \text{Monthly Storage Change at New Melones Reservoir (ac-ft)}\\ \Delta S_{S2_M} = \text{Monthly Storage Change at Spicer Meadows Reservoir (ac-ft)}\\ \Delta S_{S3_M} = \text{Monthly Storage Change at Beardsley Lake Reservoir (ac-ft)}\\ \Delta S_{S4_M} = \text{Monthly Storage Change at Tulloch Reservoir (ac-ft)}\\ \Delta S_{S5_M} = \text{Monthly Storage Change at Strawberry Reservoir (ac-ft)}\\ \Delta S_{S7_M} = \text{Monthly Storage Change at Relief Reservoir (ac-ft)}\\ \Delta S_{S7_M} = \text{Monthly Storage Change at Relief Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons Reservoir (ac-ft)}\\ \Delta S_{S8_M} = \text{Monthly Storage Change at Lyons R$

Equation 2-2: Monthly FNF Equation for Tuolumne River below La Grange Dam

$$FNF_{T_M} = Q_{T_M} + \Delta S_{T1_M} + \Delta S_{T2_M} + \Delta S_{T3_M} + \Delta S_{T4_M} + E_{T1_M} + E_{T2_M} + E_{T3_M} + E_{T3_M} + D_{T1_M} + D_{T2_M} + D_{T3_M}$$

Where:

 $\begin{aligned} FNF_{T_M} &= \text{Daily FNF for Tuolumne River below La Grange Dam (ac-ft)} \\ Q_{T_M} &= \text{Monthly Measured Gage Flow for Tuolumne River below La Grange Dam (ac-ft)} \\ \Delta S_{T1_M} &= \text{Monthly Storage Change at Don Pedro Reservoir (ac-ft)} \\ \Delta S_{T2_M} &= \text{Monthly Storage Change at Lake Eleanor Reservoir (ac-ft)} \\ \Delta S_{T3_M} &= \text{Monthly Storage Change at Cherry Valley Reservoir (ac-ft)} \\ \Delta S_{T4_M} &= \text{Monthly Storage Change at Hetch Hetchy Reservoir (ac-ft)} \\ E_{T1_M} &= \text{Monthly Evaporation from Don Pedro Reservoir (ac-ft)} \\ E_{T2_M} &= \text{Monthly Evaporation from Lake Eleanor Reservoir (ac-ft)} \\ E_{T3_M} &= \text{Monthly Evaporation from Cherry Valley Reservoir (ac-ft)} \\ E_{T4_M} &= \text{Monthly Evaporation from Cherry Valley Reservoir (ac-ft)} \\ E_{T4_M} &= \text{Monthly Evaporation from Hetch Hetchy Reservoir (ac-ft)} \\ D_{T1_M} &= \text{Monthly Diversion from Diversion to S.F. Pipeline (ac-ft)} \\ D_{T2_M} &= \text{Monthly Diversion from Modesto Canal near La Grange, CA (ac-ft)} \\ D_{T3_M} &= \text{Monthly Diversion from Modesto Canal near La Grange, CA (ac-ft)} \end{aligned}$

Equation 2-3: Monthly FNF Equation for Merced River below Merced Falls Dam

$$FNF_{M_{M}} = Q_{M_{M}} + \Delta S_{M1_{M}} + \Delta S_{M2} + E_{M1_{M}} + E_{M2_{M}} + D_{M_{M}}$$

Where:

 FNF_{M_M} = Monthly FNF for Merced River below Merced Falls Dam (ac-ft) Q_{M_M} = Monthly Measured Gage Flow for Merced River below Merced Falls Dam (ac-ft) ΔS_{M1_M} = Monthly Storage Change at Lake McClure 'Exchequer' Reservoir (ac-ft) ΔS_{M2_M} = Monthly Storage Change at Lake McSwain Reservoir (ac-ft) E_{M1_M} = Monthly Evaporation at Lake McClure 'Exchequer' (ac-ft) E_{M2_M} = Monthly Evaporation at Lake McSwain (ac-ft) D_{M_M} = Monthly Diversion at North Side Canal (ac-ft)

Table 2-3 shows the CDEC station IDs for the Stanislaus, Tuolumne, and Merced Rivers, and identifies the agency that computes the daily and monthly FNF values for these three rivers. The daily and monthly FNF calculation for the Stanislaus River is computed by DWR-DFM staff. The daily and monthly FNF calculation for the Tuolumne River is computed by Turlock Irrigation District (Turlock ID) staff. The daily FNF calculation for the Merced River is computed by Merced Irrigation District (Merced ID) staff while DWR-DFM calculates the monthly FNF based on the raw input data provided by Merced ID. Figure 2-1 shows the location of the CDEC stations for each FNF computation of study.

Table 2-3: Summary of DWR's Division of Flood Management FNF San Joaquin River Tributary Locations

River Basin	CDEC Station ID	Computing Agency	Data Delivery Method
Stanislaus	GDW	DWR	N/A
Tuolumne	TLG	Turlock ID	Daily Email (provided to DWR)
Merced	MRC	Merced ID	Daily Email (provided to DWR)

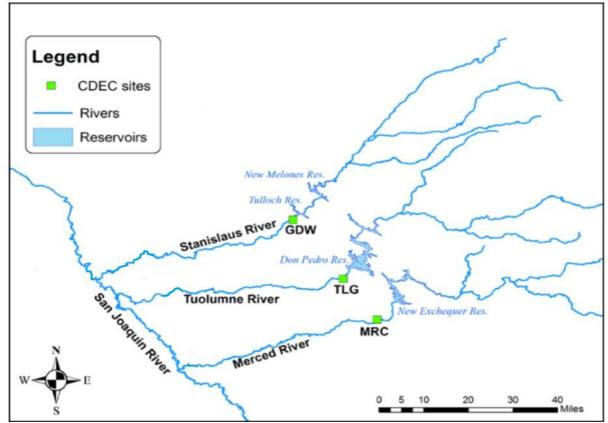


Figure 2-1: Map of locations of full natural flow stations for the Stanislaus, Tuolumne, and Merced Rivers. (Source: State Water Board, 2018). *Adapted by A. Pulido*.

2.2 DWR Daily Full Natural Flow (FNF)

DWR-DFM publishes daily FNF estimates for sixteen river basins on the CDEC website. Despite the naming convention, FNF has the same definition as UF.

As mentioned previously, this report focuses on documenting and reproducing the DWR-DFM daily FNF values for the Stanislaus, Tuolumne, and Merced Rivers, reported here: <u>http://cdec.water.ca.gov/reportapp/javareports?name=FNF</u>.

Unlike the monthly FNF computation, equations for daily FNF are not published by DWR-DFM in the Unimpaired Runoff Memorandum. Although DWR-DFM's equation for daily UFs at each river location is based on the monthly FNF equation, some impairment terms included in the monthly equation may be excluded from the daily equation (S. Nemeth, personal communication, February 28, 2019). According to DWR, these additional impairments have been excluded from the daily FNF calculation because they have a negligible impact on daily FNF (S. Nemeth, personal communication, February 28, 2019). The procedures used to confirm the daily FNF equation for the Stanislaus, Tuolumne, and Merced Rivers are discussed in Chapter 3.1.

2.3 California Central Valley Monthly Historical Unimpaired Flows

DWR-BDO develops and occasionally updates a set of monthly historical UF data, based on adjustments to DWR-DFM monthly FNF estimation methods. DWR-BDO's estimates of monthly historical UF records are extended and updated every few years for water planning, policy, operations modeling, reports, and studies, particularly for the CalSim model. The most recent DWR-BDO 2016 report, "Estimates of Natural and Unimpaired Flows for the Central Valley of California: WY 1922-2014" (DWR-BDO, 2016b), includes monthly UF estimates for 24 sub-basins in the Central Valley for October 1921 through September 2014. This report summarizes estimates of "natural" and "unimpaired" flows for locations within the Bay-Delta watershed for water years 1922-2014.

The report describes the conceptual differences between natural and UF as for the Central Valley where natural flows are described by DWR-BDO as accounting for reductions in wetland and floodplain evapotranspiration and groundwater interactions and tend to be smaller than UFs (represented in "full natural flows" calculations) estimated on the modern landscape with modern water development. DWR-BDO calculates UF by "adjusting observed gaged data to remove the effects of (1) upstream changes in surface water storage, (2) basin imports, and (3) basin exports" (DWR-BDO, 2016b). More information on the details of the impairments, such as gage location and type of impairment, that were included to estimate monthly UF can be found on https://data.cnra.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-the-central-valley-of-california-wy-1922-2014/.

2.4 Forecast of Unimpaired Runoff

DWR-DFM is the lead agency coordinating the California Cooperative Snow Surveys (CCSS) program, which provides seasonal and water runoff forecasts for California's major snow bearing watersheds for flood planning and operations. CCSS forecasts the volume of seasonal runoff from the state's major watersheds and summarizes precipitation, snowpack, reservoir storage, and runoff in various regions of the State four times per year, in the months of February, March, April, and May, in a forecast memo known as Bulletin 120. The Bulletin 120 forecasts are posted online at http://cdec.water.ca.gov/b120up.html.

DWR-DFM uses statistical regressions to produce unimpaired runoff forecasts for April through July, the percent of average for the unimpaired runoff, and the 80% probability range for the April through July unimpaired runoff forecasts. Bulletin 120 also presents the water year forecast, monthly distributions for February through September, the 80% probability range for the water year forecast, and the percent average for the water year forecast. These results are regularly compared with CNRFC unimpaired inflow forecasts to ensure a consistent and broadly-supported message.

CNRFC and DWR-DFM work closely to operate multiple continuous hydrologic models of different watersheds for developing unimpaired runoff forecasts. Each day the models receive real-time precipitation, temperature, and flow data. CNRFC uses the Community Hydrologic Prediction Service (CHPS) to calculate the five-day unimpaired inflow forecasts and the Hydrologic Ensemble Forecast Service (HEFS) to calculate the 365-day unimpaired inflow forecasts. These estimates are derived from precipitation and runoff models for major streams throughout California and can be found on https://www.cnrfc.noaa.gov/rfc_guidance.php.

CHPS is the open source river forecasting system operated by the National Weather Service (NWS) to promote model and data sharing. CNRFC uses a six-hour time-step for their CHPS to simulate and project river flows and stages in its area of responsibility. Area of responsibility is the regions that CNRFC are responsible for computing forecasts. CHPS uses hydrologic expertise, the operational Hydrometeorological Analysis and Support (HAS) function, set parameters for model guidance, and data from the observing system. Forecasts for precipitation and temperature are inputs to the CHPS to provide a five-day "deterministic" forecast of inflow. HEFS provides ensemble forecasts and verification to quantify and trace the uncertainty through the CHPS. CNRFC uses a six-hour timestep for the HEFS in the CHPS to estimate probabilistic 365-day hydrologic forecasts. In the CHPS environment, various components within HEFS produce ensemble and probabilistic forecast products. More information about CHPS and **HEFS** can be found at: www.nws.noaa.gov/oh/hrl/general/HEFS_doc/HEFS-1.0.1 HEFSOverviewAndGettingStarted.pdf.

Chapter 3

Reproduction of DWR Daily FNF Calculations: April 2018 and 2019

To illustrate how daily FNF is computed, this chapter reproduces daily FNF calculations during the months of April 2018 and April 2019 for the Stanislaus, Tuolumne, and Merced Rivers. April is the selected month for reproduction of daily FNF calculations since April is historically a month of highly variable flow. 2018 and 2019 are the selected years due to their water year (WY) type on CDEC being polar on the WY type index, with 2018 being below normal (BN) and 2019 being wet (W) (CDEC: <u>https://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST</u>). From varying flow and WY type, April 2018 and 2019 are useful for illustrating potential differences of daily FNF.

3.1 Procedures

This chapter describes the data, equations, and computational procedures used to reproduce the daily FNF values for the Stanislaus, Tuolumne, and Merced Rivers for the months of April 2018 and April 2019.

3.1.1 Data Availability

Most data needed to reproduce daily FNF for the Stanislaus, Tuolumne, and Merced Rivers are available online via the CDEC and/or the United States Geological Survey's (USGS) National Water Information System (NWIS) websites. Bulk data (gage flow (GF) or impairment) were extracted from CDEC by inputting the station ID, sensor number, start date, and end date on https://cdec.water.ca.gov/dynamicapp/wsSensorData. Flow and storage data were also extracted from NWIS by inputting the site number on https://nwis.waterdata.usgs.gov/nwis/inventory and clicking the "detailed descriptions with links to available data for each site" option to see all data available for that specific site.

Some values on CDEC for the daily FNF have notes of "r" or "e", meaning "revised" and "estimated". Revised means that the posted provisional daily FNF value was revised at a later date to a more accurate value. Estimated means that the daily value for the FNF was missing on the posted date and estimated later. These notes are important as they update only the CDEC value of daily FNF and make the daily FNF value, GF and impairment data on the Turlock ID and Merced ID daily FNF spreadsheet reports outdated. According to DWR-DFM staff, the CDEC daily FNF values tend to be updated retrospectively when daily FNF values are extremely outside the normal seasonal range for that month (i.e., daily FNF values are either negative or an unreasonable/uncommon value that DWR-DFM simply cannot agree with). In addition, GF and impairment data on CDEC and NWIS may not be updated retrospectively when the CDEC daily FNF is updated.

While the daily FNF values on CDEC can be updated retrospectively and the corresponding components used to calculate that daily FNF are not, the same is true for the reverse situation. GF and impairment data on NWIS or CDEC can sometimes be updated retrospectively, but the

corresponding daily FNF value is not updated retrospectively. These retrospective updates to GF and impairment data on NWIS and CDEC cause the corresponding daily FNF on CDEC and daily FNF spreadsheet to be outdated. Chapters 3.1.4 through 3.1.6 highlight which dates for measured GF, impairments, and daily FNF are marked as "r" or "e" to discuss later in Chapter 3.2.

For some GF and impairments, data are available on both NWIS and CDEC websites. Although these sources represent the same GF or impairment, they sometimes have different numerical values (Appendix C). This is a result of the different data management practices of USGS and DWR. For both NWIS and CDEC data, GF and impairment data used to compute daily FNF are considered provisional and may be subject to retroactive adjustments. However, the observed data management practices of USGS are more thorough than DWR. USGS has an established data review process for NWIS data which is described on https://www.usgs.gov/products/data-and-tools/data-management/manage-quality. For this reason, it was assumed that daily GF and impairment data presented on CDEC more closely represent the provisional data used to compute daily FNF than NWIS data. This supports the idea that CDEC data will provide the best daily FNF reproduction for April 2018 and 2019.

For the Stanislaus River, all GF and impairment data used in the Stanislaus River daily FNF equation are available online from the CDEC and/or NWIS websites. Since DWR is the Stanislaus FNF computing agency, no daily FNF spreadsheet reports are produced or used for the Stanislaus River.

For the Tuolumne and Merced Rivers, daily FNF is calculated by Turlock Irrigation District (Turlock ID) and Merced Irrigation District (Merced ID), respectively, and reported to DWR through a daily email exchange that includes the daily FNF spreadsheet report (Chapter 1.1, Definition #7). Turlock ID and Merced ID report all daily FNF, GF (USGS NWIS streamflow data), and impairment values on the daily FNF spreadsheet reports. DWR uploads some, but not all, of the GF and impairment datasets to CDEC based on information provided in the daily FNF spreadsheet reports (S. DeGuzman, personal communication, August 14, 2019). For example, Turlock ID's daily FNF spreadsheet report for April of 2018 and 2019 (Appendix B) reports the Diversion to S.F. Pipeline (cfs), but this impairment is not available on CDEC.

The daily FNF spreadsheet reports are not available online. The Turlock ID and Merced ID daily FNF spreadsheet reports were requested and obtained from DWR-DFM for April 2018 and April 2019 (Appendix B). However, the procedure to compute the related impairment terms and daily FNF are not documented in the daily FNF spreadsheet reports. Procedures for calculating individual impairment terms could be determined by contacting the organization that measures or estimates each impairment term. Using the daily FNF spreadsheet reports to reproduce daily FNF will not always result in a precise and accurate reproduction due to some refinements in underlying data that may occur at a later date.

3.1.2 Daily FNF Equations

As discussed in Chapter 2.2, DWR-DFM's equation for daily FNF at each river location is based on the monthly FNF equation, although some impairment terms included in the monthly equation may be excluded from the daily equation. Equations 3-1 through 3-3 identify the GF and impairments (such as exports, diversions, evaporation, and storage change) accounted for in the daily FNF estimates for the Stanislaus River at Goodwin Dam, Tuolumne River below La Grange Dam and Merced River below Merced Falls Dam. Equation 3-1: Daily FNF Equation for Stanislaus River at Goodwin Dam

$$FNF_{S} = Q_{S} + X_{S1} + X_{S2} + X_{S3} + X_{S4} + D_{S} + E_{S} + \Delta S_{S1} + \Delta S_{S2} + \Delta S_{S3} + \Delta S_{S4} + \Delta S_{S5} + \Delta S_{S6} + \Delta S_{S7} + \Delta S_{S8}$$

Where:

 FNF_{s} = Daily FNF for Stanislaus River at Goodwin Dam (cfs) $Q_{\rm S}$ = Daily Measured Gage Flow for Stanislaus River at Goodwin Dam (cfs) X_{S1} = Daily Export from Goodwin N Main Canal (cfs) X_{S2} = Daily Export from Goodwin S Main Canal (cfs) X_{S3} = Daily Export from Farmington Central ID Canal (cfs) X_{S4} = Daily Export from Farmington Stockton E Canal (cfs) $D_{\rm S}$ = Daily Diversion from Tuolumne Canal (cfs) E_s = Daily Evaporation from New Melones Reservoir (cfs) ΔS_{S1} = Daily Storage Change at New Melones Reservoir (cfs) ΔS_{S2} = Daily Storage Change at Spicer Meadows Reservoir (cfs) ΔS_{S3} = Daily Storage Change at Beardsley Lake Reservoir (cfs) ΔS_{S4} = Daily Storage Change at Donnells Reservoir (cfs) ΔS_{S5} = Daily Storage Change at Tulloch Reservoir (cfs) ΔS_{S6} = Daily Storage Change at Strawberry Reservoir (cfs) ΔS_{S7} = Daily Storage Change at Relief Reservoir (cfs) ΔS_{S8} = Daily Storage Change at Lyons Reservoir (cfs)

Equation 3-2: Daily FNF Equation for Tuolumne River below La Grange Dam

 $FNF_{T} = Q_{T} + \Delta S_{T1} + \Delta S_{T2} + \Delta S_{T3} + \Delta S_{T4} + E_{T} + D_{T1} + D_{T2} + D_{T3}$

Where:

 FNF_T = Daily FNF for Tuolumne River below La Grange Dam (cfs) Q_T = Daily Measured Gage Flow for Tuolumne River below La Grange Dam (cfs) ΔS_{T1} = Daily Storage Change at Don Pedro Reservoir (cfs) ΔS_{T2} = Daily Storage Change at Lake Eleanor Reservoir (cfs) ΔS_{T3} = Daily Storage Change at Cherry Valley Reservoir (cfs) ΔS_{T4} = Daily Storage Change at Hetch Hetchy Reservoir (cfs) E_T = Daily Evaporation from Don Pedro Reservoir (cfs) D_{T1} = Daily Diversion from Diversion to S.F. Pipeline (cfs) D_{T2} = Daily Diversion from Turlock Canal near La Grange, CA (cfs) D_{T3} = Daily Diversion from Modesto Canal near La Grange, CA (cfs)

Equation 3-3: Daily FNF Equation for Merced River below Merced Falls Dam

$$FNF_M = Q_M + \Delta S_{M1} + \Delta S_{M2}$$

Where:

 FNF_M = Daily FNF for Merced River below Merced Falls Dam (cfs) Q_M = Daily Measured Gage Flow for Merced River below Merced Falls Dam (cfs)

ΔS_{M1} = Daily Storage Change at Lake McClure 'Exchequer' Reservoir (cfs) ΔS_{M2} = Daily Storage Change at Lake McSwain Reservoir (cfs)

Because daily FNF equations are not identified in the DWR-DFM's Unimpaired Runoff Memorandum (see Chapter 2.2), the daily FNF equations were inferred by the UC Davis team through trial and error and preliminary calculations. These preliminary calculations, procedures, adjusted the monthly FNF equations to exclude some terms.

