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[1] This paper presents a novel approach for modeling high-elevation hydropower
systems. Conservation of energy and energy flows (rather than water volume or mass
flows) is used as the basis for modeling more than 135 high-elevation high-head
hydropower sites throughout California. The unusual energy basis for reservoir modeling
allows for development of hydropower operations models for a large number of plants to
estimate large-scale system behavior without the expense and time needed to develop
traditional streamflow and reservoir volume-based models in absence of storage and
release capacity, penstock head, and efficiency information. Potential applications of the
developed Energy-Based Hydropower Optimization Model (EBHOM) include
examination of the effects of climate change and energy prices on system-wide generation
and hydropower revenues. An extensive comparison of the EBHOM with a traditional
hydropower optimization model used in California produced similar results and indicated

good reliability of EBHOM’s predictions.
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1. Introduction

[2] Hydroelectric power’s low cost, near-zero pollution
emissions, and ability to quickly respond to peak loads make
it a valuable renewable energy source. In the mid-1990s,
hydropower was about 19% of world’s total electricity
generation [Lehner et al., 2005]. Worldwide hydroelectric
generation from 1990 to 2020 could grow between 2.3 and
3.6% per year [European Commission, 2000; Lehner et al.,
2005].

[3] Depending on hydrologic conditions, hydropower
provides 5—10% of the electricity used in the United States
[National Energy Education Development Project, 2007]
and almost 75% of the nation’s electricity from all renew-
able sources [Energy Information Administration, 2005,
Table 18; Wilbanks et al., 2007]. No major electricity
generation source is cheaper; while it costs almost 4 cents
and 2 cents for 1 kWh of electricity from coal and nuclear
plants, respectively, hydropower generation typically costs
only about 1 cent per kWh [National Energy Education
Development Project, 2007].

[4] About 75,000 MW of hydropower generation capac-
ity exist in the United States, equivalent capacity to 70 large
nuclear power plants [National Energy Education Develop-
ment Project, 2007]. More than half of U.S. hydroelectric
capacity is in the western states of Washington, California
and Oregon, with approximately 27% in Washington
(Energy Information Administration, Energy kid’s page,
6 November 2007, available at http://www.eia.doe.gov/
kids/energyfacts/sources/renewable/water.html). Hydro-
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power facilities in the United States are diverse. Facilities
range from multipurpose dams with large reservoirs to small
run-of-river dams with little or no active water storage
[National Energy Education Development Project, 2007].
Plant elevations also vary. In California multipurpose dams
are usually at lower elevations, with higher elevation plants
operating primarily for hydropower.

[5] California relies on hydropower for 9-30% of elec-
tricity used, depending on hydrologic conditions [Aspen
Environmental Group and M. Cubed, 2005]. California’s
high-elevation hydropower system is composed of more
than 150 power plants, above 305 m (1,000 feet) elevation.
This system, which mostly relies on snowmelt, supplies
roughly 74% of California’s in-state hydropower, although
only about 30% of in-state usable reservoir capacity is at
high elevations, above 305 m [Aspen Environmental Group
and M. Cubed, 2005]. The high-elevation reservoirs are
predominantly single-purpose reservoirs for generating
hydropower [Aspen Environmental Group and M. Cubed,
2005; Vicuna et al., 2008] with some secondary benefits
such as flood control. These reservoirs are mostly privately
owned, regulated by U.S. Federal Energy Regulatory Com-
mission (FERC), and operated for hydropower revenues.
The high-elevation hydropower plants are generally located
below small (within-year storage) reservoirs with high
turbine heads compared with much larger multipurpose
reservoirs with lower head downstream (lower elevations).

[6] California’s Mediterranean climate has one wet season
and a long dry season; 75% of annual precipitation occurs
from November through March. These single-purpose res-
ervoirs (except for a few such as Lake Almanor) are emptied
by the end of the hydrologic year (September) to capture fall
and winter precipitation and spring snowmelt. Since elec-
tricity prices are high in summer, it is reasonable to generate
and sell hydropower instead of risking energy spill in the wet
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season when energy prices are lower. Therefore, only one
major drawdown-refill cycle per year is typical for hydro-
power and water supply operations in California.

