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[1] Farmers make joint water and land use decisions for economic purposes based in part
on water availability and reliability. A two-stage economic production model is developed
to examine the effects of hydrologic uncertainty and water prices on agricultural
production, cropping patterns, and water and irrigation technology use. The model
maximizes net expected farm profit from permanent and annual crop production with
probabilistic water availability and a variety of irrigation technologies. Results
demonstrate effects of water availability, price, and reliability on economic performance,
annual and long-run cropping patterns, and irrigation technology decisions. Variations in
water price and availability affect the desirability of different irrigation technologies.
Increased water supply reliability can raise the probability of higher economic returns and
promote more effective use of water for permanent crops. Such economic benefits can be
compared to costs of operational changes and programs to increase water supply reliability
for agricultural areas.
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1. Introduction

[2] Irrigation water demands depend on farmers’ deci-
sions on when and which crops to produce, how much water
to apply, and which irrigation technologies to use. Decisions
involve short- and long-term commitment of resources.
Short-term decisions can respond directly to particular water
availability events either to minimize losses in dry years or
to take advantage of surplus water supply in wet years.
[3] When water is scarce, farmers seek to optimize water

allocation among competing crops and irrigation technolo-
gies to maximize production and farm revenue. This problem
involves decisions at several timescales: (1) intraseasonal
irrigation scheduling decisions, (2) annual decisions on
cropping areas, deficit irrigation, and irrigation method,
and (3) long-run decisions on ‘‘permanent’’ crops, irriga-
tion equipment purchases, and the area of land to develop
for irrigation [Dudley et al., 1971b; Marques, 2004; Cai
and Rosegrant, 2004]. For annual crops, decisions on how
much to grow are made each year, while decisions on
permanent crops are made once, with possible changes
every few years, given fluctuations in exogenous factors
such as crop prices.
[4] With probabilistic water supply, crop decisions also

reflect farmers’ flexibility in coping with uncertainty to

maximize yields and profit. High-value permanent crops are
usually limited to more reliable water, while annual crop
decisions involve annual planning with the possibility of
recourse every year depending on water supply. This
framework makes the problems of annual and long-run
decisions suitable for modeling with multistage, probabilis-
tic optimization methods where decisions are integrated
across two timescales, a first stage of ‘‘permanent’’ deci-
sions, and second stage of recourse involving cropping and
irrigation decisions based on stochastic water availability
and cost of the remaining inputs.
[5] Modeling approaches for simulating agricultural deci-

sions and production include models with detailed physical
characterization of climate/soil/plant interaction for water
allocation and irrigation scheduling [Dudley and Burt,
1973;Matanga and Marino, 1979; Rao et al., 1990; Verdula
and Kumar, 1996], and models focused on policy analysis
based on sector behavior and economic relationships
[Moore and Negri, 1992; McCarl and Spreen, 1980].
[6] This paper presents a model of agricultural land and

water use decisions using two-stage stochastic quadratic
programming to simulate decisions on the mix of perennial
and annual crops, water use, irrigation technologies and
economic performance considering probabilistic water
availability. While irrigation scheduling and water use have
been extensively modeled with dynamic and multistage
programming, the approach presented in this paper contrib-
utes to existing literature by integrating the perennial and
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long-term elements of cropping and technology agricultural
decision framework within a two-stage stochastic program-
ming with recourse decisions. Seasonal scheduling and
water use decisions depend on which crops (perennial or
annual) are grown and previous acquisitions of irrigation
technology, whose combined effects are not yet modeled in
the literature. To improve simulation of agricultural deci-
sions under multiple exogenous factors, common crop
rotation constraints are replaced by a calibration technique
based on positive mathematical programming.
[7] The model’s contributions improve the understanding

of agricultural decisions under uncertainty and allow eval-
uation of economic effects of water policies based on
farmers’ economic responses. The paper begins with a
review of agricultural planning issues and stochastic
programming, followed by the model concept and formu-
lation, application examples, results discussion, limitations
and conclusions. Examples investigate effects of water
pricing and water supply reliability on crop production
and technology use.

2. Stochastic Programming and Agricultural
Decisions

[8] Dynamic programming (DP) and stochastic dynamic
programming (SDP) has been applied to a variety of real-
time, intraseasonal, and interseasonal irrigation and crop-
ping decisions [Tintner, 1955; Dudley et al., 1971a, 1971b;
Matanga and Marino, 1979; Rao et al., 1990]. To keep the
problem computationally tractable, few crop types are
usually considered in SDP approaches. Others apply linear
programming (LP) to allocate water within a season, cou-
pled with a DP model to optimize crop areas across seasons
and perform interseasonal water allocation [Yaron and
Dinar, 1982; Verdula and Kumar, 1996].
[9] Problems involving decision making under uncertainty

often can be characterized by multiple scenarios represent-
ing combinations of random events with embedded
recourse decisions. These problems can be modeled by
structuring the process in stages with decisions occurring
before the realization of an uncertain events and recourse
decisions responding as the future unfolds in different
scenarios. The objective is commonly to minimize the
expected value cost of all decisions in all stages and their
consequences.
[10] Multistage optimization models have been applied

to a variety of water resources management problems
[Watkins et al., 2000; Huang and Loucks, 2000; Lund,
2002]. Linear two-stage stochastic programming has been
applied to long- and short-term water conservation mea-
sures for urban water users given probabilistic shortages
[Lund, 1995; Wilchfort and Lund, 1997; Garcia, 2002].
Long-term conservation measures are modeled in the first
stage, with short-term conservation measures implemented
in the second stage responding to particular water shortage
events with a given probabilities. Cai and Rosegrant
[2004] apply a two-stage stochastic programming to irri-
gation technology decisions and water allocation among
fixed crops based on probability of water availability
(second stage) with technology and crop decisions made
in the first stage. Other applications simulate farmers’
decisions including long- and short-term irrigation tech-
nology decisions to evaluate potential water transfers