For the Stanislaus River the daily FNF equation is the same as the monthly FNF equation, so Equation 3-1 uses the same gage flow and impairments as Equation 2-1. This equation was confirmed by DWR-DFM staff. For the Tuolumne River, Equation 3-2 was developed from Equation 2-2 and adjusted to exclude the evaporation impairment for Lake Eleanor, Cherry Valley, and Hetch Hetchy by the UC Davis research team and was confirmed by DWR-DFM staff. For the Merced River, Equation 3-3 was developed from Equation 2-3 and adjusted to exclude evaporation from Lake McClure and Lake McSwain and diversions to the North Side Canal by the UC Davis Team. Equation 3-3 has not been confirmed by DWR-DFM but appears to be the correct equation based on the results of calculations in this chapter.

3.1.3 Computational Procedures

This chapter presents three calculation procedures used to compute daily FNF. These procedures are similar, but use different data sources:

- **Procedure 1**: Online Data Only Uses only datasets that are currently easily accessible and published on NWIS (operated by USGS) and/or CDEC (operated by DWR). Any dataset not available on the NWIS or CDEC websites is excluded (i.e., treated as zero) from the daily FNF equations, which tends to provide lower bound estimates of daily FNF.
 - Chapter 3 (two-month reproduction of daily FNF, April 2018 and 2019) always used the datasets from CDEC over NWIS unless it was reported on DWR-DFM's Unimpaired Runoff Memorandum to use NWIS or if the data are only available on NWIS.
 - For Chapter 4 (11-year reproduction of daily FNF, Water Years 2009-2019), if estimates for a component flow were accessible on both NWIS and CDEC but had different numerical values, the data source that provided the best FNF reproduction was identified and used.
- **Procedure 2:** Prioritizes Online Data, but also uses Data from Computing Agency Similar to Procedure 1 but includes data supplied by computing agencies for components of the calculation not easily accessible online. Procedure 2 is computed when online data are not available on CDEC or NWIS for every component of the daily FNF computation.
 - Chapter 3 used data from daily FNF spreadsheet reports wherever necessary.
 - Chapter 4 used computing agency data wherever necessary.
- **Procedure 3:** Prioritizes Data from Computing Agency Uses data supplied by computing agencies wherever possible. Procedure 3 is computed where data from computing agencies are available and have numerical values that differ from those available on CDEC or NWIS.
 - Chapter 3 used only data from daily FNF spreadsheet reports.
 - Chapter 4 used computing agency data wherever necessary.

For the April 2018 and 2019 study, all three procedures, Procedures 1, 2, and 3, were used to calculate daily FNF for the Tuolumne River while only Procedures 1 and 3 were used for the Merced River. Procedure 2 was not used for the Merced River since all impairment and measured GF were available online from CDEC or NWIS. For the Stanislaus River, Procedure 1 only was applied because all daily FNF input datasets are available online from CDEC and daily spreadsheet reports are not used by the Stanislaus FNF computing agency (DWR-DFM).

Procedures 1 and 2 were established to present the relative level of data availability online. Procedure 1 only includes flow and impairment data that are easily accessible on NWIS and/or CDEC, while Procedure 2 also includes data from the daily spreadsheet reports for datasets that are not easily accessible online. Procedure 3 was developed to attempt to reproduce daily FNF values for the Tuolumne and Merced Rivers exactly for April 2018 and 2019. By comparing Procedures 1 and 2 to Procedure 3, the effects of using online data verses computing agency data can be shown.

The daily FNF values computed for the Stanislaus, Tuolumne, and Merced Rivers using these three procedures were compared to the daily FNF values posted on CDEC. Equations 3-1 and 3-3 were used accordingly and then compared to the corresponding CDEC daily FNF values. The reproduced daily FNF and CDEC daily FNF were compared using a metric called discrepancy.

For this study, discrepancy is defined as the difference between FNF reported on CDEC and the reproduced FNF value on a given day, as described in Chapter 1.1.

3.1.4 Stanislaus River

Equation 3-1 was used to reproduce daily FNF calculations for the Stanislaus River. This equation contains one river GF and 14 impairment terms, for a total of 15 terms in the Stanislaus River daily FNF calculation. All datasets used for the Stanislaus River daily FNF calculation are available on CDEC and were downloaded for April 2018 and 2019. Daily spreadsheet reports are not used by DWR-DFM to calculate the Stanislaus River daily FNF. Therefore, only Procedure 1 was used to replicate daily FNF for the Stanislaus River.

Procedure 1 is compared to CDEC's daily FNF for corresponding days in April 2018 and 2019. Appendix C contains comparison graphs for all days having both measured GF and impairments reported on CDEC and NWIS. These comparison graphs present the difference between the same impairment or measured gage flow reported on CDEC or NWIS. Table 3-1 lists all input data sources available online that could be used to reproduce the daily FNF calculation for the Stanislaus River. As shown below, some of these datasets are available on both NWIS and CDEC, though only one dataset was used for the reproduction of each method.

Name	Term Type	NWIS (Site Number)	CDEC (Station ID – Sensor Number)
Stanislaus River at Goodwin Dam	Measured Gage Flow (cfs)	<u>11302000</u>	$\frac{\text{GDW} - 71}{\text{GDW} - 71}$
Goodwin North Main (South San Joaquin) Canal	Export (cfs)	<u>11300500</u>	<u>GDJ – 85</u>

Table 3-1: Datasets Available Online for Stanislaus River Daily FNF Calculation

Name	Term Type	NWIS (Site Number)	CDEC (Station ID – Sensor Number)
Goodwin South Main (Oakdale) Canal	Export (cfs)	11301000	<u>GDS – 85</u>
Farmington Central ID Canal	Export (cfs)	-	<u>FR1 – 85</u>
Farmington Stockton East Canal	Export (cfs)	-	<u>FR2 – 85</u>
Tuolumne Canal near Long Barn	Diversion (cfs)	<u>11297500</u>	<u>STU – 110</u>
New Melones Reservoir	Evaporation (cfs)	-	<u>NML – 74</u>
New Melones Reservoir	Storage Change (ac-ft)	<u>11299000</u>	<u>NML – 22</u>
Beardsley Lake	Storage Change (ac-ft)	<u>11292800</u>	<u>BRD – 22</u>
Donnells Reservoir	Storage Change (ac-ft)	<u>11292600</u>	<u>DON – 22</u>
Tulloch Reservoir	Storage Change (ac-ft)	<u>11299995</u>	<u>TUL – 22</u>
Spicer Meadows	Storage (ac-ft)	<u>11293770</u>	<u>SPM – 15</u>
Strawberry Reservoir	Storage (ac-ft)	-	<u>SWB – 15</u>
Relief Reservoir	Storage (ac-ft)	-	<u>RLF – 15</u>
Lyons Reservoir	Storage (ac-ft)	<u>11297700</u>	<u>LYS – 15</u>

Procedure 1: Online Data Only

Equation 3-1 was used to calculate daily FNF for each day in April 2018 and April 2019. Table 3-2 identifies each of the datasets used for the daily FNF calculation, including the site name, term type, and CDEC station ID and sensor number. For any given day during April 2018 and 2019, all terms listed below in Table 3-2 were converted to units of cubic feet per second (cfs) and then summed together to calculate the daily FNF for the Stanislaus River, in cfs.

In cases where both NWIS and CDEC data are available for the impairment or measured gage flow, as seen in Table 3-1, only one dataset was used. CDEC data (April 2018 and April 2019) was used for all impairment terms and the measured GF term in Equation 3-1 because it was assumed that daily data presented on CDEC more closely represent the provisional data used to compute daily FNF than NWIS data. Also, DWR-DFM is responsible for calculating daily FNF of the Stanislaus River and reports the GF and impairment data on CDEC.

Discharge data for the Stanislaus River, in cfs, was obtained from CDEC to calculate the daily FNF for the Stanislaus River. The daily diversion datasets for the South San Joaquin Canal, Oakdale Canal, Central ID Canal, Stockton E Canal, Tuolumne Canal and the daily reservoir storage dataset for the New Melones Reservoir were obtained from CDEC, in cfs. Stanislaus River, Goodwin N Main Canal, and Farmington Central ID Canal daily discharge for April 14th, 2018 were noted as a "revised" value

on CDEC, and Farmington Stockton East Canal's daily discharge for April 14th, 2018 was noted as an "estimated" value on CDEC.

Daily storage data is available on CDEC for all of Stanislaus Rivers' reservoirs identified in Table 3-2. CDEC also reports daily storage change data for some of these reservoirs such as New Melones, Beardsley, Donnells, and Tulloch. The daily storage change datasets for New Melones Reservoir, Beardsley Lake, Donnells Reservoir, and Tulloch Reservoir were obtained from CDEC in units of acre-feet (ac-ft) and converted to cfs. Spicer Meadows, Strawberry Reservoir, Relief Reservoir, and Lyons Reservoir's daily storage datasets were obtained from CDEC, in units of ac-ft; the daily storage change for each reservoir was determined by determining the difference between the daily storage amount (ac-ft) and the daily storage amount (ac-ft) for the prior date, and then converting the volume difference to mean daily flow (cfs). Spicer Meadows's daily storage for April 2nd, 2018 was noted as a "revised" value on CDEC.

Table 3-2: Datasets Used for	or the Procedure 1 Stanislaus River	r Daily FNF Calculation (April	
2018 and April 2019)			
Name	Term Type	CDEC	

Name	Term Type	CDEC
		(Station ID –
		Sensor Number)
Stanislaus River at Goodwin Dam	Measured Gage Flow (cfs)	<u>GDW – 71</u>
Goodwin N Main (South San	Export (cfs)	<u>GDJ – 85</u>
Joaquin) Canal		
Goodwin S Main (Oakdale) Canal	Export (cfs)	<u>GDS – 85</u>
Farmington Central ID Canal	Export (cfs)	<u>FR1 – 85</u>
Farmington Stockton E Canal	Export (cfs)	<u>FR2 – 85</u>
Tuolumne Canal near Long Barn	Diversion (cfs)	<u>STU – 110</u>
New Melones Reservoir	Evaporation (cfs)	<u>NML – 74</u>
New Melones Reservoir	Storage Change (ac-ft)	<u>NML – 22</u>
Beardsley Lake	Storage Change (ac-ft)	<u>BRD – 22</u>
Donnells Reservoir	Storage Change (ac-ft)	<u>DON – 22</u>
Tulloch Reservoir	Storage Change (ac-ft)	<u>TUL – 22</u>
Spicer Meadows	Storage (ac-ft)	<u>SPM – 15</u>
Strawberry Reservoir	Storage (ac-ft)	<u>SWB – 15</u>
Relief Reservoir	Storage (ac-ft)	<u>RLF – 15</u>
Lyons Reservoir	Storage (ac-ft)	<u>LYS – 15</u>

3.1.5 Tuolumne River

Equation 3-2 was used to reproduce the daily FNF calculations for the Tuolumne River. The Tuolumne River daily FNF calculation contains one river flow and eight impairment terms for a total of nine terms (Equation 3-2). Because one of the datasets identified in Equation 3-2 is not readily available online (diversion to S.F. pipeline), all three procedures were used to estimate daily FNF on the Tuolumne River. The data for eight out of nine terms are available online from CDEC and/or NWIS for April 2018 and 2019 (missing term is diversion to S.F. pipeline).

As seen in Table 2-3, Tuolumne River daily FNF is calculated by Turlock ID. Turlock ID provides DWR-DFM a daily FNF spreadsheet report for the Tuolumne River by a daily email exchange except on weekends and high flooding conditions (S. DeGuzman, personal communication, August 14, 2019). The daily FNF spreadsheet reports for April 2018 and April 2019 are presented in Appendix B. Appendix C contains comparison graphs between all the data of the measured GF and impairments received by Turlock ID and reported on CDEC and NWIS. These comparison graphs present the difference between the same impairment data or measured GF data received by Turlock ID or reported on CDEC or NWIS. Table 3-3 lists all data sources available online that could be used to reproduce the daily FNF calculation for the Tuolumne River. Some datasets are available on both CDEC and NWIS.

Name	Term Type	NWIS	CDEC
		(Site Number)	(Station ID –
			Sensor Number)
Tuolumne River below La	Measured Gage Flow (cfs)	<u>11289650</u>	<u>LGN-41</u>
Grange Dam			
Don Pedro Reservoir	Storage Change (ac-ft)	<u>11287500</u>	<u>DNP - 22</u>
Lake Eleanor Reservoir	Storage (ac-ft)	<u>11277500</u>	<u>ENR - 15</u>
Cherry Valley Reservoir	Storage (ac-ft)	<u>11277200</u>	<u>CHV - 15</u>
Hetch Hetchy Reservoir	Storage (ac-ft)	<u>11275500</u>	<u>HTH - 15</u>
Don Pedro Reservoir	Evaporation (cfs)	-	<u>DNP - 74</u>
Modesto Canal near La	Diversion (cfs)	<u>11289000</u>	-
Grange, CA			
Turlock Canal near La	Diversion (cfs)	<u>11289500</u>	-
Grange, CA			

Table 3-3: Datasets Available Online for Tuolumne River Daily FNF Calculation

Procedure 1: Online Data Only

For Procedure 1, daily FNF for the Tuolumne River was calculated by revising Equation 3-2 into Equation 3-2a. These equations only include the datasets available online through NWIS or CDEC. The Diversion to S.F. Pipeline term, as seen in Equation 3-2, was not included in Equation 3-2a, because this dataset is not available online via NWIS or CDEC. To calculate daily FNF, Procedure 1 starts the calculation starts with measured GF data from NWIS for Tuolumne River, then adds the impairment values that are available on NWIS or CDEC, and lastly replaces the impairment values that are not available online with zero.

Equation 3-2a: Daily FNF Equation for Tuolumne River below La Grange Dam – Procedure 1

$$FNF_{T_{a}} = Q_{T} + \Delta S_{T1} + \Delta S_{T2} + \Delta S_{T3} + \Delta S_{T4} + D_{T2} + D_{T3}$$

Where:

 FNF_{T_a} = Daily FNF for Tuolumne River below La Grange Dam – Procedure 1(cfs) Q_T = Daily Measured Gage Flow for Tuolumne River below La Grange Dam (cfs) ΔS_{T1} = Daily Storage Change at Don Pedro Reservoir (cfs) ΔS_{T2} = Daily Storage Change at Lake Eleanor Reservoir (cfs) ΔS_{T3} = Daily Storage Change at Cherry Valley Reservoir (cfs) ΔS_{T3} = Daily Storage Change at Hetch Hetchy Reservoir (cfs) E_T = Daily Evaporation from Don Pedro Reservoir (cfs) D_{T2} = Daily Diversion from Turlock Canal near La Grange, CA (cfs) D_{T3} = Daily Diversion from Modesto Canal near La Grange, CA (cfs)

Table 3-4 identifies each of the eight terms used in Equation 3-2a to estimate daily FNF in April 2018 and the data sources (NWIS or CDEC) for Procedure 1. The table also reports the dataset units available on CDEC or NWIS for each term, and the station ID and sensor number (for CDEC data) or site number (for NWIS data). For any given day during April 2018, all terms listed in Table 3-4 were converted to units of cfs and summed together to calculate the daily FNF for the Tuolumne River in cfs.

Name	Term Type	NWIS (Site Number)	CDEC (Station ID – Sensor Number)
Tuolumne River below La Grange Dam	Measured Gage Flow (cfs)	<u>11289650</u>	-
Don Pedro Reservoir	Storage Change (ac-ft)	-	<u>DNP - 22</u>
Lake Eleanor Reservoir	Storage (ac-ft)	<u>11277500</u>	-
Cherry Valley Reservoir	Storage (ac-ft)	-	<u>CHV - 15</u>
Hetch Hetchy Reservoir	Storage (ac-ft)	-	<u>HTH - 15</u>
Don Pedro Reservoir Evaporation	Evaporation (cfs)	-	<u>DNP - 74</u>
Turlock Canal near La Grange, CA	Diversion (cfs)	<u>11289500</u>	-
Modesto Canal near La Grange, CA	Diversion (cfs)	<u>11289000</u>	-

 Table 3-4: Datasets Used for the Procedure 1 Tuolumne River Daily FNF Calculation (April 2018)

Table 3-5 identifies each of the eight terms used in Equation 3-2a to estimate daily FNF in April 2019 and the data sources for Procedure 1. For any given day during April 2019, all terms listed below in Table 3-5 were converted to units of cfs and then summed together to calculate daily FNF for the Tuolumne River in cfs. Table 3-4 and Table 3-5 differ by the data source changing for "Lake Eleanor Reservoir" from NWIS for April 2018 to CDEC for April 2019.