[7] Hydropower generation varies greatly between years
with varying inflows, as well as competing water uses, such
as flood control, water supply, recreation, and in-stream
flow requirements (for water rights, navigation, and protec-
tion of fish and wildlife) [National Energy Education
Development Project, 2007]. Given hydropower’s economic
value and its role in complex water systems, it is reasonable
to seek optimal operation of hydropower generation and
adaptation to changing conditions. Optimization modeling
is common for studying the performance of hydropower
systems under different conditions and for guiding reservoir
operations. Conventional simulation and optimization meth-
ods used for hydropower systems [Grygier and Stedinger,
1985; Arnold et al., 1994; Jacobs et al., 1995; Vicuna et al.,
2008] are quite useful but their application to extensive
hydropower systems is intensive, costly, and often propri-
etary. For instance, there are 2,388 hydropower plants in the
United States, 411 plants are in California [Hall and Reeves,
2006]. Studying climate change effects on hydropower
generation in the United States or even in California through
conventional detailed modeling of each system requires
large investments of time and money, especially when basic
information such as stream flows, turbine capacities, storage
operating capacities, and energy storage capacity are not
readily available for each plant. Given the proprietary nature
of most existing hydropower models and data, there is value
for a less detailed method of modeling extensive hydro-
power systems lacking detailed information. This paper
introduces a new method for studying optimal operation
of high-elevation systems, which operate predominantly for
hydropower, with high head and negligible over-year stor-
age, in absence of detailed information.

[8] Energy-based modeling of single-purpose hydropower
systems is presented, along with application to 137 hydro-
power plants throughout California. We begin with the
general model formulation, followed by novel methods for
estimating the energy storage capacity of hydropower units
and representing hourly varying prices in reservoir models
at larger time scales. A small change in the formulation is
introduced for cyclic seasonal operations. Comparison of
model generation estimates is made with the historical
generation in an average hydrologic year at a particular
facility in California. Discussion of the general estimation
of parameters for 156 hydropower plants in California is
made. Then the model is applied to estimate optimal
monthly energy generation at 137 hydropower plants in
California for a 14 year period. The paper concludes with a
discussion of potential applications, limitations, and con-
clusions. The primary advantage of this approach is to
develop policy and operational insights for large numbers
of hydropower plants where traditional reservoir model
development and estimation would be prohibitively costly
and time consuming.

2. Energy-Based Hydropower Optimization
Model (EBHOM)

[¢] Unlike conventional models, where calculations are in
volumetric units, the Energy-Based Hydropower Optimiza-
tion Model (EBHOM), introduced here, is a monthly step
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model which does all storage, release, and flow calculations
in energy units. EBHOM is developed to investigate the
performance of the system under different conditions and
can contribute to studies in which active storage capacity
data and penstock head information are unavailable. In such
studies, energy storage capacity for each unit can be
calculated on the basis of differences in seasonal water
inflow distribution and energy generation data. EBHOM
can then be used to explore the optimal operation of the
system for different scenarios.

[10] Most high-elevation hydropower plants operate for
net revenue maximization [Jacobs et al., 1995]. Lower-
elevation plants tend to operate for a greater variety of
purposes. Since hydropower operating costs are essentially
fixed (at monthly scale), an operational surrogate for net
revenue maximization is revenue maximization. EBHOM’s
simple general mathematical formulation (in energy units) is

12

Maximize Z = ZP,— x G (1)
i=1
subject to
S; = O(initial condition) (2)
S; < Scap (energy storage capacity), Vi (3)

S; = e;i_1 + Si—1 — R;_1(conservation of energy), Vi  (4)

G <R, Vi (5)

G; < Gceap (generation capacity), Vi (6)

G, Si, R; > 0 (nonnegativity), Vi(i =1,2,3,...,12) (7)
where Z = revenue; G; = hydropower generation in month i
(MWh/month); P; = price of electricity in month i ($/MWh);
S; = energy storage at the beginning of month i (MWh);
Scap = energy storage capacity (MWh); e; = energy runoff
in month i (MWh); R; = energy release in month i (MWh/
month) (decision variable); Gcap = generation capacity
(MWh/month); and i = 1 corresponds to the first month of
the refill cycle with energy storage at the beginning of this
month set equal to zero (equation (2)).

[11] This formulation is valid when the reservoir is used
only for hydropower generation, and primarily for seasonal
(as opposed to over-year) storage. The formulation also
requires a “high-head” condition where storage does not
significantly affect hydropower head.

3. Estimating Seasonal Energy Storage Capacity

[12] Normal estimation of a reservoir’s energy storage
capacity involves integrating the potential energy content
over all reservoir elevations, presuming detailed knowledge
of penstocks, reservoir geometries, and bank storage. Obtain-
ing storage capacity data and penstock head information for
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Figure 1. Calculation of operational storage capacity belonging to White Rock hydropower plant based

on NSM. The shaded area between the two curves represents reservoir storage capacity in percentage of

annual inflows.

many individual reservoirs is a big obstacle in large-scale
hydropower systems modeling, especially if they belong to
private owners with proprietary interests in information.
Even if volumetric storage capacities were available, con-
ventional estimation of energy storage capacities (that por-
tion of the capacity storing water for electricity generation)
would have been tedious and probably unreliable. To esti-
mate the energy storage capacity of each power plant, it is
assumed that the existing storage and release capacities of a
high-elevation hydropower reservoir are sufficient to opera-
tionally accommodate the runoff in an average water year
without water spilling from the reservoir.

