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ABSTRACT 
Representing peak and off-peak energy prices is often difficult in hydropower modeling 
because the time scale of price variability (hours or less) is much shorter than that needed 
for many operations planning models (days to months).  This work extends and examines 
the reliability of an existing approximate method to incorporate hourly energy price 
information into revenue functions used in hydropower reservoir optimization models 
with larger time steps (weekly, monthly, etc). The method assumes constant head, an 
exogenously known frequency distribution for hourly prices during each modeled time 
period (day, week, month) and a revenue-maximizing operational strategy that allocates 
hydropower releases in order of decreasing hourly price. The method is extended to the 
case with minimum instream flows requirements. The reliability of the method was tested 
for the cases with and without minimum instream flow requirements. Revenue estimates 
for a hypothetical hydropower site were compared with the exact optimal revenue from 
solving the hourly optimization problem within one week, showing less than 1% error 
using a finely discretized price frequency curve.  
 
 
INTRODUCTION 
Optimization models are commonly used for hydropower reservoir operations planning, 
with time horizons ranging from weeks to years and time steps ranging from days to 
months. In this modeling, it is often important to represent energy price variability (peak 
vs. off-peak prices) which occurs on short time scales (minutes to hours) in models using 
longer (daily to monthly) time steps. These models are almost always based on 
maximization of hydropower revenues, with essentially fixed operational costs for 
hydropower production (Labadie, 2004; Pereira & Pinto, 1991; Kelman et al., 1990; 
Faber & Stedinger, 2001; Fleten & Kristoffersen, 2008).  Some models also include 
coordination of hydropower and thermal power assets (Jacobs and Schultz, 2002). The 
output of each hydropower plant is usually small relative to the overall energy market and 
so typically has almost no effect on energy prices, allowing energy prices to be 
considered exogenous from the perspective of individual hydropower facilities.   
 
Because energy prices usually vary on short (e.g., hourly) time scales, much hydropower 
modeling on longer (daily to monthly) time steps can be misleading if it relies on a single 
representative price for each time step (e.g. week, month), especially if an average energy 
price is used. Using an average price in most cases underestimates revenues for a given 
level of power production, because reservoir releases will be allocated preferentially for 
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generation during hours when energy prices are high (Bushnell, 2003). In hydrothermal 
systems, peaking operations are most common for hydropower plants. However, as 
hydropower’s share of total system installed capacity increases, some hydropower plants 
can provide base load instead. The use of an average energy price disregards the usual 
peaking nature of most hydropower operations. Efforts to improve this simplification 
have involved the use of block pricing schemes (peak and off-peak), with an upper bound 
on the number of hours of generation at peak energy price (e.g. Grygier and Stedinger, 
1985; Trezos and Yeh, 1987). California’s PG&E scheduling system SOCRATES 
(Jacobs et al. 1995), for example, divides each weekly or monthly period into 4 to 12 
sub-periods, which distinguishes between peak and off-peak generation during weekdays 
and weekends.   
 
Research on hydropower reservoir operations has focused on developing efficient 
algorithms for multi-reservoir systems (e.g. Turgeon and Charbonneau, 1998), and 
incorporating hydrologic uncertainty (Kelman et al., 1990; Tejada-Guibert et al., 1995). 
Little consideration has been given to short-term variability of energy prices, which drive 
operational decisions in decentralized energy systems. In contrast to this simple common 
energy scheduling problem, the energy systems literature focuses on electricity markets 
modeling and electricity price forecasting (Nogales et al., 2002; Pritchard et al., 2005; 
Fleten, 2008; Scott and Read, 1996; Bushell, 2003; Fleten, 2007; Hobbs and Pang, 2007). 
On the other hand, Tesser et al. (2009) show a method for solving the medium-term 
problem using the load duration curve and relating it to average prices. 
 
Recent studies on hydropower operations in California (Vicuna et al., 2008; Madani & 
Lund, 2009) have recognized the need to incorporate short-term price variability 
information into long-term models. In particular, hourly energy price variability often 
emerges from the time frame of market clearing prices developed by an Independent 
System Operator (ISO). Better representation of shorter-time variations of prices and 
operations in longer-time-step models provides great improvements for model solution 
times and post-processing, and improve problem representation where option values 
depend to a great extent on price variability. 
 