[Turner and Perry, 1997], and seasonal planting and
irrigation scheduling [Ziari et al., 1995]. Maatman et al.
[2002] applies multistage stochastic LP to optimize crop
production, consumption, storage and marketing decisions
during consumption year, based on rainfall uncertainty.

3. Model Concept and Formulation

3.1. Quadratic Programming of Agricultural
Production Decisions

[11] Linear production models are limited in representing
real crop diversification by prioritizing production of the
most profitable crops based on average conditions. This
limitation can be avoided by including linear constraints
enforcing observed crop mixes and crop rotation; however,
such constraints tend to reduce the model’s flexibility in
simulating situations outside the range of calibration [Hazell
and Norton, 1986; Howitt, 1995].
[12] In practice, crop production equilibrium is deter-

mined by marginal conditions [Hatchett, 1997] and is
limited by endogenous factors such as crop rotation bene-
fits, heterogeneous land quality, restricted management or
machinery capacity (R. E. Howitt, University of California,
Davis, Optimization Model Building in Economics, class
notes, 2002) as well as exogenous factors such as risk
aversion and crop prices. These factors result in diminishing
marginal returns to crop production level.
[13] An alternative approach is to use a quadratic objec-

tive function that reflects the marginal conditions of a
competitive market. Competitive market equilibrium con-
ditions dictate that a price-taking producer will be willing to
supply until his marginal revenue (market price Pi) equals
his marginal cost:

Pi ¼ ai þ giXi ð1Þ

The right hand side (marginal cost) of (1) is the farmer
supply function of a given product i in the quantity Xi with
intercept ai and slope gi. To arrive at these marginal
conditions we can set the Lagrangean and apply the Kuhn-
Tucker first-order conditions to a defined objective function.
Starting from the marginal conditions, equation (1) can be
integrated in X to arrive at the desired objective profit
function (2).

Z ¼ PX � aþ 0:5gXð ÞX ð2Þ

The intercept and slope of the supply functions are
empirically calibrated with positive mathematical program-
ming (PMP) [Hatchett, 1997; Bauer and Kasnakoglu, 1990;
Howitt, 1995]. A similar approach is used by Burke et al.
[2004] to calibrate a parameterized economic model and
estimate farmers’ willingness to sell water. The PMP
approach adds calibration constraints to crops in a LP
version of the model, and uses the shadow values of these
constraints to estimate the slope and intercept parameters of
the quadratic profit function (2). The dual values for the
binding calibration constraints (3) are defined as the
difference between marginal and average products of
the inputs for the calibrated crops [Howitt, 1995].

l2 ¼ 0:5gX ð3Þ
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Equation (3) is solved for the supply function slope g with
X being observed calibration cropping area. The intercept a
is calculated by substituting g and the observed areas X in
equation (1), since Pi is equal to the marginal production
cost per acre at an optimal allocation.

3.2. Model Formulation

[14] A discrete version of a two-stage stochastic optimi-
zation model appears in Figure 1. Permanent crop decisions
are simulated in the first stage, and annual crop decisions in
the second stage, based on the probability distribution of
water available in a given year (however, in the model,
permanent and annual crop decisions are continuous).
Irrigation technology decisions are made in both stages
and are represented as combinations of crop type
and technology type. These decisions are omitted from
Figure 1 for clarity. Water use per acre is also determined
by the model to simulate stress irrigation operations.
[15] Recourse decisions are annual, as it is assumed that

local water storage can be used to cover seasonal availabil-
ity imbalances. Permanent crop and capital irrigation tech-
nology purchase decisions are made in the first stage for the
entire planning horizon.
[16] The objective function (4) maximizes the net

expected economic benefit of crop production and water
use decisions with probabilistic water availability, and is
subject to constraints on land (5), water (7), stress irrigation
(6), (8), (9), and irrigation technology (10). It includes
permanent crops (X1ik) establishment cost and irrigation
equipment investment (IRk) in the first stage, and annual net
benefits of annual crops and permanent crops in the second
stage. Second stage net benefits are calculated by multiply-
ing marginal production costs (a + 0.5gX2) from equation
(2) by crop production X2 and subtracting from gross
benefits RE*X2 (in the second stage, X2 is used for annual
crops and Y1 for permanent crops). Marginal production
costs include irrigation technology k operation and mainte-
nance. The last cost term in the second stage penalizes
production with CA1i per unit area of permanent crops lost
K1jik due to excessive stress irrigation.

