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Abstract: Six balancing rules are derived to inform short-term drawdown and recharge of water in multiple, unconnected aquifers.
Management objectives are: (1) minimizing costs; (2) maximizing duration of operation; and (3) maximizing accessibility as a tradeoff
between maximizing instantaneous withdrawal rate and the duration to sustain withdrawals. Engineering optimization formulations use
either a specified target delivery rate (for withdrawals) or available surface water supply (to recharge). Aquifers are modeled as separate,
single-celled basins with lumped parameters representing key physical, institutional, and financial characteristics. Each formulation is
solved analytically for the case where constraints are nonbinding. Solutions are explained as operating rules. Two examples confirm the
analytical solutions. The results show how cost characteristics, fraction of recharged water available for withdrawal (fractional recovery),
initial storage, maximum recharge and pumping rates, and uncertainties regarding the future availability of water for extraction influence

recharge and withdrawal decisions.
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Introduction

Water storage for many water supply systems is moving under-
ground. In California, major urban water providers now contract
with nearby and distant irrigation and water management districts
that overlie large aquifers (Pulido-Veldzquez et al. 2004). Al-
though these aquifers can meet urban water demands for several
years’ duration, they often are far from the urban areas and re-
quire extensive water exchanges for delivery. Conjunctive use
creates elaborate engineering problems for water supply and
drought response. Even when surplus surface water supplies or
target deliveries are specified (or recommended by economic
analysis), the regional water provider is often challenged with
how best to distribute recharges or extractions among the multiple
unconnected aquifers given varied physical and non-physical
characteristics (Fig. 1).

The spatial aquifer balancing problems presented in Fig. 1 are
reminiscent of operating surface water reservoirs configured in
parallel (Bower et al. 1966; Lund and Guzman 1999; Sand 1984).
However, managing multiple unconnected aquifers differs in sev-
eral respects. First, aquifer managers can often regulate inflow
and withdrawal through choice of recharge and pumping facilities
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and volumes. Such inflows are generally more certain than reser-
voir inflows. During droughts, demand is relatively constant, and
natural recharge is likely small or trivial. Second, aquifer storage
often is refilled and drawn down over several years or decades
rather than seasons when anticipating or responding to droughts.
Third, recharge and extraction capacity characteristics, storage
losses, and legal, institutional, and other nonphysical characteris-
tics of aquifers may constrain aquifer operations. These condi-
tions apply where: (1) drawdowns are small as compared to the
saturated thickness of the aquifers; (2) geologic formations (con-
fining layers or lenses) hydraulically isolate aquifers; (3) large
distances separate the aquifers; or (4) the hydraulic response time
is much longer than the planning horizon so that management for
one aquifer does not affect other aquifers. These assumptions re-
duce stochastic conjunctive use problems (Knapp and Olson
1995; Maddock 1974; Philbrick and Kitanidis 1998; Provencher
and Burt 1994; Reichard 1995) into steady, deterministic prob-
lems that can use lumped aquifer parameters (representing physi-
cal and accounting losses; storage, recharge, and extraction ca-
pacities; water quality; cost; and future availability to withdraw
water) to specify near optimal engineering management rules.

This paper derives operating rules that allocate steady recharge
and withdrawal for multiple independent aquifers with varied hy-
drogeological, financial, and institutional characteristics. We
present six optimization formulations that represent management
objectives for: (1) financial performance; (2) duration of opera-
tion; and (3) accessibility as a tradeoff between the instantaneous
withdrawal rate and the duration to sustain withdrawals. We de-
rive analytical solutions for each case where constraints do not
bind and interpret the solutions as operating rules. Two examples
verify the analytical solutions, extend them, and show their limi-
tations. Because target withdrawal or recharge quantities are
specified exogenously, the paper focuses on spatial rules for
short-term operation. Rules for temporal, economic, and multiob-
jective, dynamic aquifer management are important areas for
further work.
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Fig. 1. Water system balancing for n unconnected aquifers
considering steady surface water supply (Qs), steady target delivery
rate (Wy), and aquifer characteristics such as initial storage (S,;) and
unfilled storage capacity (K;): (a) withdrawal (extraction) problem;
and (b) recharge problem

Optimizing Financial Performance

Financial performance management involves maximizing the
benefit from extracting water or minimizing the actual and insti-
tutional transactional costs associated with recharging, pumping,
treating, conveying, and delivering water to end users. With
a downward-sloping demand curve, v, (w) ($ volume™), an
upward-sloping supply curve, c(w) ($ volume™), and decisions
on withdrawal rate for each aquifer, W,(volume time™'), the
financial objective is

Maximizez J (0 (W) = c,(W)) - dW, (1)
i Jw,

Formulations are posed, separately, for withdrawals and recharges
and are derived as follows.