 Table 3-5: Datasets Used for the Procedure 1 Tuolumne River Daily FNF Calculation (April 2019)

Name	Term Type	NWIS (Site Number)	CDEC (Station ID – Sensor Number)
Tuolumne River below La Grange Dam	Measured Gage Flow (cfs)	<u>11289650</u>	-
Don Pedro Reservoir	Storage Change (ac-ft)	-	<u>DNP - 22</u>
Lake Eleanor Reservoir	Storage (ac-ft)	-	<u>ENR - 15</u>
Cherry Valley Reservoir	Storage (ac-ft)	-	<u>CHV - 15</u>
Hetch Hetchy Reservoir	Storage (ac-ft)	-	<u>HTH - 15</u>
Don Pedro Reservoir Evaporation	Evaporation (cfs)	-	<u>DNP - 74</u>
Turlock Canal near La Grange, CA	Diversion (cfs)	<u>11289500</u>	-
Modesto Canal near La Grange, CA	Diversion (cfs)	<u>11289000</u>	-

Tuolumne River discharge data were obtained from NWIS to calculate daily FNF for April 2018 and 2019. This dataset was taken from NWIS instead of CDEC because it is not available on CDEC. The dataset was available and downloaded in 15-minute intervals, and the mean daily flow (cfs) was calculated using Excel.

The daily storage data are available on CDEC for all reservoirs, Don Pedro, Lake Eleanor, Cherry Valley, and Hetch Hetchy, but daily storage change data are only available for some of them on CDEC. Don Pedro is available as storage and storage change data while Lake Eleanor, Cherry Valley, and Hetch Hetchy are only available as storage data on CDEC. Some datasets on CDEC or NWIS are only available in 15-minute intervals or hourly intervals, respectively, instead of the average daily intervals. In these cases where only 15-minute or hourly intervals were available, the daily average was calculated for the corresponding impairment.

Don Pedro Reservoir daily storage change data were obtained from CDEC in units of ac-ft and converted to cfs. The daily storage data for Cherry Valley and Hetch Hetchy in April 2018 and 2019 were extracted from CDEC. Lake Eleanor reservoir storage data were retrieved from NWIS for April 2018 and included in Equation 3-2a. Since this data set was available in 15-minute intervals, the daily average storage (ac-ft) was calculated in Excel. The daily storage change data for Lake Eleanor are not available before October 1st, 2018 on CDEC. For April 2019, daily storage data for Lake Eleanor were extracted from CDEC and included in Equation 3-2a. The daily storage change values for Lake Eleanor were extracted from CDEC and Hetch Hetchy Reservoirs were calculated by subtracting a date's storage amount from the prior date's storage amount, converted into cfs.

NWIS data were used for Modesto and Turlock Canal daily diversions because CDEC daily discharge data for the Modesto Canal are unavailable after April 19th, 2016, and CDEC daily discharge data for the Turlock Canal are not available for any dates. Diversion data for both canals were obtained as mean daily flows, in cfs, from the NWIS website.

Procedure 2: Prioritizes Online Data, but also uses Data from Computing Agencies

For Procedure 2, daily FNF for the Tuolumne River was calculated using Equation 3-2. Procedure 2 is similar to Procedure 1, but Procedure 2 also includes impairment values that are not available on the NWIS or CDEC websites. The impairments that were not available online are available on Turlock ID's daily FNF spreadsheet reports. The Diversion to S.F. Pipeline is the only term that is not available online for the Tuolumne River daily FNF calculation.

Table 3-6 identifies each of the nine terms used in Equation 3-2 to estimate daily FNF in April 2018 and the data source locations for Procedure 2. The table also reports the dataset units available on CDEC or NWIS for each term, and the data source locations by their station ID and sensor number (for CDEC data) or site number (for NWIS data). For any given day during April 2018, all terms listed in Table 3-6 were converted to units of cfs and summed together to calculate the daily FNF for the Tuolumne River in cfs.

Name	Term Type	NWIS	CDEC	Other Data
		(Site	(Station ID	Source
		Number)	– Sensor	
			Number)	
Tuolumne River below La	Measured Gage	<u>11289650</u>	-	
Grange Dam	Flow (cfs)			
Don Pedro Reservoir	Storage Change (ac-	-	<u>DNP - 22</u>	
	ft)			
Lake Eleanor Reservoir	Storage (ac-ft)	<u>11277500</u>	-	
Cherry Valley Reservoir	Storage (ac-ft)	-	<u>CHV - 15</u>	
Hetch Hetchy Reservoir	Storage (ac-ft)	-	<u>HTH - 15</u>	
Don Pedro Reservoir	Evaporation (cfs)	-	<u>DNP - 74</u>	
Diversion to S.F. Pipeline	Diversion (cfs)	-	-	Turlock ID
				data*
Turlock Canal near La	Diversion (cfs)	<u>11289500</u>	-	
Grange, CA				
Modesto Canal near La	Diversion (cfs)	<u>11289000</u>	-	
Grange, CA				

Table 3-6: Datasets Used for the Procedure 2 Tuolumne River Daily FNF Calculation (April2018)

Turlock ID data* - not available online and retrieved from daily FNF spreadsheet reports

Table 3-7 identifies each of the nine terms used in Equation 3-2 to estimate daily FNF in April 2019 and the data sources used for Procedure 2. For any given day during April 2019, all terms listed below in Table 3-7 were converted to units of cfs and then summed together to calculate daily FNF for the Tuolumne River in cfs. Table 3-6 and Table 3-7 differ by the data source changing for "Lake Eleanor Reservoir" from NWIS for April 2018 to CDEC for April 2019. Both tables differ from Table 3-4 and 3-5, in Procedure 1, from the "Diversion to S.F. Pipeline" impairment being included in Procedure 2 and not Procedure 1.

Name	Term Type	NWIS (Site Number)	CDEC (Station ID – Sensor Number)	Other Data Source
Tuolumne River below La Grange Dam	Measured Gage Flow (cfs)	<u>11289650</u>	-	
Don Pedro Reservoir	Storage Change (ac- ft)	-	<u>DNP - 22</u>	
Lake Eleanor Reservoir	Storage (ac-ft)	-	<u>ENR - 15</u>	
Cherry Valley Reservoir	Storage (ac-ft)	-	<u>CHV - 15</u>	
Hetch Hetchy Reservoir	Storage (ac-ft)	-	<u>HTH - 15</u>	
Don Pedro Reservoir	Evaporation (cfs)	-	<u>DNP - 74</u>	
Diversion to S.F. Pipeline	Diversion (cfs)	-	-	Turlock ID data*
Turlock Canal near La Grange, CA	Diversion (cfs)	<u>11289500</u>	-	
Modesto Canal near La Grange, CA	Diversion (cfs)	<u>11289000</u>	-	

Table 3-7: Datasets Used for the Procedure 2 Tuolumne River Daily FNF Calculation (April 2019)

Turlock ID data* - not available online and retrieved from daily FNF spreadsheet reports

Tuolumne River discharge data were obtained from NWIS to calculate the daily FNF in April 2018 and 2019, as described in DWR's Unimpaired Runoff Memorandum (Appendix A). Since the dataset was in 15-minute intervals, the mean daily flow was calculated using Excel.

Don Pedro Reservoir daily storage change data were obtained from CDEC in ac-ft and converted cfs for April 2018 and 2019. The daily storage data for Cherry Valley and Hetch Hetchy in April 2018 and 2019 were extracted from CDEC. Lake Eleanor reservoir storage data were retrieved from NWIS for April 2018. Since the dataset was available in 15-minute intervals, the mean daily storage (ac-ft) was calculated in Excel. Lake Eleanor reservoir storage data were retrieved from CDEC for April 2019. The daily storage change for Lake Eleanor, Cherry Valley, and Hetch Hetchy were calculated by subtracting each date's storage amount from the prior date's storage amount, converted into cfs.

The Diversion to S.F. Pipeline data were unavailable online but were reported on Turlock ID's daily FNF spreadsheet report, in cfs, for April 2018 and 2019. Modesto and Turlock Canal daily discharge

data were obtained from NWIS because CDEC has not reported daily discharge for the Modesto Canal since April 19th, 2016 and does not have daily discharge for the Turlock Canal. Discharge data for both canals were obtained as daily average flow, in cfs, on NWIS.

Procedure 3: Prioritizes Data from Computing Agencies

For Procedure 3, daily FNF for Tuolumne River was calculated using Equation 3-2. Using Procedure 3, the river GF and all eight-impairment data are taken from Turlock ID's daily FNF spreadsheet reports instead of CDEC or NWIS to try to reproduce daily FNF values posted on CDEC exactly. Table 3-8 identifies each of the nine terms used in Equation 3-2 to estimate daily FNF for April 2018 and 2019 and their data source locations for Procedure 3. For any given day during April 2018 and 2019, all the terms listed below in Table 3-8 were converted to units of cfs and then summed together to calculate the daily FNF for the Tuolumne River in cfs.

Name	Term Type	NWIS (Site Number)	CDEC (Station ID – Sensor	Other Data Source
Tuolumne River below La	Measured Gage Flow		Number)	Turlock ID
Grange Dam	(cfs)	-	-	data*
Don Pedro Reservoir	Storage Change (cfs)	-	-	Turlock ID data*
Lake Eleanor Reservoir	Storage Change (cfs)	-	-	Turlock ID data*
Cherry Valley Reservoir	Storage (ac-ft)	-	-	Turlock ID data*
Hetch Hetchy Reservoir	Storage (ac-ft)	-	-	Turlock ID data*
Don Pedro Reservoir	Evaporation (cfs)	-	-	Turlock ID data*
Diversion to S.F. Pipeline	Diversion (cfs)	-	-	Turlock ID data*
Turlock Canal near La Grange, CA	Diversion (cfs)	-	-	Turlock ID data*
Modesto Canal near La Grange, CA	Diversion (cfs)	-	-	Turlock ID data*

Table 3-8: Datasets Used for the Procedure 3 Tuolumne River Daily FNF Calculation (A	pril
2018 and April 2019)	

Turlock ID data* - not available online and retrieved from daily FNF spreadsheet reports

Procedure 3 replaced the USGS Tuolumne River flow data, used in Procedure 1 and 2, with Turlock ID's Tuolumne flow data. Don Pedro and Lake Eleanor Reservoir daily storage change datasets and Cherry Valley and Hetch Hetchy Reservoir daily storage datasets were extracted from Turlock ID's spreadsheets, in cfs, for April 2018 and 2019; however, the reported values from Turlock ID are identical to the posted values on CDEC. Daily storage change values for Cherry Valley and Hetch Hetchy reservoirs were calculated by subtracting each date's storage amount from the prior date's storage amount, converted to cfs. Data for the diversions (diversion to S.F. Pipeline, Turlock Canal

near La Grange, CA, and Modesto Canal near La Grange, CA) and Don Pedro Reservoir evaporation, listed in Table 3-8, replaced available online data with Turlock ID's spreadsheet values accordingly.

3.1.6 Merced River

Equation 3-3 was used to reproduce daily FNF calculations for the Merced River. The Merced River daily FNF equation contains one river GF and two impairment terms for a total of three terms in Equation 3-3. Data for each of the three terms are available online from CDEC and NWIS for April 2018 and 2019. As seen in Table 2-3, Merced River daily FNF is calculated by Merced ID. Procedure 2 was not needed to calculate the daily FNF of Merced River since all necessary data were available online. Procedure 1 and Procedure 3 were needed to understand how the results differ using only data available online versus using only data from daily FNF spreadsheet reports (data not available online).

Merced ID provides DWR-DFM a daily FNF spreadsheet report for the Merced River by a daily email exchange. Merced ID daily FNF spreadsheet reports for April 2018 and April 2019 are presented in Appendix B. Appendix C contains comparison graphs between all the data of the measured gage flow and impairments received by Merced ID and reported on CDEC and NWIS. These comparison graphs present the difference between the same impairment data or measured gage flow data received by Merced ID or reported on CDEC or NWIS. Table 3-9 lists all data sources available online that could be used to reproduce the daily FNF calculation for the Merced River.

Name	Term Type	NWIS (Site Number)	CDEC (Station ID – Sensor Number)
Merced River below Merced	Measured Gage Flow	<u>11270900</u>	<u>MMF - 20</u>
Falls Dam	(cfs)		
Lake McClure (Exchequer)	Storage (ac-ft)	<u>11269500</u>	<u>EXC - 15</u>
Reservoir			
Lake McSwain Reservoir	Storage (ac-ft)	11270600	<u>MCS - 15</u>

Table 3-9: Datasets Available Online for Merced River Daily FNF Calculation

Procedure 1: Online Data Only

For Procedure 1, daily FNF for the Merced River was calculated using Equation 3-3 with data obtained from NWIS or CDEC. Table 3-10 identifies each of the 3 terms used in Equation 3-3 to estimate daily FNF in April 2018 and 2019, and the data source locations for Procedure 1. For any given day during April 2018 and 2019, all terms listed in Table 3-10 were converted to units of cfs and then summed together to calculate the daily FNF for the Merced River in cfs.

Table 3-10: Datasets Used for the Procedure 1 Merced River Daily FNF Cal	iculation (April
2018 and 2019)	

Name	Term Type	NWIS (Site Number)	CDEC (Station ID – Sensor Number)
Merced River below Merced Falls Dam	Measured Gage Flow (cfs)	<u>11270900</u>	-

Lake McClure (Exchequer) Reservoir	Storage (ac-ft)	-	<u>EXC - 15</u>
Lake McSwain Reservoir	Storage (ac-ft)	-	<u>MCS - 15</u>

Merced River discharge data were obtained from NWIS for April 2018 and 2019 to estimate Merced River daily FNF, as stated in the DWR's Unimpaired Runoff Memorandum (Appendix A). The daily average discharge for Merced River was calculated in Excel, because the dataset from NWIS was extracted in hourly intervals and in units of cfs. Lake McClure and Lake McSwain's daily storage data for April 2018 and 2019 were gathered from CDEC since they were not available on NWIS. The daily storage change for these reservoirs was calculated by subtracting each date's storage amount from the prior date's storage amount, in ac-ft, which was then converted into cfs. The average of daily storage change, in cfs, for Lake McSwain was calculated using Excel since the dataset was in intervals of 15-minutes and units in ac-ft.

Procedure 3: Prioritizes Data from Computing Agencies

For Procedure 3, daily FNF for the Merced River was calculated using Equation 3-3. Procedure 3 for the Merced River uses data only from Merced ID for all three terms identified in Table 3-11. Table 3-11 identifies each of the three terms used in Equation 3-3 to estimate daily FNF in April 2018 and 2019 using Procedure 3. For any given day during April 2018 and 2019, all terms listed in Table 3-11 were converted to cfs and then summed together to calculate daily FNF for the Merced River in cfs.

Table 3-11: Datasets Used for the Procedure 3 Merced River Daily FNF Calculation (April	
2018 and April 2019)	

Name	Term Type	NWIS (Site Number)	CDEC (Station ID – Sensor Number)	Other Data Sources
Merced River below Merced Falls Dam	Measured Gage Flow (cfs)	-	-	Merced ID data*
Lake McClure (Exchequer) Reservoir	Storage (ac-ft)	-	-	Merced ID data*
Lake McSwain Reservoir	Storage (ac-ft)	-	-	Merced ID data*

Merced ID data* - not available online and retrieved from daily FNF spreadsheet reports

USGS river GF data were replaced with river GF data from Merced ID's daily spreadsheet report. Method 3 uses Merced ID's April 2018 and 2019 daily storage change values for Lake McSwain and McClure. These values were obtained in ac-ft and then converted to cfs.

3.2 Results

This chapter presents daily FNF reproductions for the Stanislaus, Tuolumne, and Merced Rivers, and compares calculated daily FNF values with daily FNF values posted on CDEC. The calculated daily FNF values and daily FNF values posted on CDEC are presented as time series graphs. The daily FNF values and the calculated discrepancy between the CDEC FNF and the reproduced FNF are presented in tables.

3.2.1 Stanislaus River

Figure 3-1 presents a time series of the Stanislaus River daily FNF values reproduced using Procedure 1 and the Stanislaus River daily FNF values posted on CDEC for the month of April 2018. Similarly, Figure 3-2 presents the same information for the month of April 2019.

Procedure 1 is the procedure used by DWR since Equation 3-1 was confirmed by DWR and it provides a significantly close match to the daily FNF values posted on CDEC. Table 3-12a shows tabulated results for the daily FNF using Procedure 1 and the daily FNF posted on CDEC for the month of April 2018. Table 3-12a also compares these two daily FNF values by reporting the daily discrepancy for each day in the month of April 2018. Similarly, Table 3-12b presents the same information for the month of April 2019. These tables and figures show that the Stanislaus River CDEC FNF values are identical to the reproduced (Procedure 1) daily FNF values for all days during April 2018 and 2019, except on days 2, 3, 6, 8, 9, 10, and 12 in April 2018 and days 11 and 29 in April 2019.

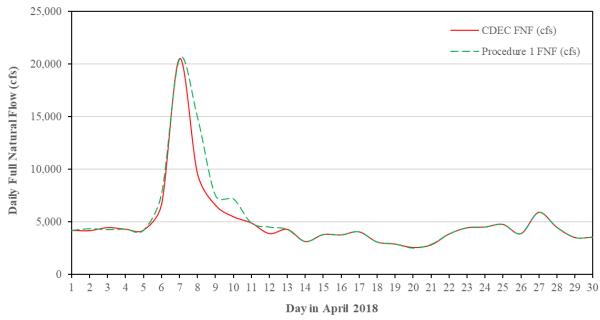


Figure 3-1: CDEC Daily FNF and Reproduced (Procedure 1) Daily FNF for the Stanislaus River at Goodwin Dam, April 2018

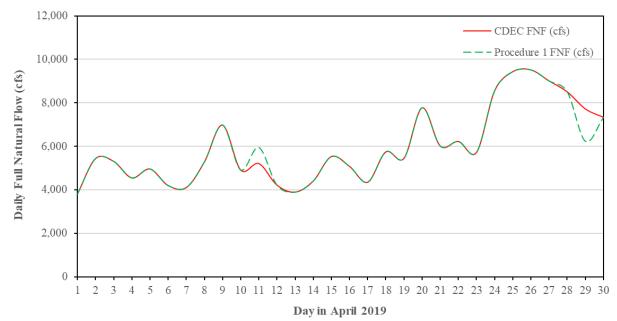


Figure 3-2: CDEC Daily FNF and Reproduced (Procedure 1) Daily FNF for the Stanislaus River at Goodwin Dam, April 2019

Table 3-12a shows that discrepancies between -5,400 cfs and 190 cfs occurred on days 2, 3, 6, 8, 9, 10, and 12 in April 2018. Table 3-12b shows that discrepancies between -750 cfs and 1,490 cfs occurred on days 11 and 29 in April 2019.