MaxZ ¼ �
Xm
i¼1

Xh
k¼1

INIiX1ikð Þ �
Xu
p¼1

IRk þ
Xg
j¼1

pj
Xn
l¼1

Xh
k¼1

 

� RE2lX2jlk

�
:� a2jlk þ 0:5g2jlkX2jlk

� �
X2jlk

�
þ
Xm
i¼1

Xh
k¼1

RE1iY1jik � a1ik þ 0:5g1ikY1jik
� �

Y1jik
� �

�
Xm
i¼1

Xh
k¼1

CA1iK1jik

!
ð4Þ

subject to
Land constraint

Xm
i¼1

Xh
k¼1

X1ik þ
Xn
l¼1

Xh
k¼1

X2ljk � L . . . . . . . . . . . . ::8j ð5Þ

Second stage permanent crops

Y1jik � X1jik . . . . . . . . . . . . :8j; 8i; 8k ð6Þ

Water constraint

Xm
i¼1

Xh
k¼1

TAW1jik þ
Xn
l¼1

Xh
k¼1

X2jlkAW2jlk � aj . . . 8j ð7Þ

Permanent crop water allocation

Y1jik ¼
1

AW1jik

TAW1jik . . . . . . . . . . . . :8j; 8i; 8k ð8Þ

Stress irrigation threshold

K1jik 	 X1ik � xiTAW1jik . . . . . . . . . :8j; 8i; 8k ð9Þ

Irrigation technology constraint

Xm
i¼1

X1ik ICik þ
Xn
l¼1

X2jlk IClk � IRk . . . 8j; 8k ð10Þ

where model parameters are
a1ik supply function slope for permanent crop i and

irrigation technology k ($/acre*acre);
g1ik supply function intercept for permanent crop i

and irrigation technology k ($/acre);
a2jlk supply function slope for annual crop l in

year type j with irrigation technology k
($/acre*acre);

g2jlk supply function intercept for annual crop l in
year type j and irrigation technology k ($/acre);

xi stress irrigation threshold for permanent crop i
(acre/acre-foot);

aj water available in year type j (acre-foot/year);
CA1i annualized re-establishment cost for permanent

crop i ($/acre);
ICik, IClk irrigation capital value to supply an acre of

permanent crop i or annual crop l with
technology k ($/acre);

INIi annualized establishment costs for permanent
crop i ($/acre);

L land available (acre);
pj probability of hydrologic event (year type) j;

RE1j annualized gross revenue of permanent crop i in
year type j ($/acre);

RE2l annualized gross revenue of annual crop l ($/
acre);

and the model variables are
AW1jlk AW2jlk water supply to annual crop l with

technology k in year type j (acre-foot/
acre);

IRk annualized first stage investment in irriga-
tion technology k ($);

Figure 1. Problem decision tree.
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K1jik area of permanent crop i lost in year type j
due to water scarcity (acre);

TAW1jik water supply to permanent crop i with
technology k in year type j (acre-foot);

X1ik area of permanent crop i established with
technology k (acre);

X2jlk area of annual crop l irrigated with k in
year type j (acre);

Y1jik area of permanent crop i irrigated with
technology k in year type j (acre).

3.3. Stress Irrigation

[17] If agricultural production were modeled as if it
depended only on crop areas, these would be constrained
solely by water availability, with permanent crops limited to
the lowest water availability (driest year). To avoid this
limitation and to represent agricultural production decisions
more realistically, stress irrigation water use decisions are
included as decision variables. This allows the model to
reduce water use for permanent crops in drier years (up to a
limit) while still maintaining (reduced) production.
[18] Permanent crop establishment costs appear in the

first stage of (4) that includes planting costs plus operating
costs during the several years until the crops start producing.
These costs are included in the INIi variable. Equation (8)
limits the area of permanent crop i irrigated in a given
year j Y1jik to a given amount of water TAW1jik. The ratio
1/AW1jik (acres per acre-feet of water) indicates how many
acres of Y1ijk can be grown for a given quantity of water
TAW1jik. If stress irrigation is applied (TAW1ijk less than
the full evapotranspiration demand), Y1jik will be less than
the planted area of permanent crops X1ik. Since stress
irrigation is likely to be applied over the whole area, Y1jik

is used as an area-equivalent supply term. The whole X1ik

area will receive water and produce crops, but the water
supply per acre will be reduced to TAW1jik/X1ik and crop
production will be reduced by a factor of Y1jik/X1ik.
Constraint (6) limits the second stage irrigation of perma-
nent crops to the area established in the first stage.
[19] Constraint (9) sets a limit for stress irrigation based

on a stress threshold xi, representing the area of permanent
crop i that can be maintained per unit of water. Multiplying
xi by the water allocated to a given permanent crop TAW1jik

(af) results in the entire crops area being maintained. The
difference from the planted area in the first stage X1ik

represents permanent crop area lost in the second stage
K1jik due to water stress. For water allocation TAW1ijk

above the threshold, the second term of the right hand side
of equation (9) equals the permanent crop area grown in the
first stage, resulting in zero crops lost. If TAW1jik is enough
to avoid crop losses, but insufficient to supply all of X1ik

with full evapotranspiration demand, stress irrigation is
applied reducing production by Y1jik/X1ik. Any area of
crops lost K1jik is multiplied by a replanting penalty (CA1ji)
in the objective function (4).
[20] This method adds a simplified, linear penalty to

production resulting from stress irrigation, and it is not
intended to accurately simulate real impacts of stress
irrigation in agricultural yields. One issue not considered
is the potential additional yield reduction if stress irrigation
is applied for several consecutive years. A calibration
parameter could be added to adjust the factor Y1jik/X1ik to

more realistic yield impacts. However, such analysis is
beyond the scope of this study.