Minimize Cost of Withdrawals

For withdrawals, Eq. (1) reduces to a linear cost minimization
problem when: (1) the amount of water to be delivered from aqui-
fer withdrawals will meet a small portion of a single large drought
demand (i.e., the regional water utility uses aquifer withdrawals
in conjunction with other water deliveries, urban demand man-
agement, and water transfers); and (2) operational storages are
small as compared to overall aquifer storages (i.e., withdrawals
cause small drawdowns). With these conditions, pumping costs
are proportional to the pumping lift, and the end-use value of
extracting water becomes fixed and the same for all aquifers. The
objective is to identify withdrawal rates from each aquifer,
W, (volume time™"), that minimize the cost of using groundwater.
The total cost of withdrawal includes the per-unit costs,
c; ($ volume™) of extracting, treating, conveying, and securing
the right to access and use the aquifer. Cost characteristics will
likely differ among aquifers, because aquifers can differ in hy-
draulic pumping lifts, extracted water quality, treatment require-
ments, and conveyance distances. Initial storages are given so

prior recharges are sunk costs (literally!) and not considered. The
cost minimization objective is expressed by the mathematical
formulation:

Minimize Y, ¢; - W 2)
Subject to:
e Withdrawals limited by maximum pumping rates,
Pumax i (volume time™!)

Wispmax i Vi (3)

e Withdrawal rates for a predetermined and relatively short du-
ration, ¢ (time), limited by initial, operational storages, S,;
(volume)

W, t<S,, Vi (4)

or
e No negative withdrawals, W;=0, V i.

This linear program (LP) is solved by the general withdrawal
rule: “Unless limited by pumping rates or storage, withdraw water
in order of increasing cost, c¢;.” Take water from aquifers with the
smallest costs. This strategy makes water withdrawals more
costly as a withdrawal program is sustained, for example, in re-
sponse to a drought. However, over a population of droughts of
uncertain lengths, the rule will generally minimize the cost of
drought response.

Maximize Expected Financial Value of Recharge

For recharging, Eq. (1) is modified and expanded to include a
discounting factor, (1+r)~ (unitless), with an interest rate, r (unit-
less), that relates recharge costs, rc; ($ volume™'), borne in the
present with use benefits, u; ($ volume™!), and other costs, c;
(as previously), in the future, ¢ (years), when water is extracted,
conveyed, treated, delivered, and used:

Maximize X, [(1+ )" (u;— ¢;) = re;] - \; - Q, (5)

Here, recharge decisions to each aquifer, Q; (volume), should
maximize the value expected from extracting water at a specified,
future time . Because this time is the same for each aquifer, the
discount factor is assumed to be constant across aquifers and will
often not affect the short-term allocation of recharges. Therefore,
the benefit and cost terms can be aggregated into a single, con-
stant, discounted, unit net value of storing water in each aquifer,
v; ($ volume™):

vi=(1+r)™" (u;—c) —re; (6)

As in the cost-minimizing withdrawal problem, use benefits, u;,
will be the same for each aquifer when the future withdrawals
will meet a small portion of a single, large drought demand.

The fractional recovery term \; (unitless) in Eq. (5) describes
losses as a fixed fraction of the recharge amount and covers ac-
counting and physical losses. Recoverability will influence the
volume of water that can be later extracted and delivered. \; will
be <1 for aquifers where groundwater flows away from the re-
charge site. \; could equal 1 for recharge by in-lieu exchanges,
but may be less with institutional accounting losses. The recovery
term can also be a “put-take ratio” or rent on aquifer storage
imposed by regulators or overlying landowners.

Eq. (5) omits a scarcity rent on recharged water because the
regional authority’s prior economic analysis has specified the total
quantity of water to be recharged [see Eq. (8)]. The problem is to
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engineer the financially optimal spatial allocation of recharges.
The problem is fully specified with objective Eq. (5) subject to
constraint Egs. (7)-(10):

 Storage capacity on each aquifer, K; (volume)

O;<K, Vi (7

 Total recharges limited by surface water supply, Qg (volume)
2 0=0s (8)

» Recharges for period 7 (time) limited by maximum recharge
rates, 7, ; (volume time™')

Qigrmaxi't’ Vi (9)

e The probability that a fraction B (unitless) of total recharges
are available for future withdrawal must exceed the target re-
liability « (unitless)

Pl 2a- Q=B 20i|=a (10)

* No negative recharges, Q;=0, V i.

The random variable, a; (unitless), incorporates institutional
and physical risks for future aquifer withdrawals. Recharged
water may be unavailable later for extraction due to unforeseen
regulatory, legal, or water quality concerns, or lack of available
capacity to convey the water. Aquifers governed by different en-
tities and with different physical-chemical characteristics are
likely to differ in these risks. When the distribution of a; is
known, Eq. (10) can be reduced to a deterministic constraint
(Tung 1986; Wagner 1969). For example, when a; takes the
Gaussian distribution with expected availability a; (unitless), stan-
dard deviation of that availability o; (unitless), and standard nor-
mal variate Z, (unitless) for probability «, Eq. (10) becomes

2[@-2,0,-B)-01=0 (1)

The unfilled storage capacity, K;, is readily calculated from the
unsaturated void space in aquifer i (Rosenberg 2003). Alterna-
tively, regulators, agencies, and local landowners can stipulate
unfilled capacity with agreements or by legal precedent.