		Reproduced Daily FNF (cfs)	Discrepancy (cfs)	
Date	CDEC Daily FNF	Procedure 1	Procedure 1	
	(cfs)			
4/1/2018	4,221	4,223	-2	
4/2/2018	4,196	4,382	-186	
4/3/2018	4,487	4,301	186	
4/4/2018	4,338	4,338	0	
4/5/2018	4,244	4,243	1	
4/6/2018	6,682	7,694	-1012	
4/7/2018	20,527	20,528	-1	
4/8/2018	9,611	14,983	-5372	
4/9/2018	6,621	7,539	-918	
4/10/2018	5,520	7,222	-1702	
4/11/2018	4,924	4,925	-1	
4/12/2018	3,914	4,541	-627	
4/13/2018	4,316	4,318	-2	
4/14/2018	3,163	3,163	0	
4/15/2018	3,826	3,826	0	
4/16/2018	3,791	3,791	0	
4/17/2018	4,083	4,083	0	

Table 3-12a: Comparison of CDEC Daily FNF and Reproduced (Procedure 1) Daily FNF for the Stanislaus River at Goodwin Dam, April 2018

		Reproduced Daily FNF (cfs)	Discrepancy (cfs)	
Date	CDEC Daily FNF	Procedure 1	Procedure 1	
	(cfs)			
4/18/2018	3,116	3,115	1	
4/19/2018	2,926	2,928	-2	
4/20/2018	2,604	2,546	58	
4/21/2018	2,836	2,893	-57	
4/22/2018	3,876	3,876	0	
4/23/2018	4,469	4,470	-1	
4/24/2018	4,540	4,539	1	
4/25/2018	4,793	4,794	-1	
4/26/2018	3,908	3,908	0	
4/27/2018	5,935	5,936	-1	
4/28/2018	4,517	4,517	0	
4/29/2018	3,550	3,551	-1	
4/30/2018	3,577	3,577	0	
Average			-321	

Table 3-12b: Comparison of CDEC Daily FNF and Reproduced (Procedure 1) Daily FNF
for the Stanislaus River at Goodwin Dam, April 2019

		Reproduced Daily FNF (cfs)	Discrepancy (cfs)	
Date	CDEC Daily FNF	Procedure 1	Procedure 1	
	(cfs)			
4/1/2019	3,819	3,818	1	
4/2/2019	5,447	5,446	1	
4/3/2019	5,322	5,322	0	
4/4/2019	4,564	4,563	1	
4/5/2019	4,973	4,974	-1	
4/6/2019	4,214	4,214	0	
4/7/2019	4,118	4,119	-1	
4/8/2019	5,295	5,295	0	
4/9/2019	6,988	6,988	0	
4/10/2019	4,925	4,925	0	
4/11/2019	5,220	5,962	-742	
4/12/2019	4,234	4,234	0	
4/13/2019	3,911	3,910	1	
4/14/2019	4,421	4,422	-1	
4/15/2019	5,544	5,543	1	
4/16/2019	5,091	5,092	-1	
4/17/2019	4,365	4,365	0	
4/18/2019	5,758	5,759	-1	
4/19/2019	5,461	5,461	0	
4/20/2019	7,781	7,781	0	
4/21/2019	6,025	6,025	0	
4/22/2019	6,234	6,233	1	
4/23/2019	5,738	5,737	1	

		Reproduced Daily FNF (cfs)	Discrepancy (cfs)
Date	CDEC Daily FNF	Procedure 1	Procedure 1
	(cfs)		
4/24/2019	8,574	8,574	0
4/25/2019	9,441	9,441	0
4/26/2019	9,520	9,520	0
4/27/2019	9,011	9,011	0
4/28/2019	8,511	8,511	0
4/29/2019	7,727	6,240	1487
4/30/2019	7,344	7,344	0
Average			25

A possible cause for discrepancies larger than a value of 2 in Table 3-12a could be that the CDEC daily FNF for April 2nd, 2018, April 3rd, 2018, and April 6th, 2018 to April 12th, 2018 are flagged as "revised" values. The large magnitude discrepancies on April 11th, 2019 and April 29th, 2019 could be from the daily storage change of Beardsley and Donnells Reservoirs being reported as zero on CDEC. Both sets of large discrepancies are related to retrospective data corrections by DWR-DFM at times. The retrospective data corrections are only applied to the daily FNF values on CDEC and does not apply to the measured gage flow or impairment terms that are used by DWR-DFM to calculate daily FNF.

A potential refinement for this discrepancy is using the daily storage data (sensor 15) from CDEC for these days. Storage change values (CDEC - sensor 22) were originally used for New Melones, Beardsley, Donnells, Tulloch Reservoir instead storage values (CDEC - sensor 15) since they were provided by DWR as the data source locations for the daily FNF calculation of Stanislaus River. Using storage data instead of storage change data from CDEC provides closer results to the unrevised and provisional CDEC daily FNF values since storage data (sensor 15) are not "revised" or "estimated" like the storage change (sensor 22). All other dates for April and 2018 and 2019 have low discrepancy values since all impairment data values are reported onto CDEC by DWR in real-time and not "revised" later. Overall, the daily FNF calculation for Stanislaus River was reproducible without discrepancies for most days in April 2018 and April 2019 using the FNF equation by inputting datasets that are accessible on CDEC.

3.2.2 Tuolumne River

Figure 3-3 presents a time series of Tuolumne River daily FNF values reproduced using Procedures 1, 2, and 3, and Tuolumne River daily FNF values posted on CDEC for April 2018. Similarly, Figure 3-4 presents the same information for April 2019. As expected, Procedure 3 resulted in an exact match of the daily FNF values posted on CDEC for all days in April 2018 and 2019 (Figures 3-3 and 3-4). This shows that Equation 3-2 is the correct daily equation for reproducing FNF which was confirmed by DWR-DFM.

Tables 3-13a and 3-13b show the Tuolumne River daily FNF values calculated using Procedures 1, 2, and 3, as well as daily FNF posted on CDEC for April 2018 and April 2019, respectively. These tables also compare the daily FNF values posted on CDEC with the reproduced daily FNF values by reporting daily discrepancies between the CDEC FNF values and the reproduced FNF values. Figures

3-3 and 3-4 highlight that FNF values on CDEC exactly match Procedure 3 FNF values, while Procedures 1 and 2 do not provide an exact match.

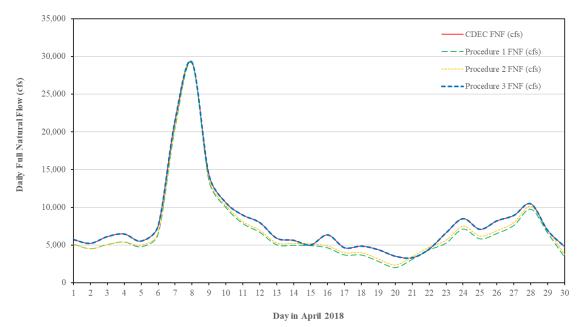


Figure 3-3: CDEC Daily FNF and Reproduced (Procedure 1, 2, and 3) Daily FNF for the Tuolumne River below La Grange Dam, April 2018

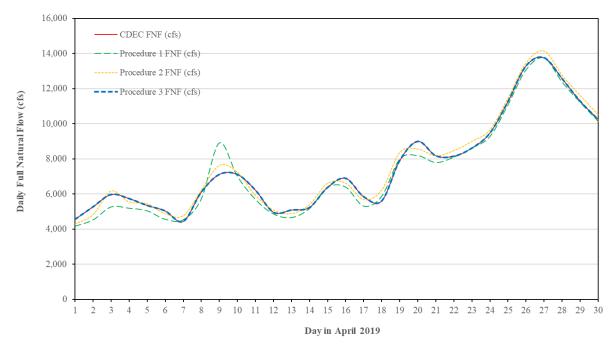


Figure 3-4: CDEC Daily FNF and Reproduced (Procedure 1, 2, and 3) Daily FNF for the Tuolumne River below La Grange Dam, April 2019

Table 3-13a shows the discrepancy values for April 2018 vary between 70 cfs and 1,800 cfs for Procedure 1 and between -270 cfs and 1,500 cfs for Procedure 2. Table 3-13b shows the discrepancy values for April 2019 vary between -1,800 cfs and 850 cfs for Procedure 1 and between -520 cfs and 450 cfs for Procedure 2.

		Reproduc	Reproduced Daily FNF (cfs)			Discrepancy (cfs)		
Date	CDEC Daily FNF	Procedure 1	Procedure 2	Procedure 3	Procedure 1	Procedure 2	Procedure 3	
	(cfs)							
4/1/2018	5,724	5,128	5,128	5,724	596	596	0	
4/2/2018	5,225	4,524	4,524	5,225	701	701	0	
4/3/2018	6,120	5,077	5,077	6,120	1043	1043	0	
4/4/2018	6,467	5,423	5,423	6,467	1044	1044	0	
4/5/2018	5,531	4,786	5,000	5,531	745	531	0	
4/6/2018	7,529	6,451	6,664	7,529	1078	865	0	
4/7/2018	21,562	20,507	20,720	21,562	1055	842	0	
4/8/2018	29,237	29,108	29,322	29,237	129	-85	0	
4/9/2018	14,306	13,504	13,718	14,306	802	588	0	
4/10/2018	10,624	9,998	10,253	10,624	626	371	0	
4/11/2018	8,975	7,871	8,126	8,975	1104	849	0	
4/12/2018	7,985	6,698	6,959	7,985	1287	1026	0	
4/13/2018	5,905	5,039	5,300	5,905	866	605	0	
4/14/2018	5,627	4,972	5,234	5,627	655	393	0	
4/15/2018	5,010	4,933	5,195	5,010	77	-185	0	
4/16/2018	6,352	4,638	4,900	6,352	1714	1452	0	
4/17/2018	4,645	3,697	4,000	4,645	948	645	0	
4/18/2018	4,860	3,687	3,991	4,860	1173	869	0	
4/19/2018	4,381	2,843	3,177	4,381	1538	1204	0	
4/20/2018	3,521	2,032	2,367	3,521	1489	1154	0	
4/21/2018	3,319	3,115	3,492	3,319	204	-173	0	
4/22/2018	4,475	4,364	4,742	4,475	111	-267	0	
4/23/2018	6,634	5,272	5,650	6,634	1362	984	0	
4/24/2018	8,504	7,127	7,505	8,504	1377	999	0	
4/25/2018	7,094	5,827	6,205	7,094	1267	889	0	
4/26/2018	8,217	6,547	6,924	8,217	1670	1293	0	
4/27/2018	8,940	7,619	7,997	8,940	1321	943	0	
4/28/2018	10,464	9,759	10,137	10,464	705	327	0	
4/29/2018	6,923	6,581	6,959	6,923	342	-36	0	
4/30/2018	4,771	3,383	3,760	4,771	1388	1011	0	
Average					947	683	0	

Table 3-13a: Comparison of CDEC Daily FNF and Reproduced (Procedure 1, 2, 3) Daily FNF for the Tuolumne River below La Grange Dam, April 2018

		Reproduc	ed Daily FN	NF (cfs)	Discrepan	cy (cfs)	
Date	CDEC	Procedure	Procedure	Procedure	Procedure	Procedure	Procedure
	Daily	1	2	3	1	2	3
	FNF						
	(cfs)						
4/1/2019	4,551	4,162	4,302	4,551	389	249	0
4/2/2019	5,268	4,523	4,839	5,268	745	429	0
4/3/2019	5,970	5,261	6,176	5,970	709	-206	0
4/4/2019	5,737	5,188	5,560	5,737	549	177	0
4/5/2019	5,346	5,041	5,456	5,346	305	-110	0
4/6/2019	5,033	4,560	4,888	5,033	473	145	0
4/7/2019	4,438	4,532	4,773	4,438	-94	-335	0
4/8/2019	6,106	5,721	6,223	6,106	385	-117	0
4/9/2019	7,115	8,903	7,634	7,115	-1788	-519	0
4/10/2019	7,115	7,010	7,251	7,115	105	-136	0
4/11/2019	6,220	5,690	5,931	6,220	530	289	0
4/12/2019	4,953	4,863	5,104	4,953	90	-151	0
4/13/2019	5,084	4,655	4,894	5,084	429	190	0
4/14/2019	5,232	5,172	5,412	5,232	60	-180	0
4/15/2019	6,376	6,380	6,620	6,376	-4	-244	0
4/16/2019	6,895	6,389	6,630	6,895	506	265	0
4/17/2019	5,846	5,311	5,687	5,846	535	159	0
4/18/2019	5,603	5,868	6,239	5,603	-265	-636	0
4/19/2019	7,910	7,985	8,364	7,910	-75	-454	0
4/20/2019	8,997	8,184	8,560	8,997	813	437	0
4/21/2019	8,180	7,795	8,177	8,180	385	3	0
4/22/2019	8,152	8,097	8,479	8,152	55	-327	0
4/23/2019	8,618	8,615	8,996	8,618	3	-378	0
4/24/2019	9,477	9,273	9,653	9,477	204	-176	0
4/25/2019	11,278	11,084	11,460	11,278	194	-182	0
4/26/2019	13,305	13,078	13,454	13,305	227	-149	0
4/27/2019	13,770	13,743	14,123	13,770	27	-353	0
4/28/2019	12,574	12,372	12,752	12,574	202	-178	0
4/29/2019	11,288	11,219	11,600	11,288	69	-312	0
4/30/2019	10,242	10,138	10,514	10,242	104	-272	0
Average					196	-103	0

Table 3-13b: Comparison of CDEC Daily FNF and Reproduced (Procedure 1, 2, 3) Daily FNF for the Tuolumne River below La Grange Dam, April 2019

Procedure 1 mostly results in lower Tuolumne River daily FNF estimates than FNF values posted on CDEC for April 2018 and 2019 because diversions to S.F. pipeline were replaced with values of zero. Procedure 2 results in mostly lower estimates than the daily FNF posted on CDEC for April 2018 as opposed to April 2019 resulting in mainly higher estimates. In Table 3-13a and 3-13b, the daily discrepancy values of 0 suggests that Procedure 3 is used by Turlock ID for calculating their daily FNF.

A potential refinement to minimize discrepancies is using the daily storage data (sensor 15) from CDEC since it contains closer values to Turlock ID's daily spreadsheet report storage data, as seen in Appendix C. Procedure 3 results show that the Tuolumne River daily spreadsheet reports produce an exact match with daily FNF posted on CDEC for April 2018 and April 2019. In general, the discrepancy values observed using Procedures 1 and 2 to reproduce daily FNF could be caused by retrospective data correction by USGS on NWIS and Procedure 1 lacking an input dataset for the S.F. pipeline diversion.

3.2.3 Merced River

Figures 3-5 and 3-6 present time series of Merced River daily FNF reproduced using Procedures 1 and 3 and daily FNF posted on CDEC for April 2018 and April 2019. As expected, Procedure 3 resulted in an exact match with daily FNF values posted on CDEC except for April 30th, 2019 (Figures 3-5 and 3-6). This suggests that Equation 3-3 is the correct daily equation for reproducing FNF, though this equation was not confirmed by Merced ID or DWR-DFM staff.

Tables 3-14a and 3-14b show the Merced River daily FNF values calculated using Procedures 1 and 3, as well as daily FNF values posted on CDEC for April 2018 and April 2019, respectively. These tables also compare Procedures 1 and 3 reproduced daily FNF values to the daily FNF values posted on CDEC by reporting daily discrepancies. Figures 3-5 and 3-6 highlight that the FNF values on CDEC exactly match the Procedure 3 FNF values, while Procedure 1 does not provide an exact match for most of the study period. Also, Figure 3-5's daily FNF values for Procedure 1 appear to be closer to the CDEC FNF value than Figure 3-6's daily FNF for Procedure 1 with average discrepancies of -36 and -68 cfs, respectively.

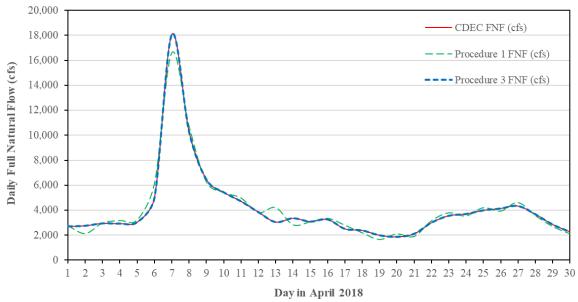


Figure 3-5: CDEC Daily FNF and Reproduced (Procedures 1 and 3) Daily FNF for the Merced River below Merced Falls Dam, April 2018

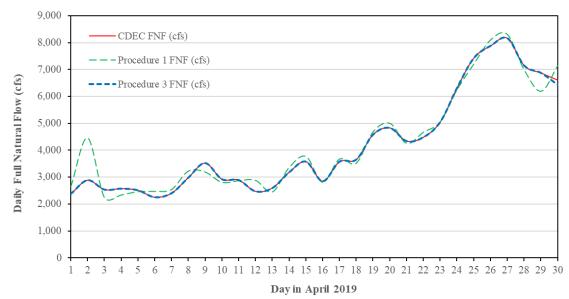


Figure 3-6: CDEC Daily FNF and Reproduced (Procedures 1 and 3) Daily FNF for the Merced River below Merced Falls Dam, April 2019

Table 3-14a shows discrepancy values for April 2018 varying between -1,200 cfs and 1,500 cfs for Method 1, averaging -36 cfs. Table 3-14b shows that the discrepancy values for April 2019 vary between -1,600 cfs and 700 cfs for Procedure 1, with an average discrepancy of 68 cfs. For Procedure 3, the discrepancies are less than 1 cfs for all days during April 2018 and April 2019, except for April 30th, 2019.