Madani and Lund (2009) proposed a method to incorporate hourly price variability 
information into revenue functions at coarser (e.g. weekly, monthly) modeling time steps 
for hydropower systems with constant head. The method assumes the reservoir operator 
knows the frequency distribution of hourly prices for each coarse modeled time period, 
can forecast energy prices one hour ahead for operating purposes, and operates primarily 
for hydropower revenue maximization. This paper extends the work by Madani and Lund 
(2009) to hydropower systems with minimum instream flows requirements and tests the 
reliability of the method compared to exact solution of the short-term, perfect-foresight 
optimization problem.  
 
Next, we discuss the method proposed by Madani and Lund (2009) and explicitly 
develop the relationship between revenues and total volume of water allocated to the 
period. Then, we provide a discussion on the constant-head assumption and the error it 
would introduce. The method is then extended to the case with minimum instream flow 



 3 

requirements. The reliability of the approximation is assessed for a hypothetical 
hydropower site by comparison with the exact optimal revenue from solving the hourly 
optimization problem with a weekly horizon. Finally, we present conclusions and 
possible extensions to this work.  
 
PRICE VARIABILITY AND OPTIMAL OPERATING RULES  
A common objective for hydropower operations planning is to maximize the total 
revenue from generation during a time horizon T , typically discretized into smaller 
decision periods of length T∆ . Time horizons of several months with daily to monthly 
decisions are common. As proposed by Madani and Lund (2009), hourly price variability 
within decision periods can be represented by a price duration curve relating the percent 
of a time period that energy price exceeds various levels. This requires only that releases 
within a decision period be allocated in order of decreasing hourly energy price, requiring 
only hourly forecasts of energy prices, given the full price distribution. 
 
Following the approach by Madani and Lund (2009), the total revenue from energy sales 
during a decision period of length 

 

∆T  (e.g. one week) can be given by: 

 

B = Gcap ⋅ P( f )df
0

g

∫         (1) 

where )( fP  is the price corresponding to a frequency f  from the price duration curve, 
Gcap is the plants’ weekly energy generation capacity, and 

 

g

 

= G /Gcap  is the proportion 
of generation capacity used during the week.  
Discretizing Eq. (1) and defining 

 

ng = g /∆f as the number of discrete sub-intervals we 
obtain: 

 

B =
G
ng

Pi
i=1

ng

∑           (2) 

 
Defining 

 

P(g) as the average of all prices exceeding 

 

P g( ), Eq. (2) becomes : 

 

B = G ⋅ P(g)          (3) 
Eq. (3) represents the revenues obtained from producing an amount of energy 

 

G given a 
maximum generation capacity 

 

Gcap . 
Assuming constant head, energy generation can be calculated as  

 

G = ε ⋅ γ ⋅ Q ⋅ h ⋅ ∆T = ε ⋅ γ ⋅V ⋅ h   
where ε  is generation efficiency andγ  is the unit weight of water. Q  and h  are the 
release flow and head, respectively. 

 

V  represents the total volume of water allocated 
during the period (i.e. week).   
Plant efficiency 

 

ε is affected by discharge and, for plants with several turbines, by how 
generation is allocated among units. Given our assumption of operation at turbine 
capacity, discharge is fixed. Also, we assume a total plant discharge will always be 
allocated among units in the same manner. So, efficiency can be considered constant.  
 
Defining 

 

C  as the plant’s flow capacity, generation capacity is given by 

 

Gcap = ε ⋅ γ ⋅ C ⋅ h ⋅ ∆T  
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Therefore, the proportion of generation capacity used can be rewritten as: 

 

g =
G

Gcap

=
ε ⋅ γ ⋅V ⋅ h

ε ⋅ γ ⋅ C ⋅ h ⋅ ∆T
=

V
C ⋅ ∆T

= fV     (4) 

Where 

 

fV  represents the proportion of hours of operation (at full capacity) over the 
period 

 

∆T . Given )( fP  and a good 1-hour lead price forecast (or suitable 
approximations), the optimal operating rule is to generate at turbine capacity during all 
hours when the price )( VfPP ≥ .  
 