This problem is also solved as an LP. The following general
recharge allocation rule results: “Recharge aquifers in order of
U;\;, unless limited by recharge or storage capacity or future
availability.” Recharge water first to basins with the highest
discounted net financial value and fraction of recoverable water.
As the water available to recharge increases, the marginal value
of storing the water will decrease. As high-valued and large
fractional recovery aquifers fill, lower-valued and less desirable
aquifers remain for use.

Optimizing Duration of Aquifer Operations

Optimizing the time to fill or empty aquifer storage is a second
objective for managing a portfolio of aquifers. Duration becomes
a relevant operational objective when either the surface water
supply (available for recharge) or the target delivery rate (from
withdrawals) is known or desired. For blending, regulatory, or
operational reasons, we assume steady withdrawal or recharge
rates. Formulations for the recharge and extraction problems
follow.

Maximize Duration of Withdrawals

The objective is to find the steady withdrawal rates,
W, (volume time™'), to maximize the duration to sustain a speci-
fied, steady, total target delivery rate. This objective may be im-
portant to sustain operations through a drought. The nonlinear
mathematical program is

Maximize WD, (12)

Subject to:
e Withdrawals limited by maximum pumping rates,
Pmax i (Volume time™")

Wigpmax i Vi (13)

¢ Total withdrawals must meet or exceed a target delivery rate,
Wy (volume time™")

> W= Wy (14)

1

e Withdrawal duration, WD; (time), for aquifer i defined by ini-

tial storage in aquifer i, S,; (volume)

WD,=S()[/WI, Vl (15)

e Definition of maximum feasible duration for withdrawal pro-
gram, WD, (time)

WD, < WD, Vi (16)

e No negative withdrawals, W;=0, V.

This nonlinear program balances withdrawals across all aqui-
fers. When the nonnegativity and pumping capacity constraints do
not bind, the program can be solved analytically for a general
balancing rule. Under this condition, the set of optimal, duration-
maximizing steady withdrawals (W) will exhaust all aquifers at
the same time, so WD, ,,.=WD,=S,,,/ VV:, Vi. Rearranging gives

ol

2 Sai *
i i« S()i . WT Wi S
: orW,=——or
Wi WT E Soi

i _Hoi (17)
WT Esoi

This rule shows that the duration-maximizing withdrawal from
aquifer i is proportional to the fraction of the total system water
initially stored in aquifer i. Inversing the withdrawal duration
(1/WD,) transforms the problem into a linear program (Rosen-
berg 2003).

Minimize Duration of Recharge

Here, the objective is to find recharges that minimize the duration
to (1) recharge a specific, total quantity of water, or (2) fill all
aquifers. The former objective should apply when the amount of
surface water is small as compared to unfilled aquifer storage.
The later objective applies when available surface water is sig-
nificantly more than aquifer storage capacity. These two problems
are formulated separately.

Minimize duration to recharge a small volume of water: The
objective function is

Minimize RD,;, (18)

Subject to:
e Storage capacity available in each aquifer, K; (volume)

0,<K; Vi (19)
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» Total recharges must equal surface water supply, Qg (volume)
Os= E 0; (20)

e No negative recharge durations, RD; (time)

RD;=0, Vi (21)

* Recharges limited by  maximum

P ; (VOlume time™)

recharge  rates,

O/RD;<r, Vi (22)

max i»

 Definition of program recharge duration, RD,;, (time)

RD,..=RD;, Vi (23)

e No negative recharges, Q;=0, Vi
e The deterministic constraint on future availability [Eq. (11)].
When the nonnegativity, storage capacity, and future availabil-
ity constraints do not bind, the program can be solved analytically
for a general balancing rule. Under this condition, the set of op-
timal, duration-minimizing steady recharges (Qf) will be related
to the largest allowable recharge rate of each aquifer, so
RD,,,=RD;=Q;/r, Vi. Substituting gives:

max i»

*

Qi QS ® rmaxi'QS Q,* Tmax i
=—OI‘QI-=—OI‘_=—
Fimax i Ermaxi Ermaxi QS Ermaxi
i i i

(24)

This rule is that the duration-minimizing recharge to aquifer i
should be proportional to the fraction of the total recharge rate
capacity aquifer i can handle.

Minimize duration to fill all aquifers: The objective is

Minimize FD,, (25)

Subject to:
 Fill duration for aquifer i, FD; (time), is defined by aquifer
storage capacity, K; (volume); fractional recovery,

\; (fraction); and recharge rate, R; (volume time™")

K; .
FD;j=—— Vi (26)
N R;
» Total recharges are less than steady surface water available
each period, Ry (volume time™")

> R, <Ry (27)

1

e Recharges are limited by maximum recharge rates,
P i (VOlume time ™)

Rl«$rm

wi Vi (28)
 Definition of program fill duration, FD,, (time)

FD,;, = FD, (29)

e No negative recharge rates, R;=0, Vi.

The fill duration for each aquifer is a function of the fractional
recovery [Eq. (26)] and assumes that losses occur as recharges are
made. This assumption should hold when unfilled capacity is
large, recharge rates are small, and expected durations are long.