		Reproduced	Daily FNF	Discrepanc	y (cfs)
		(cfs)	-	_	
Date	CDEC Daily FNF	Procedure 1	Procedure 3	Procedure	Procedure
	(cfs)			1	3
4/1/2018	2,703	2,774	2,703	-71	0
4/2/2018	2,759	2,155	2,758	604	1
4/3/2018	2,948	2,996	2,947	-48	1
4/4/2018	2,929	3,191	2,929	-262	0
4/5/2018	3,044	3,247	3,044	-203	0
4/6/2018	5,005	6,163	5,005	-1158	0
4/7/2018	18,085	16,606	18,085	1479	0
4/8/2018	10,271	10,724	10,271	-453	0
4/9/2018	6,462	6,275	6,462	187	0
4/10/2018	5,435	5,431	5,435	4	0
4/11/2018	4,715	4,995	4,715	-280	0
4/12/2018	3,853	3,822	3,853	31	0
4/13/2018	3,052	4,230	3,052	-1178	0
4/14/2018	3,359	2,858	3,359	501	0
4/15/2018	3,093	3,084	3,093	9	0

Table 3-14a: Comparison of CDEC Daily FNF and Reproduced (Procedures 1 and 3) Daily FNF for the Merced River below Merced Falls Dam, April 2018

		Reproduced	Daily FNF		
		(cfs)	-	Discrepancy	y (cfs)
Date	CDEC Daily FNF	Procedure 1	Procedure 3	Procedure	Procedure
	(cfs)			1	3
4/16/2018	3,262	3,367	3,262	-105	0
4/17/2018	2,509	2,821	2,509	-312	0
4/18/2018	2,384	2,215	2,384	169	0
4/19/2018	1,996	1,680	1,996	316	0
4/20/2018	1,866	2,119	1,866	-253	0
4/21/2018	2,110	1,919	2,111	191	-1
4/22/2018	3,001	3,171	3,001	-170	0
4/23/2018	3,557	3,810	3,557	-253	0
4/24/2018	3,702	3,559	3,701	143	1
4/25/2018	3,993	4,217	3,993	-224	0
4/26/2018	4,140	3,947	4,140	193	0
4/27/2018	4,338	4,632	4,338	-294	0
4/28/2018	3,682	3,598	3,682	84	0
4/29/2018	2,861	2,724	2,861	137	0
4/30/2018	2,275	2,135	2,275	140	0
Average				-36	0

Table 3-14b: Comparison of CDEC Daily FNF and Reproduced (Procedures 1 and 3) Daily FNF for the Merced River below Merced Falls Dam, April 2019

		Reproduced	Daily FNF	Discrepanc	y (cfs)
		(cfs)	•		
Date	CDEC Daily FNF	Procedure 1	Procedure 3	Procedure	Procedure
	(cfs)			1	3
4/1/2019	2,375	2,632	2,375	-257	0
4/2/2019	2,886	4,457	2,886	-1571	0
4/3/2019	2,537	2,243	2,537	294	0
4/4/2019	2,572	2,329	2,573	243	-1
4/5/2019	2,513	2,453	2,514	60	-1
4/6/2019	2,253	2,465	2,253	-212	0
4/7/2019	2,402	2,534	2,403	-132	-1
4/8/2019	2,981	3,217	2,981	-236	0
4/9/2019	3,522	3,185	3,521	337	1
4/10/2019	2,922	2,800	2,922	122	0
4/11/2019	2,891	2,861	2,890	30	1
4/12/2019	2,472	2,875	2,472	-403	0
4/13/2019	2,594	2,443	2,594	151	0
4/14/2019	3,179	3,351	3,179	-172	0
4/15/2019	3,575	3,765	3,575	-190	0
4/16/2019	2,849	2,802	2,849	47	0
4/17/2019	3,574	3,667	3,574	-93	0
4/18/2019	3,653	3,513	3,653	140	0
4/19/2019	4,579	4,680	4,579	-101	0

		Reproduced	Daily FNF		
		(cfs)	-	Discrepancy	y (cfs)
Date	CDEC Daily FNF	Procedure 1	Procedure 3	Procedure	Procedure
	(cfs)			1	3
4/20/2019	4,828	4,997	4,828	-169	0
4/21/2019	4,336	4,252	4,336	84	0
4/22/2019	4,483	4,668	4,483	-185	0
4/23/2019	5,049	5,051	5,048	-2	1
4/24/2019	6,315	6,251	6,315	64	0
4/25/2019	7,423	7,206	7,423	217	0
4/26/2019	7,877	8,104	7,877	-227	0
4/27/2019	8,156	8,302	8,155	-146	1
4/28/2019	7,139	6,985	7,138	154	1
4/29/2019	6,868	6,193	6,868	675	0
4/30/2019	6,600	7,144	6,426	-544	174
Average				-68	6

A possible cause for discrepancies larger than a value of one in Table 3-14b could be that the CDEC daily FNF for April 30th, 2019 is flagged as an "estimated" value. This discrepancy is related to retrospective data corrections by DWR-DFM at times. The retrospective data correction is only applied to the daily FNF values on CDEC and not apply to the measured gage flow or impairment terms used by DWR-DFM to calculate daily FNF. This data correction to only the CDEC daily FNF value makes the GF and impairment data on the daily FNF spreadsheet report for Merced ID outdated.

3.3 Summary

Two primary challenges in replicating daily FNF calculations for April 2018 and 2019 were lack of public access to the daily FNF equations, and availability of unrevised source data for daily FNF computations.

Although daily FNF equations are based on monthly FNF equations that are publicly available, daily FNF equations are not published in DWR's Unimpaired Runoff Memorandum. Therefore, to reproduce daily FNF for the Stanislaus, Tuolumne, and Merced Rivers, one must infer the equation and/or confirm the equation with DWR-DFM, which creates a barrier to overall daily FNF reproducibility.

Additionally, the results of the April 2018/2019 analysis show that it is more difficult to accurately reproduce the daily FNF calculation for the Tuolumne River than for the Stanislaus and Merced Rivers because all datasets needed to reproduce the daily FNF for the Stanislaus and Merced Rivers are available online. Although, only one dataset that is needed to reproduce daily FNF for the Tuolumne River is not available online (Diversion to S.F pipeline), the exclusion of this dataset from the daily FNF computation causes the Tuolumne Procedure 1 computation to consistently underestimate daily FNF values.

Also, for the Tuolumne daily FNF computation, Procedure 1 consistently had larger and more frequent discrepancies than Procedures 2 and 3, where Procedure 3 provided a perfect reproduction.

Similarly, Procedure 3 provided a better reproduction than Procedure 1 for the Merced daily FNF computation. This indicates that availability of unrevised source data (provided by the daily FNF spreadsheet reports) improves computation reproducibility. Since most data from daily FNF spreadsheet reports are recorded onto CDEC (S. DeGuzman, personal communication, August 14, 2019), and since GF and impairments values are not updated retrospectively, discrepancies in the Procedures 1 and 2 computations (where applicable) are likely caused by retrospective revisions to daily FNF data posted online.

Finally, from this exercise, the following additional observations are made:

- Reservoir storage change for some (not all) upstream reservoirs are included in FNF calculations.
- Using daily storage change data from CDEC (sensor 22) instead of storage data (sensor 15) results in a worse reproduction of daily FNF. This was found for Beardsley, Donnells and Tulloch Reservoirs on Stanislaus River, and Don Pedro Reservoir on Tuolumne River.

Chapter 4

Summary of the Reproduction of DWR Daily FNF Calculations: WY 2009-2019

Chapter 4 provides a closer examination of the reproducibility of daily FNF estimates for the Stanislaus, Tuolumne, and Merced Rivers with metrics, statistical tests, and plots to assess any seasonal or annual trends within the Water Year (WY) 2009-2019. From the two-month analysis, in Chapter 3, a better understanding of the complexity and challenges that come with reproducing daily FNF was found and highlighted the need for an expanded and closer examination of the reproducibility of daily FNF calculations. This chapter outlines the generalized procedure for reproducing daily FNF and summarizes the main findings for an 11-year study. This study is further discussed in Pulido et al. (2020).

4.1 Procedures

Equations 3-1 through 3-3 and Procedures 1 through 3 (see Chapter 3.1.3) were used to reproduce the historical daily FNF for WY 2009-2019 for the Stanislaus, Tuolumne, and Merced Rivers. Similarly, to Chapter 3, the comparison between the results for Procedures 1 and 2 provides insight on how online data availability impacts daily FNF reproducibility. The comparison between Procedures 2 and 3 show how differences between online and computer agency data change reproducibility.

The data availability for the Stanislaus, Tuolumne, and Merced Rivers vary and are not similar to the data availability in Chapter 3. Daily FNF spreadsheet reports for the Tuolumne and Merced Rivers were not available for this expanded study. Turlock ID did provide a complete record of computing agency data for the GF and the eight impairments of the Tuolumne FNF calculation for WY 2009-2019. For the Stanislaus River, only Procedure 1 was reproduced using Equation 3-1 since all data are available online and additional computing agency data do not exist. Procedures 1, 2, and 3 were reproduced using Equation 3-2 for the daily FNF calculation of Tuolumne River since data are available online and additional computing agency data was provided by Turlock ID. For the Merced River, only Procedure 1 was reproduced since all data are available online and additional computing agency data was provided by Turlock ID. For the Merced River, only Procedure 1 was reproduced since all data are available online and additional computing agency data was provided by Turlock ID. For the Merced River, only Procedure 1 was reproduced since all data are available online and additional computing agency data was provided by Turlock ID.

In this 11-year study, a generalized procedure was established to fill data gaps consistently, although the authors noted that daily FNF computation reproducibility could be improved by investigating river-specific data management practices. A challenge that this study came across was deciding if using the GF or impairment dataset from NWIS was better than using CDEC data to reproduce daily FNF estimates. So, a second generalized procedure was created to determine what combination of online data sources provides the best reproduction of FNF. One more generalized procedure was developed to provide an overview of the procedures used for reproducing the daily FNF estimates. This procedure included confirming the daily FNF equation, extracting all relevant GF and impairment data, formatting the data for analysis (i.e., filling gaps), identifying the best data sources, calculating daily FNF, and lastly computing performance metrics and reproducibility tests for comparison between results. Performance metrics and reproducibility tests are discussed further in Pulido et al. (2020).

4.2 Summary of Results

The Stanislaus, Tuolumne, and Merced daily FNF calculations were found to be largely reproducible for WY 2009-2019, though there were two seasonal and annual trends. Seasonally and for drier years, overall reproducibility decreased when flow is low. Also, during the summer and/or fall of the WY 2013-2015 drought, all daily FNF computations were not sufficiently repeatable. Another important finding was that overall computational reproducibility is not significantly impacted by high-magnitude discrepancies. This was seen for WY 2017 where the daily discrepancies were largest in magnitude, but the reproducibility tests indicated that no computations were insufficiently repeatable.

Lastly, performance metric comparisons between Procedures 1, 2, and 3 for Tuolumne River highlighted that access to unrevised daily FNF source data is key to reproducing accurate daily FNF calculations. Procedure 1 for the Tuolumne River was determined to be the worst reproduction of daily FNF out of all five computation procedures within the 11-year study. Also, in the two most recent water years (i.e. WY 2018-2019), Procedures 1 and 2 were significantly outperformed by Procedure 3 for the Tuolumne River since the computing agency data provided by Turlock ID were provisional for the last two water years. This indicates that the reproducibility of the Tuolumne daily FNF computation decreases for WY 2009-2017 from retrospective revisions made by Turlock ID.

Chapter 5 Conclusion

This study came across many logistical obstacles that made reproducing the daily FNF estimates for the Stanislaus, Tuolumne, and Merced Rivers challenging and complex. Reproducing daily FNF includes confirming the mass balance daily FNF equation, procuring relevant data (i.e. online or computing agency data), and lastly deciding what combination of data sources provide the best daily FNF reproduction for each river. Each step is challenging for the following reasons:

- 1. Finding the exact state or regional agency that can confirm the daily FNF equation, since DWR-DFM does not always know the exact daily FNF equation used by computing agencies.
- 2. Connecting with the state or regional agency, themselves, to provide guidance to overcome any challenges from reproducing daily FNF (i.e. understanding data availability and revisions).
- 3. Identifying and extracting provisional data in an accessible format (such as daily FNF spreadsheet reports) from computing agencies to directly compute daily FNF estimates.

Even if these obstacles are overcome, this analysis showed that the reproduction of daily FNF estimates are not always completely reliable as seen during droughts with low flow. In the near future, the reproducibility of the daily FNF computation for the Tuolumne River may improve by DWR-DFM becoming the FNF computing agency for this river. DWR-DFM intends to get approval from Turlock ID to make all data used in FNF computations available on CDEC, and to assume the role of calculating daily FNF for the Tuolumne River (S. Nemeth, personal communication, February 28, 2019). Though, even with these changes, it is still possible for daily FNF estimates computed by DWR-DFM (i.e. Stanislaus River daily FNF) to not be completely reproducible due to retrospective revisions to daily FNF values. As seen in Chapter 3, daily FNF values may be revised at a later date and the unrevised daily FNF values that are based on provisional GF and impairment data may not have been retained by any state or regional agency in an accessible format. These retrospective revisions can happen vice versa also where GF and impairment data are revised and not the corresponding daily FNF values. Provisional data are important for confirming reproduced daily FNF estimates.

Therefore, to improve overall reproducibility of daily FNF values, the following refinements are proposed for consideration:

- 1. Publish daily FNF equations for public view in coordination with DWR-DFM, potentially posted on CDEC.
- 2. Retain provisional daily FNF, GF, and impairment data in a publicly accessible format.

Lastly, further research on the reproduction of daily FNF could investigate how the use of provisional data affects the computation of daily FNF, and if this impact is substantial enough to affect the implementation of minimum flow requirements based on daily FNF computations.

Appendices

A Excerpts from DWR's 2016 Revised Report

Tuolumne River above La Grange Dam (Inflow to New Don Pedro Reservoir)

The computations begin with the measured flow at the USGS station No. 1128965 "Tuolumne River below La Grange Dam" and add:

- 1. Diversions by the City and County of San Francisco through the Hetch Hetchy Aqueduct.
- 2. Change in storage at Hetch Hetchy, Lake Eleanor, and Lake Lloyd (Cherry Valley) reservoirs.
- 3. Estimated net evaporation of 2.0 feet per year at Hetch Hetchy, Lake Eleanor, and Lake Lloyd based on surface area. This is summed from daily computations based on a fixed monthly rate and combined surface reservoir area.
- 4. Change in storage at New Don Pedro Reservoir beginning in November 1970 and at the Old Don Pedro Reservoir prior to then.
- 5. Evaporation at Don Pedro reservoir, estimated at 50.2 inches per year net, computed from daily reservoir area and an average monthly rate, varying by month.
- 6. Diversion into Modesto and Turlock Canals near La Grange.

The natural flows at La Grange Dam are computed by Turlock Irrigation District and provided to DWR.

Merced River below Merced Falls Dam (Inflow to Lake McClure)

Computed unimpaired flows start with measured flow at the above station, USGS No. 1127090, and add:

- 1. Diversions in the North Side Canal.
- 2. Change in storage at Lake McClure (Exchequer), enlarged in 1967, and McSwain Reservoir.
- 3. Estimated monthly average evaporation at Lake McClure and McSwain.

Estimated annual evaporation is 22.45 TAF and is listed below, by month, in 1000 AF:

October	1.55	April	1.60
November	1.00	May	2.60
December	.60	June	3.25
January	.50	July	3.85
February	.70	August	3.30

March 1.30 September 2.20

Stanislaus River below Goodwin Dam, near Knights Ferry

Computations begin with the USGS gage No. 113020 of the same name which has been operated since 1957.

To the observed flow are added Tuolumne Canal near Long Barn, Oakdale Canal, and South San Joaquin Canal diversions. (Diversions to the CVP contractors in eastern San Joaquin County via the new Stockton East tunnel at Goodwin Dam are currently being made and included, but did not start until after 1994.)

Adjust for change in storage at New Melones (Old Melones prior to November 1978) Relief, Strawberry, Lyons, Donnell, Beardsley, Tulloch, Spicer Meadows (since 1989) and, prior to 1989, the Utica system reservoirs. The Utica system includes Lake Alpine (4.1 TAF) and Union (3.1 TAF) Reservoirs and also the old 4 TAF capacity Spicer Meadows reservoir. When the Utica System was accounted for, the storage change for a month was considered the same each year as follows: Units are 1000 AF:

October	-3.2	April	11.6
November	-0.8	May	0
December	0	June	- 1.7
January	0	July	- 3.0
February	0	August	- 2.0
March	0	September	- 0.9

The estimated evaporation from New Melones Reservoir is added. Prior to completion of New Melones Reservoir an estimate of monthly evaporation was used which was based on a curve of storage versus evaporation.