This allows actual revenue per unit output to depend on the plant’s total generation or 
proportion of hours generated. The operator cannot influence the market price, so hourly 
prices are exogenous to the optimization. The realized average price depends on the 
portion of the price duration curve covered by operations, beginning with the highest-
priced hours.  
 
Introducing the dependence on Vf ,C , and h  explicitly, Eq. (3) can be expressed as: 

( ) )(,, VVV fPEhfCB ⋅=       (5) 
where VE is the total energy that can be generated with a volume V  of releases at 

constant head h and )( VfP  is the average of all prices exceeding ( )VfP .   
 
As described above, the method proposed by Madani and Lund (2009) assumes constant 
head. Here we analyze the implications of this assumption. A relatively constant head on 
the turbine is common for many reservoirs when V is small or when most head is 
produced by a long penstock, as is common in mountain regions.   
 
In principle, when total head depends markedly on reservoir storage level, the method by 
Madani and Lund (2009) cannot be used. Estimation of optimal revenue becomes then 
more complicated, because each hour of operation generates a different quantity of 
energy depending on the reservoir level during that period. However, to a first-order 
approximation the operating rule remains valid, only the estimation of total revenue 
becomes more complicated as it depends on the price-storage pairs realized during 
operations.  
To be completely accurate, the “head effect” creates nonlinearities in the objective 
function that modify the optimal strategy somewhat from our simple operating rule, 
because a release decision made at time t will affect storage, and therefore head and 
revenue at all subsequent periods until an upper or lower storage bound is reached.  The 
resulting non-separability of the objective function makes the revenue optimization 
problem harder, which is why many hydropower scheduling systems assume a constant 
head (Jacobs et al. 1995).   
        
The head sequence is determined by initial storage conditions and the balance between 
inflows and outflows. Thus, reservoir storage, and therefore head, will increase or 
decrease depending on both net reservoir inflows and release decisions during the 
operational period.  The hourly storage sequence is determined by water balance: 
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( ) tiiii etQISS −∆⋅−+=+1         (6) 
 
where tI  and te  are the inflow to and evaporation from the reservoir during the ith hour 
of the week, respectively.  Assuming the operational scheme previously described, during 
hours of generation (6) becomes: ( ) tiii etCISS −∆⋅−+=+1 . During hours without 
generation (6) becomes: tiii etISS −∆⋅+=+1 . The size of 

 

∆t  must be small enough to 
avoid significant changes in head. 
 
Therefore, this approximation’s accuracy will depend on the particular conditions of the 
hydropower system under study. For example, in California’s Sierra Nevada, spring has 
large inflows from snowmelt and moderate evaporation, so reservoirs tend to refill 
overall, increasing head over most time steps.  During summer, evaporation increases and 
inflows decrease, so refill during non-generation hours is small and storage and heads 
decrease over most time steps.  
 
On the other hand, as shown in Fig.1, in the California market the sequence of price 
values during generation hours tends to be periodic, for any capacity utilization level. 
This implies that higher contributions to total revenue coincide with the earliest releases 
during the drawdown season and coincide with the later releases during the refill season.  
The sequences in Fig. 1 are obtained from the truncated total time series obtained for 
each generation frequency level. In this particular series, lower peak prices occur at the 
beginning of the sequence.  This is explained because the considered 7-day sequence 
started on a Saturday, which along with Sunday is an off-peak period. Other than that, no 
marked bias on price levels seems to exist during weekdays.      
However, a simple estimate can be obtained using Eq. (5) with the average between the 
initial and final head during the period, which requires only the initial and final storage 
for each period T∆ .  Final storage can be calculated from the initial storage and net 
inflow over the entire period. The error of this approach will be quantified for typical 
reservoir conditions as part of the numerical example.   
 