With nonbinding recharge constraints, optimal steady re-
charges (Rj) should make all aquifers fill at the same time,
FD,i»=FD;=(K;)/(\;-R;) Vi. Substituting gives

K, i\ . Rg-KIN, R, N\
N R*_ or ’=—K 01‘]?=_ K (30)
i i S 2 S et
2,: (xi) 2 (x,-)

To minimize the duration to fill all aquifers, recharge more
water into aquifers with larger unfilled capacities or smaller frac-
tional recoveries, i.e., aquifers that are most empty or with the
least efficient recharge. Lower fractional recoveries will lengthen
the fill duration. Note that the fractional recovery terms (\;) drop
out when they are equal across all aquifers. Inversing the fill
duration (1/FD;) transforms the problem into a linear program
(Rosenberg 2003).

Maximizing Accessibility

When filling groundwater storage capacity in wet years, an
agency often is unsure about the future demands for water. The
agency may want to optimize flexibility to deliver water from a
portfolio of groundwater storages at either high withdrawal rates
or for a long duration. A formulation is presented to simulta-
neously address the recharge and withdrawal portions of the
problem. Two analytical solutions are derived and the tradeoff
between them is presented.

Model Formulation

The biobjective maximizes the total withdrawal rate,
Wy (volume time™!) plus the duration of withdrawals, D, (time)
weighted by a tradeoff factor, d (volume time™2)

Maximize Wg +d - D, (31)

Subject to:
e Recharges, Q; (volume), for a specified, short period ¢ (time)

are limited by maximum recharge rates, 7,,,,; (volume time™')

Qi$rmaxi~t, Vi (32)

e Maximum pumping capacities, pp.x;(volume time™!) limit
withdrawals, W; (volume time™")

Wigpmax i Vi (33)

e Aquifer duration, D; (time), is defined by initial storage, S
(volume), and fractional recovery, \; (unitless)

oi

S, + N\ O
DIZ ol 1 Ql
W.

1

, Vi (34)
e Recharges are limited by remaining storage capacity, K;

(volume)
0;<K, Vi (35)

e Total recharges are limited by surface water supply, Qg
(volume)

Q=2 Q; (36)

e Definition of program withdrawal duration, D,,,, (time)
Dmax = D,-, Vi (37)

» Expected withdrawal rate, Wy (volume time™!), is defined by
random variables representing future availability, a; (unitless)
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Table 1. Aquifer Characteristics for Example No. 1

Physical Financial Institutional
Unfilled Maximum Maximum Mean Standard
storage pumping recharge Fractional Recharge Use Use expected deviation of
capacity, rate, rate, recovery, cost, cost, value, availability, availability,
Aquifer  K; (Mm®)  po.; Mm3/mon) 7. (Mm3/mon)  \; (fraction) r¢; $m™)  ¢; ($m™>)  u; ($m™) & (fraction) o, (fraction)
A 493 8.6 4.9 0.96 0.02 0.10 0.81 0.9 0.020
B 247 74 3.7 0.93 0.01 0.09 0.81 0.9 0.015
C 740 10 4.9 0.90 0.03 0.06 0.81 0.9 0.002
D 987 19 6.2 0.92 0.04 0.05 0.81 0.9 0.001
Wy = E a;- W, (38) Poi __SuthN O o @)

* Expected withdrawal rate must meet target delivery rate,
Wy (volume time™"), with target reliability « (fraction)

P[Wp=Wi]=a (39)

e No negative recharges or withdrawals, Q;=0,W,;=0, Vi.
Future availability is a function of the withdrawal, Eq. (38),

rather than recharge [as in Eq. (10)]. Egs. (38) and (39) are re-

duced to an equivalent deterministic form as shown previously

2[@-2.0) W1=W; (40)

1

In this nonlinear program, both recharge volumes (Q;) and
withdrawal rates (W;) are decision variables. The recharge period
is fixed to time ¢, while the withdrawal period (D,,,,) is assumed
to start after recharge is completed. Solving the nonlinear pro-
gram determines the withdrawal duration. Selecting a small value
for the tradeoff factor d (0=<d<<1) yields recharge and extraction
operations that maximize instantaneous withdrawal capacity, giv-
ing slight preference to operations that lengthen the duration to
sustain withdrawals. Conversely, selecting d> 1 yields operations
that maximize the duration to sustain withdrawals, giving slight
preference to operations that increase the rate to withdraw water.

Analytical Solutions

Analytical solutions are derived for cases where the coefficient d
is either large or small and the nonnegativity, limited recharge
rate, limited extraction rate, aquifer storage capacity, and future
availability constraints do not bind.