3.4. Irrigation Technology

[21] The adoption of higher irrigation technology
increases the percentage of water applied being used to
meet the agronomic objectives, but also implies higher
capital investment, energy and labor costs. Crops differ in
irrigation requirements and the adoption of a given irriga-
tion technology may be desirable or not depending on water
demand, water supply, crop value, climate and soil con-
ditions. Variations in water availability and reliability affect
farmer’s decisions on water use and consequently on the
technology adopted. The model includes irrigation technol-
ogy decisions for different crops to maintain yield while
varying water application (and cost) per area. The water
saved by more efficient irrigation will be available to
irrigate other crops, and the optimal decision is a balance
between irrigation costs, water use and increased produc-
tion. Cai and Rosegrant [2004] present a two-stage sto-
chastic model to incorporates hydrologic uncertainties on
irrigation technology decisions, with irrigation technology
decisions and a fixed cropping pattern in the first stage, and
crop water allocation in the second stage. The model
presented in this paper includes variable cropping and
irrigation technology decisions in both first and second
stages, plus water allocation and stress irrigation in the
second stage, depending on crops’ growth cycle.
[22] Beneficial uses of applied irrigation water include

crop evapotranspiration, salt leaching and climate control.
To meet these objectives, efficient and uniform application
of water is necessary. Burt et al. [1997] define multiple
performance indicators commonly used and describe irriga-
tion efficiency as the ratio between the volume beneficially
used and the applied water.
[23] In this paper, the term irrigation efficiency (IE)

indicates performance in meeting the beneficial use of
evapotranspiration. The crop applied water target is defined
through the evapotranspiration of applied water (ETAW),
which is the portion of irrigation water consumptively used
by the plants. This discards consumptive demands met by
rainfall or water previously stored in the soil. Defining
irrigation applied water as AW we have:

IEETAW ¼ ETAW

AW
ð11Þ

Irrigation technology is modeled with decision variables for
investment in technology types IRk, and permanent and
annual crop area irrigated with technology type k, X1ik and
X2jlk respectively in the first and second stage. Irrigation
technologies in k require previous investment in equipment
(drip irrigation, sprinkler and Low Energy Precise Applica-
tion – LEPA), and furrow irrigation, which is available in
any year without previous investment in dedicated equip-
ment. The parameters ICik and IClk ($/acre*year) are the
irrigation capital requirements needed to supply permanent
crop i and annual crop l using technology type k.
[24] Irrigation costs are estimated based on irrigation

technology functions developed by Hatchett [1997], which
used irrigation performance and cost characteristics for
8 crop types and 15 irrigation systems developed by
CH2M HILL [1994]. In the work by Hatchett [1997],
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feasible technology management combinations for each
crop and region were plotted and fitted with a constant
elasticity of substitution isoquant, with the form:

a b
AW

ETAW

� �r

þ 1� bð ÞICr
� �1

r

¼ 1 ð12Þ

where a, b, and r are estimated parameters and IC is the
annualized irrigation cost in $/acre*year. This curve allows
trade-offs between irrigation technologies and cost, while
maintaining the same yield. Irrigation technology is
represented by the ratio AW/ETAW.
[25] The two-stage model uses equation (12) to estimate

the irrigation cost ($/acre*year) for a decision on a given
irrigation technology for a given crop. The irrigation tech-
nology choice will affect the applied water AW (af/acre)
based on equation (11). More technology (higher IE) results
in a lower AW and consequently higher IC (equation (12)).
A set of AW values is precalculated for each combination of
crop and irrigation technology. The irrigation cost parame-
ters ICik and IClk are used in the calculation of total
production costs and are reflected in the supply function
parameters for permanent and annual crops a1ik, g1ik, a2jlk,
g2jlk. Constraint (10) limits the use of each irrigation
technology in the second stage to the investment made in
the first stage IRk.

3.5. Calibration Approach

[26] The model is calibrated by calculating the slope and
intercept of supply functions with equations (1), (2) and (3)
[Howitt, 1995]. The observed acreage X for each crop type
must be split among irrigation technologies. This approach
generates a diversity of technology use based on the
calibration values, which may temper the purely cost-based
desirability of a given technology. For example, if water is
abundant and available at a very low price one would expect
to see most crops irrigated with furrow, given its low
irrigation cost. However, the quadratic revenue functions
present diminishing returns, so as the furrow irrigated area
approaches the calibration value, other technologies will
present higher marginal gains and enter the solution.
[27] This approach allows the model to represent irriga-

tion technology diversification in a fashion similar to that
for crop diversification, without using artificial constraints.
However, this approach may limit the model’s response to
variations in extreme situations (i.e., very low water prices).
Because of the lack of detailed data on irrigation technology
use, the observed cropping areas are split equally among the
available irrigation technologies. Current values of technol-
ogy diversification can be used in future model develop-
ments. Annual crop observed acreages also depend on the
water availability in the respective year, requiring the supply
function parameters to be calibrated for different year types.