ENVIRONMENTAL CONSTRAINTS ON RELEASES 
Often, environmental constraints take the form of minimum instream flows (MIFs) and 
maximum ramping rates (MRRs). Such restrictions can change the optimal operational 
strategy from the simple policies described above.  With a MIF alone, the proposed 
approach can be slightly modified so the total volume V cannot be freely allocated by the 
operator. However, the described procedure remains valid if the “effective” volume 
available for discretionary release is considered.  Discretionary releases would be the 
volume that can be allocated by the operator during hours of high price.  
 
Given a total volume V  available for the entire period and a minimum flow minQ , the 
percentage of the time EFFf  that operation at full capacity can take place is given by: 

)1(min EFFEFFMINEFF fTQfTCVVV −⋅∆⋅+⋅∆⋅=+=      (7) 

Solving for EFFf , with CQ ⋅= αmin  we obtain: 
)1(
)(

α
α

−
−

= V
EFF

f
f    (8) 
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Eq. (9) shows that total revenue can be separated in two terms: i) the revenue that comes 
from operation at peak hours and ii) the revenue associated to hours of operation at MIF. 

( )












⋅⋅+⋅⋅∆⋅⋅⋅= ∑ ∑
∈ ∉)( )(

,,,
eff effVIi VIi

iiV PCPCthhfCB αγεα     (9) 

where 

 

I(Veff ) represents the set of hours when energy prices are equal or exceed 

 

P fVeff( ). 
Defining the excess turbine capacity over the MIF as )1( α−⋅= CQex , after some 
algebra Eq. (9) can be rewritten in terms of  the revenue associated to the MIF (which is 
at least released every hour) and the extra revenue that comes from additional release 
(above MIF) in some hours: 

 

B C, fV ,h,α( )= ε ⋅ γ ⋅ h ⋅ ∆t ⋅ C ⋅ (1−α) ⋅ Pi + α ⋅ C ⋅ Pi
i=1

N

∑
i∈I (Veff )
∑

 
 
 

  

 
 
 

  
  

In terms of the average prices: 
( ) ( )PNCPfNCthhfCB EFFEFFV ⋅⋅⋅+⋅⋅⋅−⋅⋅∆⋅⋅⋅= ααγεα )1(,,,   (10) 

where )( EFFEFF fPP =  and P is the average price for the entire period of interest. 
 
Substituting (8) in (10) we obtain: 

( ) ( )ααγεα ⋅+−⋅⋅⋅∆⋅⋅⋅⋅= PfPNtChhfCB VEFFV )(,,,    (11) 
 
RELIABILITY OF THE PROPOSED METHOD 
In this section we test the reliability of the approach proposed by Madani & Lund (2009) 
to approximate the exact solution of the intra-period optimization problem for a 
hypothetical hydropower plant, using hydrological and energy price data from California. 
A precise representation of the intra-decision period problem would involve maximizing 
total revenue subject to operational constraints on release flows at each hour. The 
problem also would be subject to an initial storage ( iniS ) and total water availability or 
release target (V ) for the operational period T∆ . The release target for the intraperiod 
problem is a decision variable in the longer-term multiperiod problem. The proposed 
method approximates the solution to the following deterministic intraperiod (smaller 
time-step) optimization problem with a known price sequence and variable head:  

( )

( )

0

,...,1)(

..

,,

1

1

1

≥
=

==

=∆⋅−

∆⋅⋅⋅⋅⋅=

∑

∑

=

=

i

ini

ii

N

i
ii

N

i
iiiiiiQ

Q
SS

NiShh

VtIQts

thQPhQPBMax
i

γε

 

where iI and iS are the net inflow and the reservoir storage, respectively in period i; N is 
the number of time steps in the intraperiod problem, ∆t is the time step within the 
intraperiod problem, and )(Sh  represents the head-storage curve of the reservoir.  
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A numerical example illustrates the reliability of the method. Revenue estimates obtained 
with the proposed method are compared with the exact solution to the intraperiod 
problem, with an hourly time step. The proposed method is compared against the solution 
of an intraperiod problem with two versions of two-block price approximations. The 
exact intraperiod problem assumes a know price sequence, whereas the proposed method 
employs a price frequency curve and assumes a 1-hour ahead price forecast is available to 
the operator.  
 