B Turlock ID and Merced ID Daily Full Natural Flow Spreadsheet Reports, April 2018 and April 2019 Table B-1: Turlock ID's daily FNF spreadsheet report for April 2018

Surface Area (acres)	Don Pedro Evaporation	CCSF TOTAL EVAPORATIO		Lake Eleanor Reservoir		Cherny Valley Reservoir	Heron Herony Reservoir	Surface Area (acres)	Jon Pearo	Yosemite Des Dadas	Sonora	Moccasin	Cherny Valley	 Hetch Hetchy 	Rain Fall (Inches)	Diversion to S.F. Pipeline (ds)	Inflow (ds)	Release (cfs)	Gain/(-Loss) cfs	Storage (AF)	Elevation (Feet)	l ako Floann Rosonnin	Inflow (ds)	Release (cfs)	Gain/(-Loss) cfs	Storane (AE)	Cherry Valley Reservoir Flevation (Feet)	(00)	Inflow (ds)	Release (nts)	Coin((1 ppp) of	Elevation (Feet)	Hetch Hetchy Reservoir	Computed Natural Flow (ds)	Inflow (ds)	Total (ds)	River (cfs)	MID Canal (ds)	Flow Below Dam (cfs)	Gally(-LOSS) GIS	Storage (AF)	DP Elevation (Feet)	Don <u>Pedro</u>			Tuolumne River Report (Information Given to Department of Water Resources)
12213		0	0	922.4	с'n	1618.4	1901.9) 377	261	495	(234)	22,611.0	4,656.2		1,063	981	82	+,002.+	4 862 4	-ioio	2.616	4 444				4,771	6,336	3,876	2,261	611	3,876	400				4/30/2018 Monday		rmation Given t
12188		0	0	925.4	ъ	1618.1	0 L'RABL	-								377	427	521	(94)	23,076.0	4,656.7		1,472	980	492		4 863 3	olo oo	3.683	4453	JCHC,020	3,789.5		6,923	6,880	3,811	1,639	1,00,	3,811		1,8/5,382	817.67		4/29/2018 Sunday	All Data Are For	o Departme
12158		0	0	926.7	<u>с</u> ,	1616	0									377	580	486	94	23,262.0	4,656.9		2,047	88	1,067		4 861 7	- I VILV	4.829	3 288				10,464	7,348	3,676	1,266	603	3,676	3,074	1,809,290	817.16		4/28/2018 Saturday	Are For	nt of Water F
12121		0	0	925.4	с'n	1611.4	1.0061									377	488	254	234	23,076.0	4,656.7		1,949	979	970	4,000.4	4 680 4	11.00	4.763	1 030		3,788.7		8,940	3,588	3,588	1,325	605	3,588		1,862,012	816.64		4/27/2018 Friday		Resources)
12121		0	0	922.4	с'n	1606.8	0 71601									377	430	242	188	22,611.0	4,656.2		1,414	612	802	1008070	4 650 2		4.411	1 748		3,784.8		8,217	4,150	3,538	1,267	555	3,538			816.56		4/26/2018 4/25/2018 Thursday Wednesday		
12115		0			с'n		0									377	4 3	255	188	22,239.0	4,655.8		1,524	81	1,443	4,000.2	4 658 2	on to	3.985	5 219	314,130.0	3,782.0		7,094	6,282	3,232	1,415	472	3,232	o,vov	1,860,800	816.53		4/25/2018 Wednesday		
12084		0		91		1595.6	0 crcsol									377	504	180	324	21,867.0	4,655.4		1,502	59	1,443	105 272 A	4 856 4	o'ooo	3 335	3.526	0.110,010	3,783.3		8,504	6,513	3,470	1,722	353	3,470	3,043	1,854,/51	815.99		4/24/2018 Tuesday		
12054		0		91		158	1800.3									377	452	179	273	21,224.0	4,654.7		1,422	59	1,363	102 510 0	4 654 6	ri v	2 753	1 404		3,783.5		6,634	3,254	2,647	782	236	2,647	00	1,848,/16	815.52		4/23/2018 Monday		
12047		0			ċл		0									377	270	179			4,654.1		1,022	8	962	1908070	46520	- 1000	1.803	1 424	3 14,3 10.0	3,782.1		4,475	2,629	1,415	218	237	1,415	1,214	1,84/,511	815.45		4/22/2018 Sunday		
12035		0			с'n		0 C'6/91	-								377	189	189		20,503.0	4,653.9		702	61	641	197 900 0	4 651 7	4	1.141	1 4 25		3,781.7		3,319	2,548	1,335	ද ්ස	187	1,335	1,210	1,845,103	815.19		4/21/2018 Saturday		
12023		0			ъ		0 0									334	156	247	(91)	20,503.0	4,653.9		613	52	561	196 607 0	4 650 0	1001	1237	1407	314,130.0	3,782.0		3,521	2,869	1,657	813	108	1,657	1,41,4	1,842,697	814.97		4/20/2018 Friday		
12011		0		91		157	1861.4									3 <u>3</u> 4	248	248		20,683.0	4,654.1		600	49	551	195 514 0	4 850 2		1.558	1 853		3,782.2		4,381	3,554		_		2	1,211	1,840,294	814.77				
11999		0	0	911.5	с'n	1568.1	1001./	4								303	293	248	\$;	20,683.0	4,654.1		911	51	860	184 421 0	4 640 5	1100	1.796	1 801	314,094.0	3,782.3		4,860	3,709	2,499	1,564	114	2,499	1,202	1,83/,893	814.63		4/19/2018 4/18/2018 Thursday Wednesday		
11986		0	0	911.1	с'n	1563.8	12881			0.24	0.84	0.20	0.25	0.44		303	304	213	91	20,593.0	4,654.0		989	51	938 101-11-10-10	180 715 0	4 648 4	1001	1.991	1 001	314,002.0	3,782.4		4,645	3,276	2,672	1,922	115	2,672	ş	1,835,494 201	814.45		4/17/2018 Tuesday		
11980		0			с'n		0	-		0.46	0.20	0.12	0.39	0.70		261	374	283	91	20,412.0	4,653.8		1,224	51	1,173	120 2550	4 647 2	-iv	2 226	2 705	314,002.0	3,782.4		6,352	5,358	3,548	2,376	1,uoo	3,548	1,010	1,834,296	814.26		4/16/2018 Monday		
11962				99		1553.2	1864.4									261	231	458	(227	20,232.0	4,653.6		1,148	រ		-	4 645 7	- Hoo	2.001		5			5,010	5,274	3,466	2,500	117	3,466	uo,i		814.04		4/15/2018 Sunday		
11944		0		91		5	0									261		475		28	4,654.1			51	1,095	176 358 0	4 644 3		2.023		5	3,784.5		5,627	5,982			116		3,007		813.71		3 4/14/2018 Saturday		
11914		0		91		5	0									261		483		21,0	4,654.8		1,229	57	1,172	- I -	4 642 0			3 456	JZ1,0			5,905	5,624		2	117	ω	1,000		813.23		4/13/2018 Friday		
11895		0		91		ខ្ល	0 Greeg L			0.22	0.20	0.24	0.12	0.27		261		501			4,655.3			51	1,475	171.9620	4 64 1 4	01 F 0		3 371	22.3			7,985	6,544	4,147	3,156	711 C/0	4,147		1,817,583	812.88		4/12/2018 Thursday		
11871		0			с'n		1900.4									255	589	730	(141)	22,053.0	4,655.6		1,801	55		-	4 630 5	viv.	3.991	4 278	323,			8,975	7,359	4,371	3,127	302	4,371		1,8	812.50		Thursday Wednesday		
11841		0			с'n		0 CLIAAL									255	855	902	(47)	22,332.0	4,655.9		2,403	118	2,285	1 C3V 581	4 627 0	-inco	4 953	4 282	0.000,420	3,787.5		10,624	7,424	3,847	3,144	255	3,847	110,0	1,806,90Z	812.05		4/10/2018 Tuesday		
11804		0			с'n		1898.8									213			422	22,425.0	4,656.0		2,960	294	2,666	120 030 0	4 624 2	0110	6.437	3.785	323,200.0	3,786.8 3,784.0		14,306	8,296			302		,+ 0	1,/99,808	811.37		4/9/2018 Monday		
11762		0			Ċп		1888.2			0.62	0.41	0.31	0.04	0.42		213	3,745	600	3,145	21,588.0	4,655.1		5,927	292	5,635	1556/20	46307	io jo	135	3 007	10 544	3,784.0		29,237	9,666			332		יידני ה	1,/91,500	810.66		48/201 Sunday		
11708		0					0					4				213	1,845	500	1,345	15,349.0	4,648.1		2,960 5,927 3,868 1,631 1,634 2,074 1,547 1,602 1,520	212	3,656	1/1/ /87.0	4 623 1	A1 101	5.137	2,540	200,992.0	40 3,772.8 3,770.0 3,770.2 3,770.3 3		21,562	13,714			36		9,4U0	1,/80,998	809.75		8 4/7/2018 Saturday		
11616		0			<u>с</u> ,		0					600				213	240	457	(217)	12,682.0	4,645.0		1,631	. 52	1,579	127 215 0	4 618 1	141	1.912	2,008	291,040.0	3,770.0		7,529	6,103			625 A7C		200	1,/62,338	808.17		4/6/2018 Friday		
11611		0			ს, ს,		0 0									213		260	(130)	μ	4,645.5		1,634	\$	1,580	124 082 0	4 615 0	-	1.772	1 865	100/767	3,770.2		5,531	3,925			338		(2,3##	1,/61,1//	808.13		3 4/5/2018 Thursday		
11634					Ċп		18,50.1											47		13,370.0	4,645.8		2,074	135	1,939	120 050 0	4 613 7	1010	1.310	847	0.785'767	3,770.3		6,467	4,030			339		(L,JHU)	1,/65,826	808.46		3 4/5/2018 4/4/2018 Thursday Wednesday		
11657		0			<u>о</u> ,		1834.1										49		43	13,370.0	4,645.8		1,547	8	1,487	107 105 0	4 611 0		1.554	816	730	3,769.8		6,120	3,815			338		(2,,2)	1,//0,48	808.87		4/3/2018 / Tuesday		
7 11680		0			сл		0 10,001										(37)				4,645.7		1,602	2	1,538	10/ 155.0	4 608 0	11.14	1.462	816	21.2	3,769.0		5,225	3,048			339		04(2)	1,//5,101	7 809.33 809.76		8 4/2/2018 Monday		
0 11708		0			сл сл		0 0 0) (37)		(A	13	4,645.8		1,52	5	1.45	101 104	4 808		1.29	837	200,123.	3,768.3		5,724	3,802			340		9 (1,17	1,/80,95	809.7		8 4/1/2018 Sunday		

Surface Area (acres)	Don Pedro Evaporation	CCSF TOTAL EVAPORATIO		Lake Eleanor Reservoir	Unerty valley Reservoir		Surface Area (acres) Hetch Hetchy Reservoir	Don Pedro	rosemile	Vocomito	Sonora	Monnoin	Chara Valley	y Rain Fall (Inches)	Diversion to S.F. Pipeline (cfs)		 Release (cfs) 			Lake Eleanor Reservoir Elevation (Feet)			Gain/(-Loss) cfs	•	Oft Cherry Valley Reservoir Elevation (Feet)	Inflow (cfs)		Gain/(-Loss) cfs	Storage (AF)	Hetch Hetchy Reservoir Elevation (Feet)	Computed Natural Flow (cfs)	Inflow (cfs)	Total (cfs)	River (cfs)	TID Canal (cfs) MID Canal (cfs)	Flow Below Dam (cfs)	Gain/(-Loss) cfs	Storage (AF)	DP Elevation (Feet)			Tuolumne River Report (Infom
11308		0	0	934.6	5.0101	0	1816.1								376	1,466	1,513	(47)	24,472.0	4,658.2	1,730	1,648	82	204,026.0	4,661.8	4,/52	, 1005	(2,853)	283,802.0	3,765.6	10,242	12,649	5,828	3,847	1,262 719	5,828	6,821	1,700,444	802.83	Tuesday	4/30/2010	nation Given
11240		0		8	5 10		1829.4								381	1,079	_	(94)	24,565.0	4,658.3	1,808	1.644		N	4,661.7	4,762	/,16/		289		11,288	13,208	5,865	3,837	1,294 734	5,865	7,343	1,686,915	801.59		All Data 4/20/2010	to Departme
11167		0		8	2CIOI		1839.9								381	1,107	1,201	(94)	24,751.0	4,658.5	2,031	1,457		N	4,661.5	5,352	6,836		29		12,574	13,163	5,855	3,842	1,283 729	5,855	7,308	1,6	800.32		All Data Are For	ation Given to Department of Water Resources)
11093		0		33	5- 0.7101		1846								381	1,230	1,230		24,937.0	4,658.7	2,313	1,576	737	202,398.0	4,660.8	5,360	4,154		297	3,772.9	13,770	11,413	5,834	3,841	1,272 721	5,834	5,579			Saturday	4/97/2010	Resources)
11037		0		93	5- 0.6001		1841.1								376	1,302	1,208	94	24,937.0	4,658.7	2,366	1,805	561	200,937.0	4,659.9	5,065	2,105	2,960	294,784.0	3,771.6	13,305	9,280	5,946	3,846	1,353 747	5,946	3,334	1,646,790	797.96		4/26/2010	
11003		0		99			1828								376	1,411	1,177	234	24,751.0	4,658.5	1,952	1,792	160	199,824.0	4,659.2	3,970	2,495	1,475	288,912.0	3,768.4	11,278	8,998	6,228	3,858	1,609 760	6,228		1,640,178		Thursday	4/25/2010	
10975		0		93	-5-		1821								381	1,290	1,056	234	24,286.0	4,658.0	1,603	1,763		_	4,659.0	3,092	3,276	(184)	285,986.0	3,766.8	9,477	9,172	6,410	3,857	1,764 789	6,410		1,6			4/24/20110	
10947				99	-5		1822								381	1,179		329	23,821.0	4,657.5				-	4,659.2	2,524			286,3	3,767.0	8,618	8,544	5,788		1,192 648	5,788	2,756	1.6			4/23/20110	
7 10919		0		926			1 1826								382	1,249			23,1	4,656.8	_		481	-	4,659.0	2,412			287,9		8,152	5,911	5,911		1,512	5,911		1,623,737			4/22/20110	
9 10919		0		92	-5- 0.5U01		182		0.02	· ·					382	1,243				4,655.9	_			-	4,658.4	2,641			286	3,766.9	8,180	5,188	5,738		1,549 114	5,738	(551)	1,62			4/21/2010	
9 10924		0		91	5 1000.4		1814								376	1,347				4,654.9				-	4,657.6	2,634			283	3,765.3	8,997	5,722	5,722		1,542	5,722		1,624,829	795.96		a 4/20/2019	
4 10924				90	51 ¥		1807								379	1,147		409	20,232.0	4,653.6	1,264	703		1	4,656.7	2,262			280		7,910	5,344	5,895		1,507	5,895	(551)	1,62			4/10/2010	
10930		0		906	5. 5.		1801								371		648	182	19,420.0	4,652.7	897		160		4,656.0	1,535			277,8		5,603	4,402	6,057		1,336 352	6,057) (1,654)	1.	796.15	Thursday	4/18/2010	
10947				90	7.5601) 1799.7		0.14	0.11	0.11	0.12	0.01		376		645	137	19,05	4,652.3	815				4,655.8	1,440			276,9	3,761.8	5,846	4,857	5,961		1,153 447	5,961		1.			A/17/2010	
7 10958		0		99	RCL		7 1798						0.36		241				18,7	4,652.0	981				4,655.7		1,0/8		276,2		6,895	5,427	5,980		1,128	5,980		1,63			4/16/2010	
10964		0		88	BCI.		1795								1 240		1		0 18,157.0	4,651.3	_				7 4,655.4	2 1,709			274,9		5 6,376	7 4,878	5,983		3 1,039 609	5,983	3) (1,106)	1.		4	0 4/15/2010	
64 10975		0		89	7		95 1792								0 240		8 704	3 91	0 17,616.0	3 4,650.7	3 744			3	4 4,655.0	9 1,210			273,70	7 3,760.0	6 5,232	8 4,778	3 5,885	4	9 925 9 610	3 5,885	6) (1,108)	1.	3 796.88	Sunday	10 4/14/20	_
75 10986		0		8	7		1791								0 240		4 702		17,4	7 4,650.5	4 568		(160)	-	0 4,655.0	0 1,032		(90)	27	0 3,759.9	2 5,084	8 5,106	5 5,660	4	5 702 0 613	5 5,660	8) (554)	1,63		Saturday	10 4/13/20	
86 10992		0			l Sci		.5 1792					0.0	0.02		0 241		2 681			5 4,650.6	8 701					2 1,301			273,7		4 4,953	6 4,408	0 5,517		2 667 3 617	0 5,517	4) (1,109)		7 797.24	y Friday		
92 11003		0		8	l og		92 1791								1 241		1 577				1 896			193,464.0 193,464.0	2 4,655.	1,49	2 1,22	26	0 273,344.	0 3,759.8	3 6,220	8 5,407	7 5,407		7 680	7 5,407		8 1,640,17	4 797.36	Thursda	10 4/11/20	
11003		0					91 1789.4					10.0	2.				7 558							193,46	4,68	1 2,0	2,1,2	9	0 272,810	8 3,759.5	0 7,115	7 5,227	7 5,227		0 524 3 628	7 5,227		8 1,640,1	6 797.45	Thursday Wednesday	10 4/10/20	
03 11003							9.4 1784.7		60.0			20.0 CU.U			241 241				-		11 1,00	2	5	.0 192,987	.2 4,654	1,7	1,2	5	.0 271,208	.5 3,758	15 7,115	27 5,788	27 5,233		24 519 634	27 5,233	52	78 1,640,17	15 797.40	ay Tuesday	10 4/0/20	_
03 10997		00			7.60CL 01)5 76	8	30 (16	.0 192,828	.9 4,654	1,3	1,2	1	.0 270,140	.6 3,758	15 6,106	5,552	4,998		19 444 630	4,998	5	78 1,639,07	10 797.29	y Monday		_
10992		00					1.6 1780.6								241 2					.5 4,646.9	38 4	9	50) (4:	.0 193,146	.8 4,655	97	1,2	78 (2)	.0 269,786	5 3,758.6 3,758.0 3,757.8	06 4,438	52 4,912	38 4,912		14 30 467	38 4,912		78 1,637,978	29 797.21		4/7/2010	
92 10992		0			-2-5 -2- -2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-		0.6 1782.1			0.00			+		241 2		558 558				55 4	ж «	81) (4	.0 194,100	4,655	y g	21 1,2	68) (2	i.0 270,318	7.8 3,758	38 5,033	12 5,341	12 4,788		69 377 136	12 4,788		78 1,637,9	21 797.18	y Saturday	4/6/2	
		0				0 0				5 6		0.00	0.11 0.18		241 2.						97 6	89 98	01) (2	1.0 194,895	5.2 4,654.9 4,654.8 4,655.0 4,655.6 4,656.1 4,656.4	1,1	21 1,2	(1	3.0 270,852	7.8 3,758.1 3,758.4 3,758.6	133 5,346	141 5,317	88 5,317		373 36 133	88 5,317	£	78 1,636,8	.18 797.12	ay Friday		+
10986 109		0								+					241 2.				5.0 13,801.0		23 6	ස 9	40) (3	0 195,372	(1 4,656	42	21 1,2	79) (2.0 271,208	1,4 3,758	146 5,737	117 5,742	117 5,742		173 439 131	117 5,742	-	1,636,880	.12 797.08	/ Thursda	110 4/4/2010	+
10986 10		0				0			-	-			+		241 2		1						.21) (1	2.0 196,00	6.4 4,656.8				5.0 271,35	3.6 3,75								1,63		~	0/10 4/3/20/10	
10986 10		0			-5- 1 2./6CL						0.00		0.34 0		241 1					16.0 4,644.4	766 6		160) (:		56.8 4,657.0		1,221 1,2		16.0 271,38	3,758.7 3,758.7	5,970 5,2	5,181 5,1	5,735 5,7		129 4	5,735 5,7	(554) (5	980 1,637,1	.14 797		0010 4/0/2010	
10992 10997		0		823.6				•	J.26	. 10	18	1.00	0.25		131						605 451		321)	16.0 196.9	57.0 4,657.4		1,220 1,220		22	58.7 3,758.9	5,268 4,551	5,162 4,947	5,717 6		467 495 127 127	5,717 6,056	(555)	978 1,63	797.17 797.26	day Monday		+