Maximize Instantaneous Withdrawal Rate (Wg). When the
value of d is small, an analytical solution can be derived to maxi-
mize the expected instantaneous withdrawal rate (Wp). First, in-
crease aquifer withdrawals to their maximum pumping rates

W:'kzpmaxi’ Vi. (41)

Second, configure recharges so the withdrawal rates are maxi-
mally sustained, equalizing withdrawal durations for all aquifers

N E(Sm“”\i'Qj)
Soit N+ 0, i
Wi E w;

D

(42)

max —

Here, the asterisk superscript (*) represents the optimal value of a
decision variable. Substituting Eq. (41) into Eq. (42) and rear-
ranging gives:

Epmaxi E (Spi+ N+ Qf)’

Equation (43) is a set of i independent equations that can be
solved simultaneously for QT The solution suggests recharging
water in aquifer i so that the ratio of pumping capacity of aquifer
i to total pumping capacity (for all the aquifers) equals the ratio of
water recoverable for extraction from aquifer i to the total water
recoverable from extraction (from all aquifers). To maximize the
instantaneous withdrawal rate, the rule suggests recharging more
water into aquifers with highest pumping capacities, lower initial
storages, and lower fractional recoveries (i.e., higher losses).
Losses are borne to equalize ratios of recoverable water and to
maximize the capacity for (but not necessarily the duration of)
subsequent withdrawal.

When fractional recoveries and expected availabilities are
identical ~across aquifers, Eq. (43) reduces to the
Metropolitan Water District of Southern California’s (MWD)
aquifer allocation rule. The MWD rule equalizes the ratio of
pumping capacity to total water storage in each aquifer,
(pmax i/Eipmax i):SOi+Q?/Ei(S0i+Q;)]’ Vi (TlIIl Blair’ personal
communication, 1999).

Maximize Duration of Withdrawal (D,,,). A second analytical
solution applies where the tradeoff coefficient d is large. To maxi-
mize duration of steady withdrawals, all basins should empty at
the same time, so

N 2 (S0i+)\i'Q?)
D:Sui+)\i'Qi _

Dmax = 1 Wl. 2 Wj

(44)

Recharge and extraction decisions are taken sequentially. First,
without knowing the duration-maximizing withdrawal rates for
each aquifer (Wf), we observe that the duration will be largest
when the sum of the withdrawals is smallest. Therefore, minimize
withdrawals subject to constraint Eq. (40) on the withdrawal tar-
get (W;) determined exogenously. This substitution gives:

.
E Soi + E N Q;
Dy = — " (45)
max — WT

Second, recognize that duration is maximized when the term
S \;-Q; is maximized. 3 \;-Q; represents recharged water recov-
erable for extraction. To maximize the recoverable amount, re-
charge into aquifers with the highest fractional recoveries. The
duration-maximizing recharge rule is: “Recharge aquifers in order

of \;, unless limited by recharge or storage capacities.”
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Table 2. Additional Parameter Values for Example No. 1

Parameter Value

Withdrawal problem
Target water delivery rate, Wy, Mm?/mon 25
Initial storages, S,;, af K;
Recharge Problem

Water available to recharge, Qg, Mm? 7
Recharge period, ¢, mon 1
Initial storages, S,;, Mm?3 0
Steady water available to recharge, Ry, Mm?/mon 7
Discount factor, b, fraction 0.784
Target availability for withdrawal, 3, fraction 0.85
Target reliability, o, fraction 0.9
Standard normal deviate for reliability, Z,, fraction 1.653

Third, with Q; known, solve Eq. (45) for the duration-
maximizing, steady withdrawal rates for each aquifer. Because
the initial storages and additional storage generated from recharge
were determined in step 2, Eq. (45) takes the same form as the
solution for Eq. (17). Rearranging and solving Eq. (45) for the
duration-maximizing, steady withdrawal rate gives

. Wi (S +\; - Q,*)

= : (46)
2 S+ N Q)

This rule makes the duration-maximizing withdrawal from
aquifer i proportional to the fraction of total recoverable water
stored in aquifer i. The rules for withdrawal [Eq. (46)] and re-
charge (preceding paragraph) represent sequential solutions for
recharge followed by withdrawal decisions. These solutions are
similar to those for maximizing the withdrawal duration

[Eq. (17)].

Tradeoff between Solutions

The two analytical solutions frame a tradeoff between withdrawal
duration and rate. Operations to maximize the instantaneous
withdrawal rate incur higher water losses that diminish the dura-
tion over which withdrawals can be sustained, and vice versa. The
tradeoff will be most apparent when one group of aquifers has
high pumping capacities but low fractional recoveries while a
second group of aquifers has low pumping capacities but high
fractional recoveries. Solving the nonlinear program for a range
of values for d can also illustrate the tradeoff.

Example Applications

The first example verifies solutions for the five derived single-
objective operation rules. A second example demonstrates solu-
tions for the biobjective accessibility formulation. Examples were
set up in Excel and solved with the “Solver” add-in.

Example No. 1 (Single-Objective Programs)

We select a portfolio of four aquifers with different physical, in-
stitutional, and financial characteristics (Table 1). Aquifer A has
high use costs, while aquifer D has low use costs. We assume
aquifers have similar water qualities and use values and that ex-
tracted water is delivered to a single location. The parameter val-
ues fall within ranges of values the Metropolitan Water District of
Southern California and the Santa Clara Valley Water District
commonly use for aquifer storage (Pulido-Veldzquez et al. 2004).
However, values do not represent specific aquifers.