The proposed method is applied to a small reservoir with a capacity of 92.5 million m3 
and the storage-head curve shown in Fig.2.  The curve can be approximated analytically. 
At very low storage values the relationship is linear.  For the rest of the storage range, the 
curve can be approximated by a quadratic polynomial.  The power house is an additional 
15 m below the lowest reservoir level. Installed capacity is about 25 MW. 
 
Two weeks are considered to test the method: one in late winter (10th week of the 
calendar year) and the other in summer (35th week of the year).  Table 1 summarizes the 
information used in this example.  Based on historical records for the California Sierra 
Nevada, for the summer week the net inflow (inflow minus losses) is set to zero, so 
losses, mainly evaporation, offset small natural inflows to the reservoir. Initial storages 
are about 13% and 47% of storage capacity for weeks 10 and 35, respectively.  
 
Hourly energy prices for the 10th and 35th week of the year 1999 were obtained from the 
California PX data (available at http://www.ucei.berkeley.edu/). The corresponding raw 
Price Duration (PD) and operating Moving Average (MA) curves for each week are 
shown in Fig. 3 at 5% exceedance frequency intervals. The “exact” MA for each 
percentile was calculated from the actual sample of prices. The “approximated” MA is 
obtained directly from the PD curve by averaging the corresponding price percentiles at 
5% intervals.  As seen in Fig. 3, this approximation can result in errors of about 10% of 
the exact MA in week 35.  Better integration of the price curves substantially reduces 
error. The error in the price MA will propagate by Eq. (5), resulting in more error in the 
revenue for plants with larger installed capacity.  
  
Error due to average head assumption 
We now examine errors of the method for the case with variable head using the average 
between initial and final head in equation (5). The error in revenue estimation can be 
illustrated by an example calculation under reservoir drawdown and refill conditions. The 
revenue obtained with average head can be contrasted against the exact solution to the 
nonlinear optimization problem which accounts for head changes.  
 
A drawdown condition is represented with zero net inflow to the reservoir. The filling 
condition examined has the same average between initial and final head as in the 
drawdown condition. This allows for comparison of different storage sequences without 
worrying about the average head effect. Our method does not distinguish between 
drawdown and filling conditions as long as the average head is the same.  
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Results of this comparison, for energy prices in week 35, appear in Fig. 4. The net inflow 
defining the filling condition is set to 42 m3/s, 50% more than turbine flow capacity. This 
ensures a filling condition even when total release equals turbine flow capacity. The 
average head will be set at 32 m, corresponding to a storage of 50% of reservoir capacity. 
Optimal total weekly revenues are not very different under the two conditions. The 
proposed approximation introduces little error over the entire range of total releases for 
these conditions of variable head. 
 
Approximation without minimum instream flows 
The purpose is to estimate the optimal revenue during each week as a function of the 
initial storage, net inflow and total volume of water allocated for generation during the 
week.  Storage information is needed for head calculation. 
 
For both example weeks, the exact nonlinear optimization problem was solved using the 
CONOPT (GAMS, 2010b) solver in GAMS (GAMS, 2010a) assuming perfect foresight 
of energy price and net inflow to the reservoir.  For the proposed approximation, the total 
revenue for each week was calculated. The total revenues for each method are shown in 
Fig. 5 for the entire range of weekly release relative to turbine capacity.  The proposed 
method results using the actual sample MA, matches the optimal results almost perfectly. 
With the approximated MA, the quality of the approximation depends on the week.  As 
shown in Fig.3, for week 10 the approximated MA is nearly exact and revenue 
approximations nearly coincide.  For week 35, errors from approximating the MA are 
worse. The difference between optimal and estimated revenues increases with the total 
weekly release, reaching as high as 10%. This is due to the greater price variability 
during week 35, having a much larger price range than week 10, as shown in the price 
duration curve in Fig.3.  More variable energy prices require more exact integration of 
the price frequency curve, requiring little additional effort. 
 