Table B-2: Turlock ID's daily FNF spreadsheet report for April 2019

	лс	D-																				IVI	c 5		ın	R	ese	rve)Ir) IC	\mathbf{r}	Ap	r11	201			_	
	101.		у У	3)	60	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	5	2	1		DATE		Month: APRIL 2018	MCSMAIN
- α,	Eav: DW/ D _ 1 /018) &		000.07	305.07	395.11	394.76	395.74	397.69	397.13	398.34	397.02	397.90	396.69	394.99	395.19	393.34	394.17	396.99	396.45	396.19	396.05	400.86	400.80	401.18	401.21	400.95	400.82	395.09	401.01	401.04	401.01	399.71	393.58	ELEVATION	RESERVOIR	MCSWAIN	Month: APRIL 2018 MERCED IRRIGATION DISTRICT DAILY WATER	
14-2111 \#2	74_0774_/#0		0.00	2 2	0.35	-0.98	-1.95	0.56	-1.21	1.32	-0.88	1.21	1.70	-0.20	1.85	-0.83	-2.82	0.54	0.26	0.14	-4.81	0.06	-0.38	-0.03	0.26	0.13	5.73	-5.92	-0.03	0.03	1.30	6.13	0.17	CHANGE	ELEVATION	(+) or (-) FT MCSWAIN (+) or (-) FT .	DISTRICT D	
bine nad	Alcih hoom		0,020	2,52 2,521	8 287	<u>8</u> 189	8,466	9,033	8,869	9,227	8,837	9.096	8,741	8,251	8,310	7,794	8,026	8,828	8,672	8,596	8,556	906,6	9,977	10,097	10,106	10,024	<u>9,983</u>	8,280	10,042	10,051	10,042	9,642	7,861	STORAGE	RESERVOIR	MCSWAIN	ILY WATE	
			00.7	ж. С	88	-277	-567	164	-358	390	-259	355	490	-59	516	-232	-802	156	76	40	-1,440	19	-120	ė	82	41	1,703	-1,762	-9	G	400	1,781	47	CHANGE	STORAGE	(+) or (-) FT	ž	
			1,100	i i	1.400	1.400	1,400	1 - - - - - - - - - - - - - - - - - - -	1,400	1,417	1,800	,1 80	1.800	,1 800	.1 80	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1 85	2,200	2,200	2,242	2,047	2,481	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,499	2,460	2,460	4 HOURS	RAN	AVE. PH		
			5110	3776	2.776	2,776	2,776	2,776	2,776	2,810	<u>3,569</u>	<u>3,569</u>	3,569	3,569	<u>3,569</u>	3,569	3,569	<u>3 669</u>	4,363	4,363	4,446	4,060	4,920	4,958	2,958	4,958	4,958	4,958	4,958	4,958	4,955	4,878	4,878	24 HOURS	DISCHARGED	ACRE FEET		
01.11.1.0000	++ Y 1 98 35		1.010			_		1.483	1,219	1,614	1,669				2,060	1.883			2,239			4,010						1,957					2,734	24 HOURS	INFLOU	AVERAGE		
							210,096		204,544	201,768						181,113	177,544		170,306			157,027			130,836			105,530					68,415	YEAR TO DATE	DISCHARGED	TOTAL ACRE FT DISCHARGE MCSWAIN MCSWAIN		
t		+			_	_														43 2,200						Γ		30 2,700			98 2,710	89 2,710	15 2.7		D DEMAND	FT DISCHAR		
t	╞	+	8	4 3	400	.400	400	48	,400	.800	8	.800	.800	.800	8	1,800	8	2,200	8	8	107							00 331		35 3,837	10 3,541	10	8			ge McSwai		
t		T			_	<u> </u>																988	8 36	~	7			1 353	7 (7	1 13	0 496	0 496) BYPASSED	ACREFT ACREFT	N MCSWAN		
1		-	2 2	3	29)28	27	26	25	24	23	22	21	20	19	ā	17	5	15	14	3	12	<u>)</u> 11	10	9		~	90) 5	4	ũ	32	-		DATE		ABU	
		-	9	6 1 A	612	6.14	6.14	6.14	6.14	6.21	6.72	6.72	6.72	6.72	6.72	6.72	6.7	6.7	7.12	7.12	7.12	.8 .8				8.97		7.62	9.12	9.17	9.12		7.62	<u>,</u> ,	GAUGE F	MFALLSR.G.	LABULATION AND USE	
TANKA A	/9,008						1345	1.345	1.345	1.38	1,821	1.821		1,821	1.821	1.821	1.88	8	2,197		2,197					4,406	-		4,597				2,721	-	FLOW		AND U	
2		\downarrow	5		Ē		.94 94	<u>9</u>	<u>9</u>	0.79	0.79	8	8	0.62	0.02	8	0.37	0.37	3	0.37	3	0.37	0.37	0.37	0.37	0.37	B	0.00	0.27	0.28	0.27	0.27	0.28	3	GAUGE F	NORTHC	1.7	
20 J		3	4	2	8	\$	4	=	43	¥	¥	झ	ક્ષ	24	22	8	⇒	⊨	⊨	⇒	⊨	⇒	⇒	⊨	⇒	⇒	_	_	7	~		~		욼	FLOW G	HCANAL		
	 ₹	+	50 A	ວ ! <u>ສ</u> ີ	23	2.63	2.64	2.41	2.42	2.42	2.42	2.42	2.23	2.23	2.21	2.21	.1 88	 88	1.78	1.77	1.77	1.77	1.77	1.75	1.43	1.42	0.56	0.53	1.73	1.73	1.72	1.72	1.72		GAUGE	MAN CANAL		_
VC101 0000 1 VC	+# Y 1 9835 +# Y 1 9835	+	1,000	1 005	951	846	851	735	740	740	740	740	650	650	640	640	500	g	452	448	448	448	448	440	320	317	75	71	432	432	428	428	428	S30	FLOW SPAN	I I	(EPORT FOR THE MONTH OF APRIL	
1 10000	19836	\downarrow	\downarrow																															USAGE	SPAWNING GAUGE	FISHFARM		
No.	_ ≛⊺	+	20	2	8	1.57	1.57	1.74	1.73	1.82	2.41	2.41	2.54	2.54	2.55	2.55	2.73	2.73	3.32 32	33 34	3.30 30	5.38	5.14	6.11	6.19	5.70	5.67	4.37	5.79	5.88	5.74	3.93	.3. 98	<u></u> 프		C.H. DAM GAUGE	_	_
0000	WY 1 9835		202	3	<u>چ</u>	520	520	<u>6</u>	599	650	1,034	1.034	1,122	1,122	1,129	1,129	1,256	1,256	1,709	1,701	1,693	3,672	3,415	4,514	4,623	4,026	3,992	2,639	4,128	4139	4,071	2,231	2,276	욼	FLOW			
	- 		2.01		224	2.41	2.44	2.62	2. 05	2.82	3.52	3.59	3.75	3.74	3.76	ယ ဗ	یں 98	4.8	4.74	4.81	4.94	7.13	7.04			7.60	.::	6.28	7.48	7.41	7.27	5.34	5.30	3	GAUGE	SHAFFEF		
00001000	M+Y19836 M+Y19836		000	ŝ	483	521	531	594	604	678	1,059	1,099	1,189	1.183	1,194	1,217	1,334	1,360	1,815	1,860	1,945	3,591	3,515	4,410	4,521	3,996	3,574	2,903	3,891	3,830	3,710	2,214	2,187	ß	FLOW	SHAFFERBRIDGE		
0000120100	₩¥19835		1,100	1 400	1.400	1,400	1,400	1,400	1,400	1,417	1,800	1,800	1,800	1,800	1,800	1,800	1,800	1,850	2,200	2,200	2,296	4,000	4,208	5,000	4,975	4,383	3,404	2,845	4,435	4,435	4,291	2,710	2,710	24 HR - OFS	DISCHARGE	AVERAGE		
			121,00	174 000	124,000	125,000	127,000		128,000	135,000	166,000			157,000	154,000	152,000		164,000	190,000	L						223,000		211,000			224,000		190,000	КWН	GENERATION	GROSS		

Table B-3: Merced ID's daily FNF spreadsheet report (McSwain Reservoir) for April 2018

aDI		5-4	: N	Ле	rce	ed	ID)'s	da	uily	F	NI	Fs	pr	ea	dsł	nee	et r	ep	or	t (1	Mo	cSv	vai	in	Re	sei	rvo	oir)) fo)r 1	Ap	ril		19	<u> </u>		
	₫	3	3	23	8	27	8	25	24	23	12	22	8	÷	⇒	⊐	க	5	74	ವ	12	⇒	3	ى		~7		5	4	ω	2	_		ä			_	AKE N
Fax D.W.R 1 (916) 574-2771 (#2 speed dial)			392.93	396.10	392.63	394.12	396.34	396,98	395.11	394.84	394.92	395.26	395.5	396.42	396.43	394.47	394.3	391.72	393.59	393.78	392.45	394.41	393.22	392.11	391.65	395.02	396.18	396.43	395.77	395.66	397.41	401.27	ELEVATION	RESERVOIR	MCSIUAIN			LAKE MCSWAIN
-1 (916) 574				3.47						-0.08	L	-0.32			3 1.96	L			-0.19						5 3.37				0.11		3.86		CHANGE	ELEVATION	(+) or(-) FT	-	498	ia la rejunitav
-2771 (#2 sp			7.680	8,570	7,598	8,012	8,64	8.82	8,28	8,211	8,23	8,32	8,42	8,66	8,66	8,109	8,07	7,35	7,864	7,91	7,549	808	7,761	7,456	7,333	8,26	8,593	8.66	8,47	8,444	8,95	10,12	STORAGE	RESERVOIR	MCSIUAN		2019	Mata wawayo
eed dial)				0 972				5 538		-21						9 34									3 -928			_		4 -508	2 4,173		CHANGE	STORAGE	(+)or(-)FT		œ	IN INCLUCY
				2 2,478	4 1,970	8 1,636		108		1 1,225			2 1,415	3 1,418	7 1,365	4 1,245							5 2,482		8 2,282					8 1,685		9 2,500	24 HOURS	-	AVE. PH			AUMANNI DIS
			4.958	4,914	3,907	3,244	2,427	2.142	2,356	2,429	2,465	2,806	2,806	2,812	2,707			5,116	5,114	980'5	5,080	4,938	4,922	4,541	4,525	4,378	4,283	4,279	4,148	3,341	3,595	4,958	24 HOURS	DISCHARGED	ACRE FEET		MERCED IR	XUULUI NIGS
tot. X 1.9835			2051	2968	1762	1319	1131	1352	1226	1214	1194	1369	129	141	164	1262	248	232	2553	275	2290	265	263	2352	1814	2040	2123	2254	210	1429	144	528	24HOURS	_	AVERAGE		MERCED IRRIGATION DISTRICT DAILY WATER	AKE MCSWAN
				8 470,649	2 465,735			2 456.157	6 454,015						6 438,341																		YEAR TO DATE	DISCHARGED			STRICT DAIL	יי יות-אינערטי א
				349 1,980				57 1.075		359 1,225		765 1,415				34 1,235							35 2,290							59 1685			TEOFS	DEMAND	TOTAL ACRE FT DISCHARGE MOSIMAIN	-	Y WATER	
			0 0	8	ŏ	8		5	6	<u>6</u>	<u>ю</u> 0	5	8		50	5	0	8	500	5	0	0	8	500	0	0	8	<u> </u>	0	5 0		0 5,552	SPILED	ACRE FT	E MOSIUAIN			1
			0	-	-	-	-		-	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0	0	0	-	0	0	0	0	0	BYPASSED		MCSIUAIN			
		15	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	~	7	6	2	4	3	2	1		DATE			TABULAT	
E.			7.41	7.44	6.83	6.53	5.93	568	5.68	5.91	5.91	6.14	6.14	6.13	6.08	5.88	5.91	7.51	7.51	7.51	7.49	7.41	7.39	7.19	7.18	7.13	7.06	7.06	7.04	6.49	6.49	9.89	. 	GUUGE	M FALLS R.G.		TON AND US	
tot.X1.9835			2.587 1.1	2,618 1.13	2,026 1.10	1,768 1.12		1.139 1.08	1,139 1.02	1,295 1.02		1,461 0.89		1,453 0.92	1,416 0.92	1,274 0.92	1,295 0.80	2,692 0.73	2,692 0.73	2,692 0.45	2,671 0.45		2,566 0.46		2,284 0.31					1,698 0.31	1,675 0.31	5567 0.31	OFS HT	FLOW GAUGE	-	$\left \right $	EREPORT	
bt X 1.9835			3 57		55																					31 9							SB		NORTH CANAL	μ	ABULATION AND USE REPORT FOR THE MON	
				7 2.99	5 3.00					9 2.77						3 2.33					5 2.42				9 1.81			_	9 1.38	9 1.37	9 1.37	9 1.42	Ŧ	GIUGE	E.		NTH OF APRIL	
totX 19835				1,040	1,047		366			920						88			1 750						464		351			300			GB	FLOW	MAIN CANAL		₽	
tot.X1.9835			5	6		6					65					~	ø	8	8	8	0	8	8	14	4	5		1	3	0	0	7	USAGE	SPAUNING	FISH FARM			
			2.93	2.82	2.05	1.77	0.83	0.77	0.77	0.98	0.97	1.47	1.47	1.47	1.47	1.43	1.50	3.33	3.34	3.33	3.32	3.34	3.33	3.32	3.32	3.34	3.33	3.33	3.34	2.78	2.78	6.62						
totX 19835			1.495	1,412	877			192	192	272	268	507	507	507	507	486	523	1,810	1,818	1,810					1,802		1,810	1,810	1,818	1,382	1,382		CFS	FLOIN	C.H. DAM GAUGE			
ta			3.82	3.60	2.74	2.34	1.44	1.47	1.49	1.71	1.75	2.30	2.31	2.31	2.35	2.38	4.51	4.60	4.62	4.60	4.57	4.60	4.59	4.59	4.56	4.59	4.58	4.60	4.61	4.01	4.32	8.46	핔	GAUGE	SHAFFERBRIDGE			
totX 1.9835 tot.			1.197	1,090	691	510	158	169	176	253	267	494	参	498	515	527	1,555	1,612	1,626	1,612	1,591	1,612	1,605	1,726	1,707	1,726	1,720	1.732	1,739	1,373	1,559	4784						
tot.X1.9835			2.500	2,478	1,970	1,636	1,224	1.080	1,188	1,225	1,243	1,415	1,415	1,418	1,365	1,245	2,116	2,580	2,579	2565	2,562	2,490	2,482	2,290	2,282	2,208	2,160	2,158	2,092	1,685	2,038	5300	24HR-CFS AC	DISCHARGE DISCHARGE	AVERAGE M			
			4,958	4,914	3,907	3,244	2,427	2.142	<u>2,356</u>	2,429	<u>2,465</u>	2,806	2,806	2,812	2,707	2 <u>,</u> 469	4,196	5,116	5,114	5,086	5,080	4,938	4,922	4,541	4,525	4,378	4,283	4,279	4,148	3,341	4,041	10510	ACRE FEET	CHANGE G	McSwain			
			195.000	194,000	157,000	142,000	111,000	94.000	94,000	106,000	108,000	120,000	123,000	123,000	119,000	101,000	163,000	195,000	202,000	199,000	195,000	193,000	187,000	174,000	178,000	184,000	184,000	180,000	176,000	143,000	166,000	234000	КШН	GENERA TION	GROSS			

	1 20	ല	8	8	77	8	Я	24	3	2	21	20	19	ಹ	17	ன்	ರೆ	14	ದ	12	⇒	ð	9	ω	7	5	сп	4	ω	2	_		DATE		Month: A	EXCHEQ
		850.74	850.51	850.08	849.34	848.35	847.53	846.67	846.02	845.43	845.11	845.09	845.06	845.08	844.86	844.51	844.09	843.82	843.46	842.99	843.04	842.86	842.72	842.26	840.38	835.87	834.86	835.32	835.82	836.33	836.61	ELEVATION	RESERVOIR FI	EXCHEQUER	Month: APRIL 2018	IDER
			0.43					0.65											0.47					1.88					-0.51		-0.01		ELEVATION	(+)or (-) FT	MERCED	
		913,821	912,321					887,559																					820,432	823,497	825,182	STORAGE	RESERVOIR FT ELEVATION RESERVOIR AF STORAGE AF	EXCHEQUER	MERCED IRRIGATION DISTRICT DAILY WATER	EXCHEQUER
																					1,125									-1,685		CHANGE	STORAGE AF	(+)or (-) FT	DISTRICT D	
(tot. X 1.9835)			1,421					1,587			1,934			1,655						1,606				968			_	803		1,815		24 HOURS	DRAFT CFS	AVE. PH	AILY WATE	
		2,956	2,818			2,884		3,146											2,729			3,891		1,777			2,657				3,641	24 HOURS	DISCHARGED	ACRE FEET	P	
(tot. X 1.9835)		2,275	2,861		4,338			3,702			2,110								3,052			5,435		10,271					2,947		2,703	24 HOURS	INFLOW CFS	AVERAGE		
			215,659			208,077		2 202,719									3 170,702			158,747				1 122,719						9 75,155			DISCHARGED	TOTALACRE		
		71	8	8	8	77	37	19	19	90	8	8	16	<u></u>	94	27	12	8	8	47	3	12	8	19	37	34	54	88	8	8	00	F CFS	_	TOTAL ACRE FT DISCHARGE		
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.05	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.42	1.35	0.04	0.00	0.00	0.00	0.00	DAILY				
		16.13	16.13	16.13	16.13	16.13	16.13	16.13	16.13	16.13	16.13	16.13	16.13	16.13	16.13	16.13	15.89	15.84	15.84	15.84	15.84	15.76	15.76	15.76	15.76	15.34	13.99	13.95	13.95	13.95	13.95	TOTAL	SEASON	PRECIPITATION (IN.)		
		 ω				N				N					_			_	_	_	_	_											DATE		TABULATION ANI	
		0 71	<u>9</u> 70	8 71	7 72	85 92	හ ස	24 85	I .	I	21 78	I	19 67		~ ස	6 8	15 77	14 73		12 62	1 71	10 75	9 75	88		6 65	5 73	4 77	3 75	2 73	1 77	HIGH L		TEMPER) USE RE	
-		<u>छ</u>	55 54	හ ස	57 56	33 33	55 59	57 60	යු	83 83	57 61	51 60	48 51	45 48	₽5 52	41 47	4 <u>6</u> 53	52 61	47 52	44 47	43 51	54 57	55 55	51 56		59 60	57 59	55 57	56 60	-	ස ස	LOW OBS		TEMPERATURE F	PORTF	-
		_		0	0		0	0	_			_						_	0				0	0	0	0	0	0	0	0	0		ACRE FEET	EXCHEQUER EXCHEQUER	OR THE MO	
		40	40	40	40	40	40	40	40	40	208	662	825	40	40	325	1,312	802	368	4,753	4,597	6,001	<u> 390'9</u>	6,941	6,635	2,591	6,117	7,200	868'8	3,544	1,766	BYPASSED	ACRE FEET	EXCHEQUER	D USE REPORT FOR THE MONTH OF APRIL	
		CLOUDY	CLEAR	PT CLOUDY	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLOUDY	CLEAR	PT CLOUDY	PT CLOUDY	CLEAR	CLEAR	CLEAR	CLOUDY	ADDOTO LA	CLEAR	CLEAR	RAN	ADNOTO	CLOUDY	ADNOTO	CLEAR	CLEAR		WEATHER		R	
(tot. X 1.9835)		1,519	1,449	/ 1,260	1,114	1,483	1,219	1,614	1,669	1,979	2,047	1,770	2,060	1,683	1,395	1,929			1,570	4,010	4,147	4,996		4,404	4,263	1,957	4,431	4,400	4,493	3,608	2,734	CFS	DISCHARGE	AVERAGE		
					~1			~1	~											~	~	~.	~	~			6	6	6	6	7		WER	LEAKAGE		
			1,050,000	890,000	760,000	3 1,090,000	7 850,000	1,240,000	1,240,000	1,540,000		1,100,000					3 1,220,000		_	1,260,000	1,430,000	1,540,000	/ 1,530,000	710,000		_	_	640,000		i 1,450,000	14	КWН	GENERATION	GROSS		