3.6. Model Runs and Data

[28] Model runs are intended to demonstrate the model
concept and capabilities, rather than to provide an accurate
simulation of regional crop production and water use.
Production and hydrologic data are used from irrigation
districts in California’s Central Valley. The model is imple-
mented with the optimization package GAMS (General
Algebraic Modeling System) [Brooke et al., 1998] and it
simulates the decisions of a single irrigation district with

access to a major surface water supply source. Data on crop
prices, technical coefficients and input costs are obtained
from the Statewide Agricultural Production Model (SWAP)
[Howitt et al., 2001] and University of California Cooper-
ative Extension, Department of Agricultural and Resource
Economics. The U.S. Bureau of Reclamation (USBR)
operates surface reservoirs in the region and delivers water
to irrigation districts under contract using the Friant-Kern
canal. Water contracts have a price structure based on water
reliability; the most reliable supply is priced at $44/acre-foot
[Marques, 2004]. Crop areas in the region are from the
California Department of Water Resources (DWR) 1999
land survey. Three permanent crops (grapes, citrus and
nuts), and five annual crops are included (cotton, field
crops, truck crops, alfalfa and miscellaneous grain crops).
[29] The model runs for a group of possible hydrologic

years, each one with a probability of occurrence based on
water availability. Rather than a time series, this group tries
to capture the range of water availability outcomes. The
results present the combination of short-/long-term deci-
sions to be made on each year that produces the greatest
expected benefit.
[30] The sets of events (year types) representing proba-

bilistic water availability are developed based on observed
water deliveries. Initially, ten equally probable water deliv-
eries are used for exploration of water pricing impacts on
agricultural production and technology use. This simplifi-
cation makes the results and model concept easier to
interpret. Two larger sets (25 year types lognormally dis-
tributed) are used to study the effects of water supply
reliability on agricultural production, water and technology
use and the economic value of different probability distri-
butions of irrigation water availability.
[31] The group of year types can be obtained by gener-

ating a histogram of a long time series of water deliveries to
the irrigation district such as might be derived from histor-
ical data or water resource system model outputs. In the
present study, a time series of surface water deliveries from
Marques et al. [2003] provided the moments to generate a
longer, synthetic time series based on log normally distrib-
uted random numbers.

3.7. Water Pricing, Technology Use, and Agricultural
Production

[32] Technology use results show the expected diversifi-
cation based on the cropping areas used for calibration.
Cropping areas are reasonably evenly distributed among the
irrigation technologies (27.8% for sprinkler, 29.7% for
LEPA, 30.9% for drip, and 11.6% for furrow). Factors
affecting irrigation technology choices in this model include
water availability, water price and crop consumptive de-
mand (other factors such as soil type and climate are not
considered). Results from initial runs with the water price at
$44/af appear in Tables 1, 2, and 3. The technologies are
organized from the least efficient to the most efficient as
furrow, sprinkler, LEPA and drip. These runs use the 10
equally probable hydrologic events.
[33] Given the low water availability in most hydrologic

events, water use is concentrated in the most profitable
permanent crops (grapes and nuts) and tends to use more
efficient irrigation technologies. The limited amount of water
allocated to citrus crops is mostly through high-efficiency
drip irrigation (62% of the total citrus area in Table 1).
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[34] Water availability constraints bind for hydrologic
events 1 through 8, which motivates higher investment in
technologies that conserve more water (Table 2). Both
permanent and annual crops share the initial investments
in irrigation technology. Initial investment is based on
expected future value of irrigation equipment, and not all
equipment acquired is used in all hydrologic events.
[35] Drip irrigation is almost half of all investment and

twice the investment in sprinkler irrigation. In the first stage,
drip irrigation receives 43% of all investment in high-value
permanent crops (Table 2). The remaining equipment pur-
chased is either used to irrigate annual crops when there is
enough water available, or remains idle if water is too scarce
for annual crops. In hydrologic events 1 through 6 about
97% of irrigation investment is used entirely in permanent
crops. When more water is available in events 7 to 10 the
annual crop acreage is expanded using the remaining 3% of
irrigation equipment investment (Table 3).
[36] Water availability also affects decisions on technol-

ogy use on a year basis, however the flexibility of such
changes depends on the technology used as frequent re-
moval of equipment already installed (e.g., drip and sprin-
kler systems) is not common given operation costs. The
model results follow this behavior with small changes
verified in acreages of drip, LEPA and sprinkler systems
(Table 3) regardless of year type, while furrow irrigation
varies significantly. Most of the technology mix change
when water becomes very scarce or abundant is due to
fluctuations in the acreage of furrow irrigated crops, given
its lower setup and operation costs comparing to drip and
sprinkler systems.
[37] Furrow irrigation shares about the same percentage

of the annual crop acreage as drip irrigation in the event
with 47 thousand acre-feet (kaf) (1 kaf = 1.23 106 m3) of
water available, but when water is abundant (e.g., 149 kaf
available) furrow irrigation takes up 1063 acres out the total
1099 acres of annual crop increase, while the acreages of
drip and LEPA remain practically unchanged accounting for
about 11% of the total annual crops.
[38] The profit function for all crops is quadratic, thus