Comparison with peak/off-peak price schemes 
For comparison, we optimized a two-block (peak/off-peak) price scheme so 
corresponding revenues have the least squared deviations from the optimal revenues over 
the range of total release. The design consists in finding the parameters PEAKP  , OFFP  , 
and PEAKf  as shown in Fig.6. The corresponding optimization problem is 

( )
2

/

,, ∑ −
V

VV
PEAKOFFPEAK f

OP
f

OPT
ffPP

BBMin   

where the revenue calculated with the peak/off-peak structure is given by: 
 

( )



>−⋅+⋅⋅⋅⋅⋅⋅
≤⋅⋅⋅⋅⋅⋅

=
PEAKVPEAKVOFFPEAKPEAK

PEAKVVPEAKOP
f ffffPfPNCh

fffPNCh
B

V )(
/

γε
γε

  (12) 

 
This problem requires a three-dimensional search. However, a condition can be imposed 
that relates the peak price PEAKP  and the frequency Vf , namely that the peak price 
matches the moving average price at that frequency, i.e. ( )PEAKPEAK fPP = .  With this 
condition, the search becomes two-dimensional.  The optimal values found for each week 
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are presented in Table 2.  For both prices, the corresponding exceedance percentile in the 
price duration curve is included in parenthesis.  For week 10, given the flatness of the 
duration curve, the obtained percentiles differ somewhat from the common definition of 
peak/off-peak prices.  The percentiles seem higher than expected for both peak and off-
peak price.  This shows that the common definition used in this kind of pricing scheme 
approximation does not necessarily result in revenues closest to the actual ones.  
   
The revenues were calculated using Eq. (12) with the parameters from Table 2.  Fig. 7 
shows how the estimation based on the optimal peak/off-peak scheme compares to the 
optimal revenue and to the estimation obtained with our method.  The results for an 
alternative two-block pricing, where the peak price is defined as the 5% exceedance 
percentile, the off-peak as the 50% percentile, and a frequency of 20%, are presented for 
comparison.  The optimal two-block pricing scheme used the exact MA for estimating the 
peak price for each PEAKf . 
The results in Fig.7 show that the new method, when applied with the exact MA, 
outperforms the peak/off-peak price approximation.  Also, the optimal two-block pricing 
scheme better approximates revenues compared to the common 16 hr on / 8 hr off two-
block pricing scheme.  The optimal two-block design minimizes the deviation from 
optimal revenues.  
 
A summary of the relative error results for the case without MIF appears in Table 3.  The 
proposed method has the least error (less than 1%) when applied with the exact MA.  The 
performance of the proposed method with the approximated MA depends on the week.  
For week 10, where the approximated MA is close to the actual MA, the proposed 
method still outperforms the two-block pricing scheme.  Interestingly, for week 35, when 
applied with the MA approximated from the price duration curve at 5% intervals, this 
inexact implementation of the proposed method has more error than the two-block 
pricing. This is because two-block pricing schemes tend to first underestimate and then 
overestimate revenues. As seen in Fig.7, for week 35 the optimized peak/off-peak scheme 
underestimates revenues for total releases under 75% of capacity and overestimates 
revenues for releases exceeding 75% of turbine capacity. At 75%, the error is almost 
zero. Therefore, errors for percentiles around 75% are small and then have a small 
contribution to the relative error. In contrast, as seen in Fig.5, when the proposed method 
uses an approximated MA, the resulting revenues overestimate those optimal over the 
entire range of releases. Therefore, since the error is never close to zero, the relative error 
is higher. Both two-block pricing schemes use the exact MA; where the exact MA 
estimation is used directly, the proposed method has much less error.  
 
Approximation results with minimum stream flows 
In general, MIFs decrease revenues by allocating more releases to hours with lower 
energy prices.  We test our approach to cases with MIFs from 5% to 50% of turbine 
capacity.  The results are presented as the ratio between the exact and approximated 
weekly revenue.  In Fig. 8, each point corresponds to an average over the range of MIF 
requirements.  Results are consistent with those without MIF.  When applied with the 
exact MA, the proposed method approximates the optimal revenues within 1%.  When a 
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coarse approximation of the MA is used, errors can reach 7% for a week with high price 
variability such as week 35.   