Table B-5: Merced ID's daily FNF spreadsheet report (McClure (Exchequer) Reservoir) for April 2018

П		<u>2019</u> س		8	2	2	2	2	2	2	22	2	20	(7)	8	=	ත්	ಹೆ	Ē.	tt Lt	12	1	10	9	8	~ .	~		F		b 5			DATE			Note from Pull
			0 832.42						4 820.83						812.77						2 810.33		0 810.17			7 809.16	0.008	5 808.97	4 808.87	3 808.69	2 808.20	1 807.70	ELEVATION	RESERVOIR F	EXCHEQUER		Note from Pulido: This is reported data managed by Merced Irrigation Listrict that was collected from CLVWH-LI-M EXCHEQUER
		1	2 1.48																									7 0.10		9 0.43				T ELEVATION	(+) or (-) FT	APRIL	s is reported
			800,226		L						716,487								679,020					676,694						059,699			STORAGE	RESERVOIR FTELEVATION RESERVOIR AF STORAGE AF	EXCHEQUER	201	data manage
			6,676				3 13,377				7 6,521				1 3,980						362					1 718				2,198		-5,771	CHANGE	STORAGE AF	(+)or (-) FT	B MERCED I	d by Merced
E-mail (as attachment only): nemeth@water.ca.gov																												1,813				1,177		_	AVE. PH	2019 MERCED IRRIGATION DISTRICT DAILY WATER	Irrigation Dist
		+	2,608	2,41	3,431	2,554	2,18	1,438				2,654	2,504	2,749	3,204	2,44	3,09	386	4,184	390	4,11	366	2,59	3,42	2,60	3986	4,16	3,595	4,16	2,823	193	2,33			ACRE FEET	DISTRICT DA	not that was o
	248.381 AF	T	Γ			34 8,156		8 7,423		0 5,049)4 4,828)4 3,653											36 2,402				2,537			24 HOURS	DISCHARGED INFLOWCES	T AVERAGE	AILY WATER	collected tron
@water.ca.qu	AFI I		7 475,138						5 454,153				8 444,231		3 438,868				9 423,568							2 389,759				7 372,864				S DISCHARGED			n CUWR-UH
Ş	+	╈	8	70	184	<u>R</u>	775	8	සි	721	313	£	231	87	8	394	191	171	88	8	g	513	247	120	36	759	713	303	<u>183</u>	354	121	සි		ed Demand	TOTAL ACRE FT DISCHARGE		
			0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.07	DAILY				
			20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.40	20.40	20.40	20.40	20.40	20.40	20.40	20.40	20.40	20.40	20.40	20.40	20.40	20.35	TOTAL	SEASON	PRECIPITATION (IN)		
		ų	ω	2	2	2	2	2	2	2	2	2	2	_		~	_																	DATE		IABULATION AND	
			0 71	9 76							22 78		0 74			I .		I .		I .	I .		0 69	9 67		7 75		г В	4 66	3 68	2 69	1 71	HGH		TEMPE	IONAN	
	_	_	អ				2		83		8		52		සු			හ		හ		6 5	49			83		22	52	51		<u> </u>	LOW 0		TEMPERATURE F		
	+	╈	57	8	8	<u>6</u> 1	S	8	2	8	64	8	ස	8	61	8	55	57	64	8	57	5	53	49	57	61	58	57	55	56	51	83	OBS SPILLED	ACRE FEET	F EXCHEQUER	REPORT	
	+	+	-		-	<u>–</u>	<u>–</u>	<u>–</u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>		0			<u> </u>	_	_	_	_	0	_	_	_	0	<u> </u>	D BYP	ET ACF	UER EXCI	-0R H	
			1,448	3,459	ප	ප	g	1230	2,432	2,398	2,358	g	ප	5	g	g	1,819	728	88	1,538	413	1,593	2,623	1,233	987	ප	50	ŝ	0	0	925 I	8,139	BYPASSED	ACRE FEET	EXCHEQUER		
			CLEAR	PT CLOUDY	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	PT CLOUDY	PT CLOUDY	CLEAR	CLEAR	PT CLOUDY	CLOUDY	CLEAR	CLEAR	CLEAR	CLEAR	CLEAR	PT CLOUDY	CLEAR	CLEAR	CLOUDY	CLOUDY	CLOUDY	PT CLOUDY	CLOUDY		WEATHER		USE REPORT FOR THE MONTH OF APRIL	
110/011	118.691		2,051	2,968	1,762	1,319	1,131	1,352	1,226	1,214	1,194	1,369	1,293	1,417	1,646	1,262	2,481	2,321	2,553	2,750	2,290	2,656	2,636	2,352		2,140	2,123	2,254	2,107	1,429		5,286	CFS	DISCHARGE	AVERAGE		
			4,068	5,886	3,493	2,616	2,242	2,680	2,432	2,408	2,368	2,714	2,564	2,809	3,264	2,503						5,266	5,227	4,664	3,597	4,046	4,210	4,470	4,179	2,833	2,868	10,481	ACRE FEET	DISCHARGE DISCHARGE	AVERAGE EXCHEQUER LEAKAGE		
				5							сл U							UT1		υn		сл	5		4	5	5		5	<u>л</u>	-	4	CFS	WER	LEAKAGE		
			1,040,000		1,210,000				0	0	0				1,140,000	780,000	_	1,450,000	_	1,460,000		1,370,000		1,280,000	1 970,000	1,410,000	1,460,000	1,330,000	_		1 710,000	£ 850,000	KWH	GENERATION	GROSS		

Table B-6: Merced ID's daily FNF spreadsheet report (McClure (Exchequer) Reservoir) for April 2019

C Comparison Graphs for Stanislaus, Tuolumne, and Merced River Datasets, April 2018 and 2019

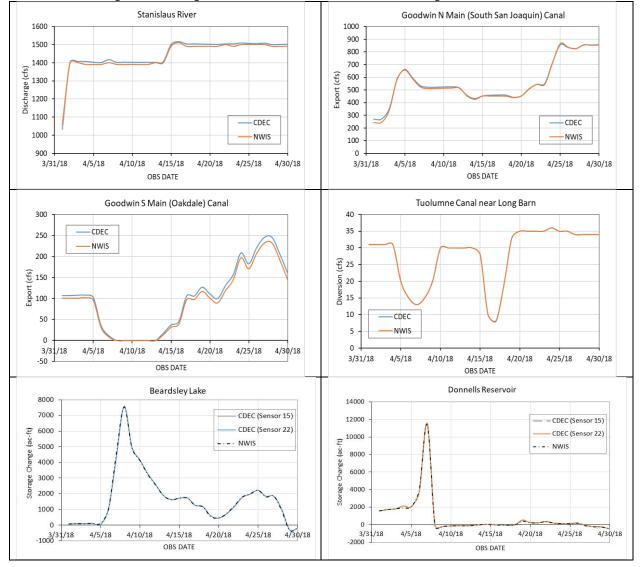
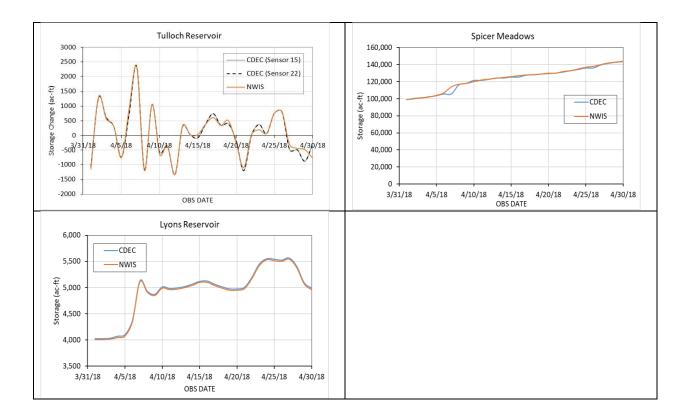
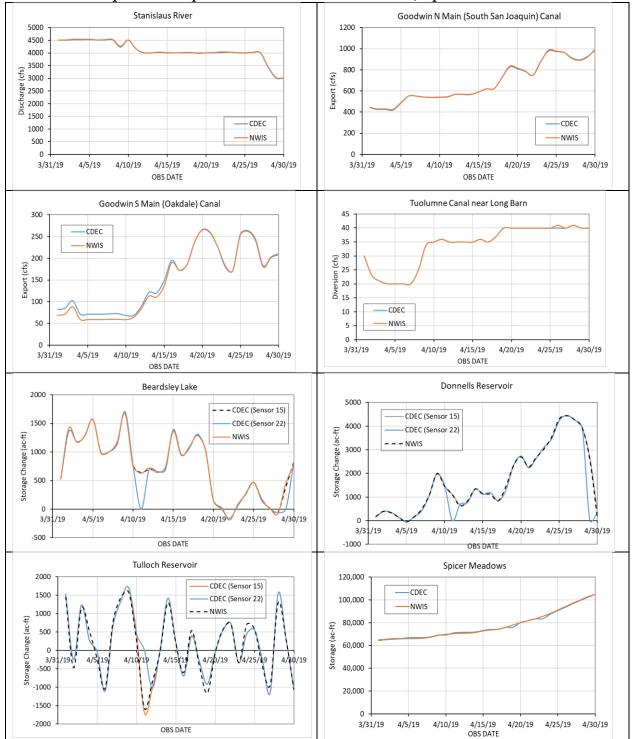
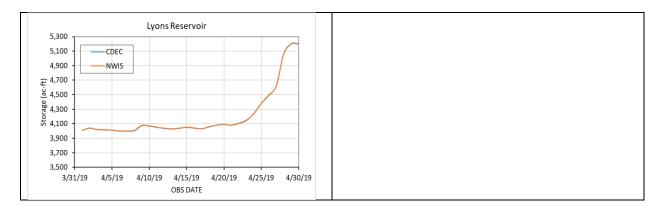
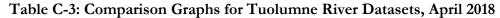
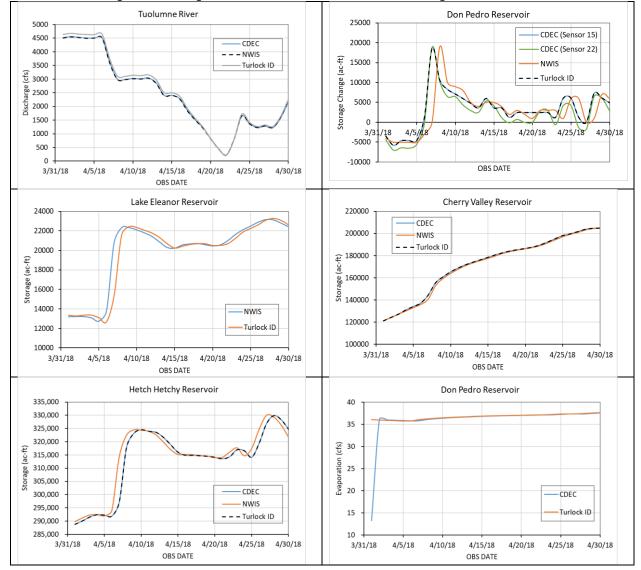
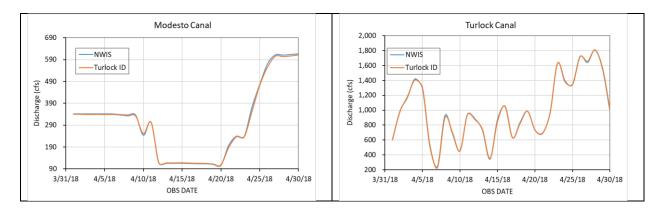
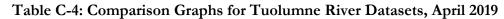
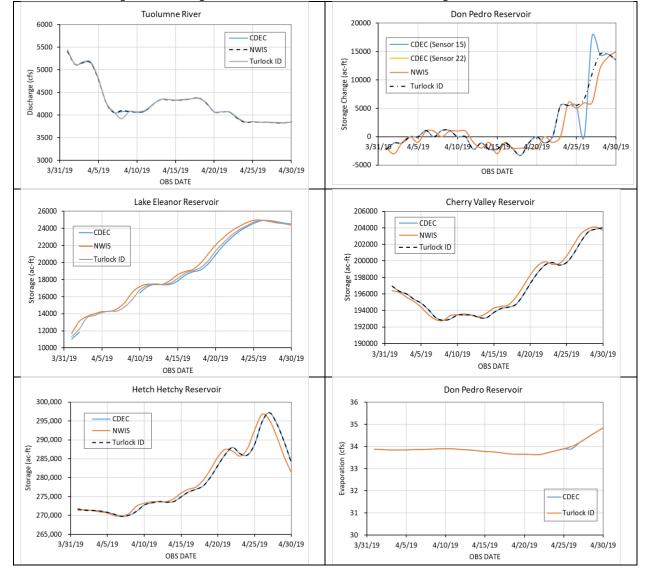
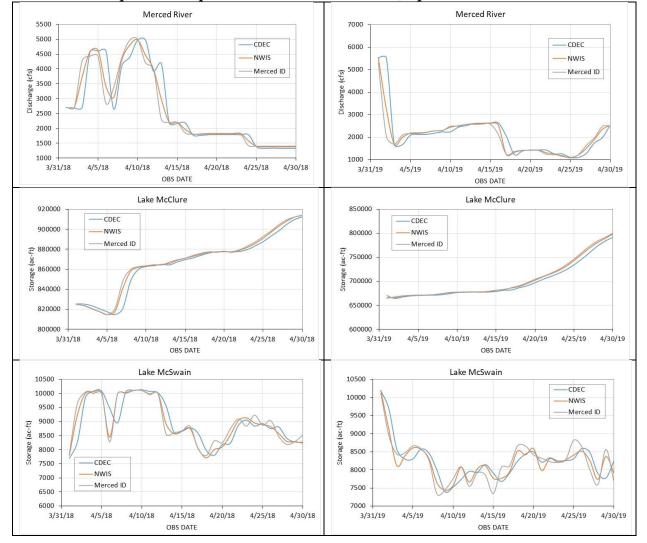



Table C-1: Comparison Graphs for Stanislaus River Datasets, April 2018


Table C-2: Comparison Graphs for Stanislaus River Datasets, April 2019





References

California Department of Water Resources, Division of Flood Management (DWR-DFM). (2016). *Derivation of Unimpaired Runoff in the Cooperative Snow Surveys Program*. Sacramento, CA: California Department of Water Resources, Division of Flood Management.

California Department of Water Resources, Bay-Delta Office (DWR-BDO). (2016b). *Estimates of Natural and Unimpaired Flows for the Central Valley of California: Water Years 1922-2014, Draft.* Sacramento, CA: California Department of Water Resources, Bay-Delta Office.

California Department of Water Resources. Chung, F., & Ejeta, M. (2011). Estimating California Central Valley Unimpaired Flows [Powerpoint Slides]. Retrieved from <u>https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/sds_srjf/sjr/docs</u> <u>/</u>

Demargne, J., Wu, L., Regonda, S. K., Brown, J. D., Lee, H., He, M., . . . Zhu, Y. (2014). The Science of NOAA's Operational Hydrologic Ensemble Forecast Service. *Bulletin of the American Meteorological Society*, 95, 79-98. Retrieved from <u>https://doi.org/10.1175/BAMS-D-12-00081.1</u>

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. *Ecological modeling*, 135 (2), 147–186.

Hetch Hetchy Water and Power, Modesto Irrigation District, Turlock Irrigation District. (1971). Don Pedro Reservoir Instructions for Water Bank Accounting. Retrieved from http://www.donpedrorelicensing.com/Lists/Announcements/Attachments/32/Response%2021 Water%20Bank%20Acc ounting.pdf

Pulido, A., Pasner, Y., Lund, J., Fleenor, W. (2020). Draft of Unimpaired Flow Calculations for Three San Joaquin Basin Tributaries in California's Central Valley. Davis, CA: Center for Watershed Sciences, University of California, Davis.

Roos, M. (2004). California's Cooperative Snow Surveys. ICID 2nd Asian Regional Conference, Echuca–Moama, Australia.

State Water Resources Control Board. (2016). *Appendix A Modeling Approaches Used to Develop Unimpaired Watershed Hydrology*. Sacramento, CA: State Water Resources Control Board, Division of Water Rights.

State Water Resources Control Board. (2016). *Appendix K Revised Water Quality Control Plan*. Sacramento, CA: State Water Resources Control Board, Division of Water Rights.

State Water Board. (2018). *Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary*. Sacramento, CA: State Water Resources Control Board, Division of Water Rights. Retrieved from <u>https://www.waterboards.ca.gov/plans_policies/docs/2018wqcp.pdf</u>