Table 2 summarizes additional parameter values for recharge
and extraction. All aquifers are assumed to start full for the with-
drawal problems (S,,=K;) and start empty for the recharge prob-
lems (S,;=0). Withdrawals should meet the target delivery rate of
25 million cubic meters per month [Mm?/mon; 20,000 acre-feet
per month (20 kaf/mon)]. 7 Mm? (6 kaf) of surface water is
available for recharge. We assume an interest rate of 5% over a
planning horizon of five years to calculate a discount factor
b=(1+0.05)"=0.784. Furthermore, we require 85% of recharged
water be available for withdrawal with 90% reliability.

Numerical solutions to the five single-objective models verify
the analytical solutions derived previously (Table 3). To minimize
the cost of withdrawals (column 2), aquifers D and C were
pumped. These aquifers have the lowest and second-lowest ex-
tractive costs (Table 1, column 6). Pumping capacity for aquifer
D limited withdrawal to 19 Mm?® mon~'(15 kaf/mon). Remaining
deliveries were met from aquifer C. When the objective was to
maximize the duration of meeting target withdrawals (Table 3,
column 3), water was withdrawn from each aquifer proportional
to the initial storage in each aquifer. Each withdrawal was sus-
tained for 100 months.

When the objective was to maximize the expected value of
recharge, water was recharged into both aquifers B and D. These
aquifers have the highest and second-highest discounted net
financial value of recoverable water (Table 4, column 4). Re-
charge capacity for aquifer B limited recharge to
3.7 Mm®/mon (3 kaf/mon). Excess surface water was recharged
to aquifer D. To minimize the duration to recharge 7 Mm? (6 kaf),
recharge each aquifer in proportion to each aquifer’s recharge
capacity (Table 3, column 5). Recharges were sustained for 0.38

Table 3. Aquifer Balancing Solutions for Five Single Objective Model Formulations

Withdrawal problems

Minimize Maximize duration
cost, of withdrawal,

Recharge problems

Maximize expected
value of recharge,

Minimize duration
to recharge
small volume,

Minimize duration
to fill all aquifers,

Aquifer Wl.*, (Mm?/mon) W:.F (Mm?/mon) Q:.F (Mm?3) Qly (Mm?>) R:f (Mm?/mon)
A 0.0 49 0.0 1.9 14
B 0.0 2.5 3.7 1.4 0.7
C 6.2 7.4 0.0 1.9 2.3
D 19 10 3.7 2.3 3.0
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Table 4. Calculated Net Financial Values of Water ($ m™3)

Discounted
net
Net Discounted financial
extractive net value of
use financial recoverable
value, value, water,
Aquifer u—c; vi,b-(u—c;)—re; \iv;
A 0.713 0.535 0.513
B 0.721 0.557 0.518
C 0.746 0.556 0.500
D 0.762 0.561 0.516

months in all aquifers to fully recharge the 7 Mm?® (6 kaf). To
minimize the duration to fill all aquifers with a supply of
7 Mm?®/mon (6 kaf/mon), recharge each aquifer (Table 3, col-
umn 6) in proportion to the water needed to fill each aquifer
(space available/fractional recovery). Aquifer D took the most
water (987 Mm?/0.92=1,073 Mm?), while aquifer B took the
least (247 Mm?/0.93=266 Mm?). 351 months were required to
fill all aquifers and reflects large unfilled capacities.

Example No. 2 (Multiobjective Accessibility)

We demonstrate solutions to maximize accessibility using the
aquifer portfolio from example no. 1. However, several parameter
values were changed so recharge and withdrawal decisions could
be examined simultaneously and the availability and recharge
constraints were not initially binding (Table 5). The accessibility
program was solved 20 times for values of tradeoff coefficient d
ranging from 0.1 to 100 Mm?/mon?.

For all values of d, solutions converged to one of two solu-
tions. A tipping point between the two solutions was seen at
d=1.5 Mm? mon~? (Fig. 2). The corner solution that maximized
the instantaneous withdrawal rate (Table 6, columns 2 and 3)
verified the analytical solution derived for that case [Egs. (41) and
(43)]. The corner solution that maximized duration of withdraw-
als (Table 6, columns 4 and 5) resembles the analytical solution
[Eq. (46)]. However, aquifer B is also recharged because the
pumping rate for aquifer A was constrained.

When the tradeoff coefficient was less than 1.5 Mm?/mon?,
water was withdrawn from each aquifer at maximum pumping
rates (Table 6, column 2). Water was recharged to aquifers A, C,
and D in proportion to the pumping rates and initial storage
(Table 6, column 3). No water was recharged to aquifer B because
it had the smallest pumping rate. Aquifer B’s preexisting storage

Table 5. Additional Parameter Values for Example No. 2
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Fig. 2. Tipping point between accessibility solutions that maximize
total instantaneous withdrawal rate and duration of withdrawals

could sustain its maximum pumping rate longer than the other
aquifers (16.7 periods). Recharges to aquifers A, C, and D al-
lowed the program to sustain the maximum withdrawal rate of
44 Mm?/mon (36 kaf/mon) for 15.5 months.