[13] The proposed no-spill method (NSM) estimates sea-
sonal energy storage capacity under the following conditions.

[14] 1. The reservoir does not spill energy in the average
year, and all releases are made through the turbines. Energy
spill results when runoff energy is lost from the system
because it can be neither stored nor sent through the turbines
because of limited storage and turbine capacities. Energy
spill is the energy value of the available runoff which cannot
contribute to energy production. For California, this lack of
spill in an average year was confirmed in conversations with
the private hydropower operators of most high-elevation
plants in California. This condition sets a lower bound for
storage capacity estimation. Actual reservoir capacity will
exceed this lower bound if the reservoir does not fill in an
average year. However, for calculation purposes it is as-
sumed that the reservoir fills in an average year, making the
approach pessimistic.

[15] 2. The power plant is a high-head facility where the
effect of reservoir storage on turbine head is small. Gener-
ally, turbine head in high-elevation hydropower facilities is
mostly from penstock drops, rather than additional elevation
within the reservoir. This allows a linear relationship
between water and energy stored in the reservoir, and seems
common for many proprietary models for this system.

[16] 3. The seasonal distribution of inflow is known.
Average seasonal flow distributions from nearby gages are
used here to reflect seasonal runoff and snowmelt conditions.

[17] 4. There is only one major drawdown-refill cycle per
year. Hydropower reservoirs typically fill once each year in
California.
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[18] High-elevation hydropower facilities usually have a
within-year storage pool and mostly have watersheds above
305 m (1,000 feet). In California, many of these systems
rely on snowpack to increase seasonal storage.

[19] The NSM estimates seasonal storage capacity in
energy units by finding the area between the monthly runoff
and monthly generation curves when both are expressed as
monthly percentages of the annual average quantity. In
month i, the runoff percentage (runoffPercent;) and gener-
ation percentage (genPercent;) can be calculated by dividing
the average runoff in month i (average runoff;) and the
average generation in month i (average generation;) by
the average annual runoff (average annual runoff) and the
average annual generation (average annual generation),
respectively:

average runoff;

(8)

runoffPercent; =
average annual runoff

average generation(i)

genPercent(i) = 9)

average annual generation

In percentage terms, the sum of differences between the two
curves for a year (12 months) should be zero:

12
Z (runoffPercent; — genPercent;) = 0

i=1

(10)

In the 12 month period there are months i when the runoff
percentage exceeds the generation percentage (when some
runoff is stored in the reservoir) and months j when the
generation percentage exceeds the runoff percentage
(when some hydropower is generated by releasing stored
water).

Z (runoffPercent; — genPercent;)—

i

Z (genPercent; — runoffPercent;) = 0 (11)

J
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So, with only one refill-drawdown cycle per year, little over-
year storage, and the reservoir on the verge of spilling at its
fullest, the seasonal storage capacity (StorCapPercent) as a
percent of total inflow is (Figure 1)

StorCapPercent = Z (runPercent; — genPercent;)

i

(12)

or

StorCapPercent = Z (genPercent; — runoffPercent;)
J

(13)

Multiplying the storage capacity percentage (StorCapPercent)
by the average annual generation gives the active (operational)
energy storage capacity (Scap):

Scap = StorCapPercent x average annual generation — (14)
Multiplying the storage capacity percentage by the average
annual runoff gives the volumetric active (operational) water

storage capacity (WScap) directly used for hydropower
generation:

WScap = StorCapPercent x average annual runoff’ (15)
This method produces a lower-bound estimate of energy
storage capacity, as many reservoirs will not spill or fill in
wetter than average years. The NSM also assumes reservoirs
have negligible over-year storage, which is true for high-
elevation hydropower reservoirs in California with a few
exceptions (such as Lake Almanor).

[20] Figure 1 shows how the active storage capacity for
the White Rock hydropower plant, with generation capacity
of 165 GWh per month and average annual generation of
537 GWh in California was estimated using NSM. Monthly
generation data were available for the years 1985 to 1998.
Monthly runoff (inflow) data were obtained from U.S.
Geological Survey (USGS) gauges. The mean monthly
and mean annual runoffs were estimated for the study
period. Mean monthly runoff and mean monthly generation
were then normalized into percent of mean annual runoff
(equation (8)) and mean annual generation (equation (9)),
respectively, as shown in Figure 1. On the basis of equation
(12) or equation (13), the shaded area between the two
curves (22.5%) represents the storage capacity as a percent-
age of total generation or flow (StorCapPercent). Active
storage capacity of this reservoir (the portion of actual
energy storage capacity used for storing water for hydro-
power) was found to be 121 GWh (equation (14)).