 
Fig.9 shows the average ratio of approximated to optimal revenue over total weekly water 
allocation for different levels of MIF, as a percent of turbine capacity. When the exact 
MA is used, our method underestimates the revenues by less than 1%. With MA 
approximated from the price duration curve at 5% intervals, the magnitude of the error 
varies.  Again, the approximation for week 35 can be as large as 9% for small MIFs.  In 
week 10 the proposed method with approximated MA gives errors slightly more than 1%.  
As the MIF requirement increases, the error of the approximated MA decreases, reaching 
3% and 0.5% for weeks 35 and 10, respectively.  This can be explained from (12), where 
the benefit estimation is proportional to a weighted sum of the weekly average price and 
the MA price for the effective frequency.  As the MIF increases, the weight on the MA 
price decreases and so its error has less influence on revenue estimation.  
 
CONCLUSIONS 
This study extends and examines the reliability of a simple method proposed by Madani 
and Lund (2009) to use hourly price information as a basis for hydropower revenue 
functions for longer decision periods.  The method is based on the hourly price 
distributions and allows efficient use of hourly peak price information within longer-
period scheduling or operational planning models.  A key element of the method is the 
availability of a good estimate of moving average price obtained from a duration curve 
and perfect price forecasts one hour ahead. The method was extended for the case with 
environmental constraints in the form of minimum instream flows and applied to the case 
with storage-dependent head and storage varying over the operational period using the 
average storage over the time period.    
 
The original and extended methods were applied to a hypothetical example to estimate 
the weekly revenues for one week in summer and another week in winter in California.  
With the exact MA, our method has errors less than 1% for both weeks.  The exact MA 
can be closely matched with an approximation based on the duration curve at 1% 
intervals.   
 
Our approach was compared with the traditional two-block hydropower modeling price 
structure approach.  An optimal peak/off-peak price scheme was designed to minimize 
deviation from the optimal revenues.  This optimized approximation results in relative 
errors of 2.5% and 4.2%, much worse than the 0.4% and 0.7% obtained with our method 
using the exact MA. Similar results were obtained for the case with minimum instream 
flow requirements. 
  
Further extensions to this work might include possible options representation of energy 
prices for cases where energy and generation capacity options are traded as part of the 
electricity market. 
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Figure Captions 

 
 
Figure 1: Example Price Sequence during Hours of Operation for Different Capacity 
Utilization Levels f  (No release occurs in hours between price bars) 
Figure 2: Storage-head curve 
Figure 3: Price information year 1999 (Cal-ISO) 
Figure 4: Error induced by head effect under filling and drawdown conditions  
Figure 5: Effect of MA calculation on estimated revenues without MIF 
Figure 6: Price Duration Curve and 2-Block Price Approximation 
Figure 7: Comparison between the proposed method and two-block pricing 
approximation 
Figure 8: Ratio of approximated to optimal revenue (Average over MIF values)   
Figure 9: Ratio of approximated to optimal revenue (Average over Total Weekly 
Releases) 
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Tables 

 
Table 1: Summary of data 

Storage Capacity (million 
m3) 92.5 
Turbine Flow Capacity 
(m3/s) 28.3 
Max. Release (m3/week) 17.1 
  Week 10 Week 35 
Initial Storage (million m3) 37 61.6 
Net Inflow (m3/s) 5.1 0 
Average Price ($/MWh) 17.3 41.6 

 
Table 2: Optimal peak/off-peak price scheme ($/MWH and corresponding % of generation capacity) 

Week PEAKf  PEAKP  OFFP  
10 54% 21.02 (23%) 14.78 (73%) 
35 16% 98.10 (4%) 34.70 (41%) 

 
 

Table 3: Summary Results without MIF 

Method Relative error 
Week 10 Week 35* 

Proposed (exact MA) 0.4% 0.7% 
Proposed (approx. MA) 0.9% 9.2% 
Optimal Peak/Off-peak 2.5% 4.2% 
Common Peak/Off-peak 5.8% 6.9% 

  * Week 35 has more variable prices. 
 
 
 