presenting bigger gains with more acreage (i.e., steeper) in
the beginning. Annual crops are severely constrained by
water availability in the driest events, so as more water is
available, up to 141 af/year, larger portions of land are
brought into production. As the acreage increases the profit
function gets flatter and reaches the maximum (diminishing
marginal returns) and no significant increases are verified in
acreages. As pointed out, these changes are more significant
for furrow irrigation, given its low cost and high water
consumption. This aspect explains the shifts in the results
presented in Table 3.
[39] Water price is an important factor in these results. To

further investigate the effect of water price on technology

choice, multiple runs were made varying water price from
$10/af to $190/af. Results in Figure 2 compare acreages of
annual crops irrigated with different technologies for differ-
ent water prices and water availability. When water is cheap
and abundant, acreage of annual crops is high and furrow
irrigation predominates over higher efficiency technologies.
Annual crop area is significantly reduced and furrow
irrigation is abandoned when water is very expensive.
Increasing the water price from $10/af to $190/af reduces
annual crop acreage by 89% (for the wettest hydrologic
event) leaving only higher-value truck crops. No annual
crops are produced in very dry years (water availability less
than 41 kaf/year), regardless of irrigation technology used
or water price. Permanent crop decisions also are subject to
changes in water price. Total permanent crop acreage
(10,796 acres at $10/af) is reduced by 11% (to 9605 acres
at $190/af) mostly from eliminating 1,390 acres irrigated
with furrow.
[40] Total investment in irrigation equipment in the first

stage (mostly for permanent crops) is slightly reduced as
water becomes more expensive (due mostly to acreage
reductions), but is concentrated in more efficient technolo-
gies (Table 4) resulting in higher investment per acre. High-
efficiency technology remains widely applied even when
water is inexpensive. Compared to water availability vari-
ation, water price has less effect on technology decisions for
the case investigated here.
[41] Other agronomic variables are also important in

production and may enhance or diminish the effectiveness
of water pricing policies. Green and Sunding [1997] mod-
eled adoption of low-pressure (higher efficiency) irrigation
as a function of water price and field characteristics; and
found that agronomic factors such as soil permeability and
field gradient trigger different technology decisions leading
to some crops being less sensitive to changes in irrigation
technology with water price change than others. This issue
highlights the importance of calibrating the model to current

Table 1. Technology Decisions for Permanent Crops

Furrow Irrigation Sprinkler Irrigation LEPA Irrigation Drip Irrigation

Acres
Percent From
Total of Crop Acres

Percent From
Total of Crop Acres

Percent From
Total of Crop Acres

Percent From
Total of Crop

Citrus 0 0.0 0 0.0 7 37.6 12 62.4
Grapes 515 8.2 1781 28.5 1928 30.8 2028 32.4
Nuts 729 16.5 1188 26.9 1243 28.1 1258 28.5

Table 2. First Stage Irrigation Technology Investment and

Permanent Crop Decisions

Initial Investment Permanent Crops

103 Dollars

Percent
From

Total Invested Acres

Percent Use From
Total Invested Year

Types HYD1 to HYD6

Furrow 0 - 1,245 -
Sprinkler 302 23.9 2,969 22.7
LEPA 412 32.5 3,178 31.5
Drip 552 43.6 3,298 42.8
Total 1267 100 10,690 97
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land and technology use when analyzing the effects of
different water pricing policies.

3.8. Water Supply Reliability

[42] Water supply variability and reliability may be af-
fected by local water infrastructure design and operation or
factors that modify the probability distribution of runoff and
inflows, such as climate variability and land use. The two-
stage model can be used to investigate the effects on
agricultural production when the probability distribution
of water availability is modified by such factors. To evaluate
supply reliability benefits and the effects on crop production
and irrigation technology use, two model runs are executed
with different variances for a lognormal probability distri-
bution of water availability, but the same average, as
depicted in Figure 3 [Marques, 2004]. The original run
has a 93,000 af/year average and 15,800 af/year standard
deviation. The second run has the same average and but a
lesser standard deviation of 8000 af/year. The range of
hydrologic events is represented by 25 hydrologic year
types.
[43] Reducing the variance of water availability raises the

total net expected value benefit from $47.8 million to $49.2

million per year (3% increase). Figure 3 presents water
marginal expected values (right y axis) for different water
availability scenarios (year types) on the x axis. Marginal
expected values are the water marginal value in a given year
type (gain in expected net revenue for one additional unit of
water on that year), divided by the probability of occurrence
of that year. In Figure 3, curves for water marginal expected
values are plotted for both original data (continuous line)
and the less variance data (dashed line). With less variance,
the chances of having a year with less water available than
62 kaf, and more than 125 kaf/year are virtually zero (and
thus the less variance data water marginal expected value
curve is not defined in this range). This reduces the chances
of severe droughts. In drier years (from 63 to 87 kaf/year),
for the run with less variance, marginal water values are
slightly higher, reflecting higher willingness to pay for
water when it is more reliable.
[44] The reduced supply variance allowed a 3.8% expan-

sion in the area of permanent crops (at the expense of a
small reduction in annual crop acreage). The larger perma-
nent crop area takes advantage of the higher probability of
average supply conditions, (around 90 taf/year) increasing
the expected benefit. The trade-off is some increase in stress

Table 3. Annual Crop and Irrigation Technology Decision in the Second Stagea

Year Type
Water Availability,

kaf/year

Furrow Sprinkler LEPA Drip

Acres
Percent From

Total Annual Crops Acres
Percent From

Total Annual Crops Acres
Percent From

Total Annual Crops Acres
Percent From

Total Annual crops

46 0 0.0 0 0.0 0 0.0 1 100.00
47 54 14.8 151 40.9 111 30.1 52 14.2
50 373 45.2 189 22.8 110 13.3 52 6.3
141 1117 76.1 188 12.8 110 7.5 52 3.6
149 1117 76.1 188 12.8 110 7.5 52 3.6

aWater price is $44/af.