For tradeoff coefficient values larger than 1.5 Mm?/mon?, re-
charge was limited to aquifers A and B (Table 6, column 4)—
aquifers with the largest and second-largest fractional recoveries.
Without limits on pumping rates, the nonlinear program solution
would direct all recharge to aquifer A. However, the maximum
pumping rate for aquifer A constrained withdrawal to
9 Mm?/mon (7 kaf/mon), so excess water was recharged to aqui-
fer B. Withdrawals were then made in proportion to the water
stored in each aquifer (Table 6, column 4). Aquifer A had the
largest withdrawal rate because it had the most stored water.
Aquifer B had the second largest withdrawal rate. Aquifers C and
D had smaller and identical withdrawal rates, because both aqui-
fers started with 123 Mm?® (100 kaf) of recoverable storage and
no recharge was made to either aquifer. Total withdrawals met the
target rate of 25 Mm?/mon (20 kaf/mon). From the recharges
and withdrawals, the program could sustain withdrawals for 28.5
months.

Fig. 2 shows a discontinuous tipping point between the corner
solutions, because the objective function is linear with respect to
both the withdrawal rate and the duration. Plotting the objective
function value against the tradeoff coefficient for several different
solutions (including the two corner solutions presented in Table 6)
also identifies the tipping point (Fig. 3). For values of d much
larger or smaller than 1.5 Mm?®/mon?, a smooth tradeoff exists
between the corner and intermediary solutions. However, for val-
ues of d near the tipping point, both corner solutions become
superior to the intermediate solutions.

Table 6. Two Numerical Solutions to Accessibility Program in Example

Parameter Value No. 2

Water available to recharge, Q5, Mm? 247 Corner solution Corner solution

Recharge period, 7, mon 200 that maximizes that maximizes

Tnitial storage in aquifer A, S,;, Mm? 99 withdrawal rate withdrawal duration
o . i el (d<1.5 Mm® mon~2) (d>1.5 Mm?* mon~?)

Initial storages in aquifer B, C, D, S, 34, Mm? 123

Expected availability, @, fraction 1.0 Withdrawals, ~ Recharges, =~ Withdrawals, = Recharges,

. * 3 * 3 * 3 * 3

Standard deviation of availability, o;, fraction 0 Aquifer  W; (Mm*/mon) Q; (Mm’) W; (Mm’/mon) Q; (Mnr’)

Target water delivery rate, Wy, Mm?/mon 25 A 8.6 37 8.6 153

Target reliability, o, fraction 0.5 B 7.4 0.0 7.4 93

Standard normal deviate for reliability, Z,, fraction 0.676 C 10 33 4.3 0.0

Tradeoff coefficient, d, Mm? mon™> 0.1-100 D 19 177 43 0.0
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Fig. 3. Accessibility program objective function value plotted versus tradeoff coefficient for four accessibility solutions; intermediate solutions

represent cases where expected future availabilities were decreased

The intermediate solutions in Fig. 3 represent duration-
maximizing solutions when the program was solved with ex-
pected availabilities, a;, further constrained to 0.9 and 0.7. Low-
ering the expected availability raises the expected withdrawal rate
required to meet the target delivery. Raising the withdrawal rate
lowers the duration. Thus, varying expected availabilities in
chance constraint Eq. (40) illustrates a tradeoff between the two
corner solutions (Fig. 4). Square markers indicate the corner so-
lutions presented in Table 6 (mean expected aquifer availability
a=1.0 for all aquifers). Other points in Fig. 6 show durations and
total withdrawal rates when the program was solved for different
expected availabilities (a=0.9, 0.8. 0.7, 0.6, and 0.57). Each point
represents a duration-maximizing solution (d>1.5 Mm? mon~2)
where each aquifer was assigned the same mean expected avail-
ability (a,=a,=az=ay).

As expected availabilities decreased, larger withdrawal rates
were required to meet the desired target withdrawal rate (results
not shown). Less water was recharged to aquifers A and B and
more water was recharged to aquifer D. Water was only recharged
to aquifer C when expected availability was less than 0.6. Total
pumping rate increases with the largest increases in withdrawals
from aquifer D. Aquifer A sustained a maximum pumping rate of
9 Mm?/mon (7 kaf/mon), and aquifer B reached a maximum
pumping rate of 7 Mm?/mon (6 kaf/mon) for availabilities less
than 1.0. As expected availabilities were decreased, optimal re-
charges and withdrawals approached the solution for maximizing
the withdrawal rate. No feasible solutions existed for a<<0.55
because the program could not increase the total with-
drawal rate above a maximum pumping capacity of
44 Mm?*/mon (36 kaf/mon). Recharges to and withdrawals from
aquifer D were made to increase the expected reliability of with-
drawn water. Because aquifer D had a lower fractional recovery
than aquifers A and B, withdrawals from the aquifer could be
sustained for a shorter time. This relationship is represented by
the negatively sloping tradeoff curve in Fig. 4. Despite the
tradeoff, recharges to and maximum pumping rates from aquifer
A were sustained over all availabilities, identifying aquifers with
large pumping capacities and high fractional recoveries as the

most suitable for withdrawals when an aquifer manager seeks to
maximize accessibility to stored water (as either duration or rate
of withdrawal).

Conclusions

Six operating rules were derived to suggest short-term aquifer
recharge and withdrawal decisions to meet financial, duration, and
accessibility objectives. The rules are as follows.

Financial Objectives

1. To minimize the cost of withdrawing water, withdraw water
first from aquifers with the smallest overall extraction costs.

2.  To maximize the future expected financial value, recharge
water to the aquifers with the largest discounted net financial
value of recoverable water.

50 . :
[ d < 1.5 Mm® month® #- Mean expected availability = 1.0
45 - w———— Solution that maximizes ' | ** Mean expected availability = 0.9

¢ withdrawal rate - Mean expected availability = 0.8 |
40 + - —— — = == == | -« Mean expected availability = 0.7 - -

~#- Mean expected availability = 0.6 ‘

35 - - - | -+ Mean expected availability = 0.57 |-
30 = = o i e = = - = # EEEE

25 o - - - e

d> 1.5 Mm® month?
| Solutions that maximize duration of
withdrawals

20 et

Withdrawal Rate (Mm> month™")

10 - —
14 16 18 20 22 24 26 28 30
Duration, D,.,, (months)

Fig. 4. Tradeoff between duration and instantaneous withdrawal rate
by varying aquifer availabilities
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Duration Objectives

3. To maximize withdrawal duration, withdraw in proportion to
initial storage.

4. To minimize the time to recharge a small quantity of surface
water, recharge in proportion to maximum recharge rate.

5. To minimize the duration to fill all aquifers, recharge in pro-
portion to unfilled storage capacity weighted by expected
water losses.

Accessibility Objective
6. To maximize flexibility to meet both large future withdrawal
rates and durations of withdrawals, preferentially recharge
water to aquifers with both high maximum pumping capaci-
ties and large fractional recoveries (small storage losses).
The operating rules are based on lumped aquifer characteris-
tics, exogenously determined total recharge or withdrawal
amounts, and represent situations where constraints do not bind.
The formulations were readily extended and solved numerically
to include constraints for more complex systems such as with-
drawal capacities, recharge capacities, and uncertainties concern-
ing future availability of banked water for later withdrawal. Fur-
ther extensions might include aquifers operated in conjunction
with a surface water reservoir, multiple reservoirs, and uncertain
surface water volumes available for recharge. Additional modifi-
cations are required to derive temporal, economic, dynamic, or
broader, multiobjective operating rules.
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Notation

The following symbols are used in this paper:

a; = random variable representing future
availability to extract water from aquifer i,
fraction;

a; = mean expected availability of aquifer i,
fraction;

b = discount factor, unitless;

¢; = sum of unit costs to extract, pump, treat,
convey, and cover institutional, legal, and
transactional expenses to gain access to aquifer
i,$ volume™;

D; = duration of withdrawal from aquifer i, time;

D,.x = overall duration of withdrawal program, time;
d = tradeoff objective coefficient, volume time?;
FD; = duration to fill aquifer i, time;
FD,,;, = overall fill duration for recharge program,
time;
i = aquifer index, 1...n;
K; = unfilled, remaining storage capacity of aquifer

i, volume;
Pmaxi = Mmaximum extraction pumping capacity for
aquifer i;
Q; = decision on amount to recharge into aquifer i,
volume;

Q; = optimal amount to recharge to aquifer i,
volume;

R; = steady recharge rate into aquifer i, volume
time™!;

R: = optimal recharge rate into aquifer i, volume
time™!;

Ry = steady surface water available for recharge in

each period, volume time™!;

RD; = recharge duration for aquifer i, time;
RD,,;, = overall duration for recharge program, time;
Fmaxi = Maximum recharge capacity for aquifer i,
volume time™';
rc; = unit cost to recharge aquifer i, volume time™!;
S,; = initial storage in aquifer i available for

extraction, volume;
t = predetermined duration of withdrawal/
recharge, time;

u; = unit use value of water extracted from aquifer
i,$ volume™;
v; = discounted, net financial value of storing

water in aquifer i, $ volume™;
= decision on withdrawal rate from aquifer i,
volume time™!;
W. = optimal withdrawal rate from aquifer i,
volume time™';
Wy = total expected rate of water withdrawal from
all aquifers, volume time™';
1

W, = total target delivery rate, volume time™";

WD; = withdrawal duration from aquifer i, time;
WD,,.« = overall withdrawal duration for program,
time;
Z, = standard normal deviate for probability «,
unitless;
o = reliability that water should be available,
fraction;

B = required fraction of recharged water to be
available in future, unitless;

N\; = expected fraction of recharge that will be
recoverable for extraction, unitless; and
o; = standard deviation of expected availability,
fraction.
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