Figure 2. Annual crops production and irrigation technology use for different water availability and
water price.
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irrigation in drier years (water supplies between 63 and 78
taf/year), but since the probability of these years occurring
is smaller (Figure 3) they have little effect on the overall
expected benefit. Increase in stress irrigation is also
reflected in the slightly higher water marginal expected
value (lower variance model run) in Figure 3.
[45] To accommodate the expansion in permanent crops,

investment in irrigation technology in the first stage is
increased by 1.8% with lower water supply variance. The
increase in investment in the highest-efficiency technology
(drip) is slightly greater than for other technologies (3%
increase against 1.6% in LEPA). Permanent crops irrigated
with drip increase from 4670 acres to 4812 acres (3%
increase), while the acreage of furrow irrigated permanent
crops increases from 3860 to 4100 (6% increase), given the
lower cost of furrow irrigation. However, for years of
average supply conditions (which have higher probability
in the less variance model run) annual crop acreages are
reduced to increase water supply to permanent crops and
most of the reduction is made in the crops irrigated with low
efficiency technologies (Table 5) and crops with highest
consumptive water demand. This indicates that with more
reliable water supply, more efficient irrigation technologies
are preferred.
[46] Annual crop decisions are more flexible to changes

in the variance of water availability. With less variance in
water availability, annual crop acreages decrease in every

hydrologic event, by up to 72% in some drier years and by
almost 10% in some wetter years with water supply slightly
above average (99 to 125 taf/year) (Figure 4). One would
expect annual crop acreage to be maintained for wet years
where the water marginal value is zero (99 taf/year and
above); however, some water application is influenced by
irrigation technology investments made in the first stage,
which has more permanent crops in the lower variance run.
The curves in Figure 4 are not defined for events with less
than 62 kaf/year and more than 125 kaf/year since the
probabilities of these events are virtually zero.
[47] Acreages of crops grown with technologies not

requiring an initial investment (furrow irrigation) do not
decrease in wetter years. If the desirability of furrow
irrigation was only based on costs, it could expand in wetter
years to use the available water. However, the profit
function has diminishing returns and the current acreage
of furrow irrigated crops in the original run is already close
to the maximum economic return point, so further expan-
sion results in little benefit. This behavior can be adjusted to
better match real situations by calibrating the model to
current technology diversification and water availability
conditions.
[48] Further benefits of more reliable water supply are

less variability in farmers’ income. The minimum return
increases from $19.8 to $35.8 million/year in the less
variance run (Figure 5). Also, the probability of returns

Table 4. Variation in Irrigation Technology Investment for Different Water Prices

Water Price,
$/af

Total Investment,
103 $

Total Irrigated
Area, acres

Percent of Investment Applied to
Irrigation Technology

Irrigation Technology
Investment, $/acreSprinkler LEPA Drip

10 1286 10,796 25.1 32.3 42.6 119
40 1267 10,722 23.9 32.5 43.6 118
100 1255 10,351 23.2 32.5 44.4 121
160 1254 9,764 22.8 32.5 44.7 128
250 1189 8,930 21.9 32.6 45.5 133

Figure 3. Water availability and marginal values for runs A5a and A5b.
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between $35.8 million/year and $48 million/year increased
significantly (e.g., the probability of returns exceeding
$44.6 million/year increases from 82% to 95%). The
desirability of this solution depends on user’s risk aversion.
More risk averse users may trade higher average water
supply against a smaller, more predictable return. The
model could help evaluate this trade-off between expected
returns and return reliability by performing different runs
with less water available (smaller average supply) but
higher reliability (smaller deviation). Depending on user’s
risk aversion, conditions can be improved with the use of
less water, but with more demand for operational changes
(i.e., more reservoir carry-over storage use to reduce supply
variability).

4. Limitations

[49] The model has several limitations. These limitations
identify areas for future model improvement. Crop prices
are a major factor affecting cropping decisions. Permanent
crop decisions are not subject to recourse in the model and
crop prices are fixed. Fluctuations in crop prices can result
in permanent crop acreage changes in the long run. This
issue could be addressed in the model by representing crop
prices as a second random variable if probabilistic estimates

on future crop prices (and perhaps their covariance with
water availability) are available.
[50] Crop yields are primarily fixed and do not vary

directly with water application. In stress irrigation condi-
tions, yields are reduced by the factor Y1ji/X1ji to represent
the penalty of reducing supply. This factor could be adjusted
based on production functions developed with detailed
agronomic relationships of plant/soil/water/climate. Farmers
also use crop rotation to increase productivity. The model
currently simulates decisions in random, independent hy-
drologic events and does not consider benefits from alter-
nating crops from one year to the other. This issue also
limits representation of stress irrigation long-term negative
effects. If stress irrigation is applied in multiple, consecutive
dry years, yields of permanent crops may be more adversely
affected.
[51] Water requirements here do not vary for a given

crop. Crop water requirements are determined by many
factors, including climate and climate variability affecting
evapotranspiration and effective precipitation. Inclusion of
climate uncertainty would improve simulation of real water
demands, while adding more complexity and requirement
for new data. However, such variability could be included
by varying unit crop water use coefficients within a set of
second-stage crop production functions.
[52] The model assumes that water deliveries are known

in advance. This assumption is reasonable for systems
relying on snowmelt and having ample seasonal water
storage, as is common in the western United States.
[53] The model does not incorporate water reuse and

water quality effects. Agricultural water use often includes
more complex operations with use and reuse of return
flows, which vary in quality from initial supply. Use of
return flows reduces the overall demand for applied water
but also may reduce yields if salinity problems are present.
Thus a given total amount of water delivered to an irrigation
district may supply different crop acreages depending on
return flow use, water salinity and crop tolerance to salts.
The model could be improved to represent water with

Table 5. Reduction in Annual Crops Acreage From Run With

Original Water Availability Data to Run With Less Variance Water

Availability

Year Type
Water Availability,

kaf/year

Reduction in Annual Crops Area

Furrow,
acres

Sprinkler,
acres

LEPA,
acres

Drip,
acres

78 0 9 10 9
83 46 42 58 42
89 313 182 60 0
94 227 139 61 1
99 0 139 61 1
104 0 139 61 1

Figure 4. Water consumption and annual crops production for runs with original and less variance
water availability.
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varying quality and crops with varying tolerance to salts.
This improvement would enable modeling of decisions on
water reuse. Reuse might increase in very dry periods to
grow more salt tolerant annual crops instead of fallowing
land.
[54] Soil, climate, and other conditions also affect deci-

sions on irrigation technology use and are not considered.
Irrigation efficiency is considered for meeting ETAW only,
but beneficial uses for salt leaching and climate control are
neglected. The combination of these objectives with specific
soil or climate conditions can affect the desirability for a
given irrigation technology regardless of its efficiency or
cost.
[55] Groundwater is not available in the model. Ground-

water is a common water source for agricultural use given
its vast, often convenient storage capacity. However,
groundwater use should be properly managed to avoid
negative overdraft impacts. Conjunctive use operations of
groundwater and surface water can improve supply reliabil-
ity and flexibility without compromising groundwater
resources in the long run [Marques, 2004].
[56] The model is calibrated to real, observed crop acre-

ages in Delano Earlimart irrigation district, California cen-
tral valley. However, model results were consistently below
observed acreages as the current model formulation does
not include groundwater, resulting in strong water constraint
and not all the available land being brought to production.
Further calibration and groundwater operation improve-
ments would be needed for field application.
[57] Other second stage decisions, such as irrigation

scheduling, are not included. Although irrigation scheduling
is an important second-stage decision for farmers to use
water more efficiently and avoid crop losses, it represents a
higher level of detail on farmers’ decisions and it is beyond
the scope of the model as a policy analysis tool.

5. Conclusions

[58] The model presented provides an explicit economic
engineering representation of agricultural production deci-

sions for permanent and annual crops, irrigation technology
and stress irrigation with probabilistic water availability.
Agricultural water demands are consequences of these
decisions, oriented by marginal conditions in market econ-
omies, and their understanding provides a basis for devel-
oping water management solutions across conflicting water
uses.
[59] Model results provide causal insight into farmers’

decisions and valuation of water and other aspects of
production, such as irrigation technology use and water
demand management through stress irrigation. Model
results indicate that variations in water price, availability
and reliability significantly affect agricultural decisions;
with variation in one factor affecting other factors. For
example, water availability affects use of irrigation technol-
ogies more with lower water prices. When water is very
expensive, low efficiency irrigation technologies are not
used regardless of water availability. Irrigation technology
use decisions may change little from variations in water
availability depending on setup and operating costs. The use
of more expensive technologies for annual crops practically
do not vary from dry to wet years, while less expensive
technologies (i.e., furrow irrigation) are more flexible and
may vary significantly from one year to another according
to water availability.
[60] There are clear benefits from reducing the variance

of a given average supply, and the model presented can help
evaluate these benefits and potential changes in water
demands due to variations in crop and technology choices.
The model provides a method to derive the economic value
of operation of local surface and groundwater storage, and
water transfer programs for improved probability distribu-
tion of water deliveries.
[61] Farmer’s preferences are important for identifying

the desirability of water management solutions, trading
off expected returns for less return variability. Develop-
ment of multiple model runs with varying expected water
deliveries and water delivery variance may provide a
straightforward approach to present these trade-offs to
decision makers.

Figure 5. Probabilities of return for runs with original and less variance water availability.
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[62] Further conclusions from the improved water supply
reliability model runs are as follows.
[63] 1. Higher reliability increases benefits under average

conditions. Permanent crop acreages increase slightly to
take advantage of more reliable water under average con-
ditions at the expense of some stress irrigation in drier (and
less probable) years.
[64] 2. Capital investment in irrigation technology in the

first stage increases to support additional permanent crops.
Concentration of irrigation equipment on permanent crops
reduces the annual crop area.
[65] 3. As water is reallocated to high value permanent

crops, more efficient technologies are prioritized for annual
crops to improve conservation of limited water supply.
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