[21] At a monthly time scale, several stair-stepped power
houses (in series) might benefit from water stored in one
upstream reservoir. When one power plant draws water
from several upstream reservoirs (in parallel or series) the
energy storage calculated for the power plant will reflect the
total effective energy storage upstream of the plant. For
instance for 2 reservoirs in series, the effective storage
capacity belonging to the power station located below the
second (lower) reservoir is determined on the basis of
the difference between the undisturbed (natural) runoff to
the first reservoir and the energy outflow from the second
power plant. In that case, the calculated storage capacity is
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the effective storage capacity of the lower reservoir plus the
portion effective storage capacity of the upper reservoir
used for regulating inflow to the lower reservoir. Indeed, in
this case the difference between the runoff and generation
curves could be smaller without an upstream reservoir.
However, with an upstream reservoir, energy is stored in
the upper reservoir for some period, so the total effective
energy storage capacity is higher than the energy storage
capacity of the lower reservoir. This can become more
complicated, as inflows for downstream power plants might
be dominated by releases from upstream plants, not the
assumed monthly inflow distribution for the power plant.
Ultimately, this is a limitation of such coarse less detailed
modeling. Incorporating such effects would require much
greater modeling effort, which we needed to avoid here.

4. Energy Price Representation

[22] If fixed monthly energy prices are used in equation
(1), EBHOM s linear as done in studies by Vicuna et al.
[2008] and Madani and Lund [2007]. However, if fixed
monthly energy prices are used, while maximizing revenue,
the model suggests no generation in months with low prices
to allow more generation in months with higher average
prices, within storage capacity limits [Madani and Lund,
2007]. In real electricity markets, prices fluctuate hourly and
marginal revenues of generation decrease with increased
hours of generation. Linear EBHOM (monthly model) does
not capture the varying nature of energy prices and the
considerable effects of on-peak and off-peak pricing on the
revenues. Considering on-peak and off-peak monthly prices
in the linear model [Vicuna et al., 2008] captures some
effects of nonconstant energy prices. It is possible to
explicitly capture the varying nature of energy prices if a
linear EBHOM is formulated on an hourly basis. However,
requires 730 times more decision variables (one month is
730 h on average). To decrease calculation time and effort,
EBHOM can be formulated on a monthly basis as a concave
nonlinear problem to represent on-peak and off-peak price
variability, with a revised objective function (equation (1))
as follows:

12
Maximize Z =

i=1

Pi(hi) x G; (16)

where average monthly energy price P(%;) is a function of
total hours of generation in month 7. The variation in price
with generation is not a result of price effects from an
individual power plant’s generation. Instead, this price
variation represents the hourly variability in energy prices of
the overall energy market responding mostly to continuous
on-peak and off-peak variability in energy demands. Price
for an individual plant’s operation varies with the number of
hours it operates. Since these plants are run to maximize
power revenues, they are assumed to be operated in hours
when the energy market offers higher prices.

[23] If a plant operates for hydropower, then the frequen-
cy distribution of hourly hydropower prices (Figure 2) can
be integrated into an average revenue function of turbine
release as a percent of monthly turbine capacity (Figure 3).
If operating only for hydropower, a utility will release first
at high-valued times and only release at lower-valued times
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Figure 2. Frequency of California’s hourly hydroelectricity price in October 2005 (Oasis Web site,

http://oasis.caiso.com/).

as water becomes more abundant. The resulting benefit
function allows approximate representation of hourly pric-
ing within a monthly model. Hourly price frequencies from
2005 are used to develop revenue functions for each month
(2005 prices were used only because of unavailability of
price data for earlier years). Figure 2 shows the frequency of
real-time market hourly energy prices in October 2005 in
California, spanning on-peak and off-peak prices. For
optimal hydropower operations, average energy price
declines as hours of generation increase, so small releases
are targeted for the maximum energy price and lowest
average price occurs when release equals generation capac-
ity. Since monthly generation increases by increasing the
hours of turbine run, it is assumed that revenue from each
plant is a function of the proportion of used monthly
generation capacity:

zi(hi) = zi(gi) (17)
where g; is the proportion of monthly generation capacity
used:

(18)

Integration over the price curve in a given month (Figure 2)
gives that month’s revenue (z;) as follows:

&i

zi(g) = GCHP~/Pi(gi)dgi
0

(19)

Using equation (19), concave revenue curves for each
month (October in this example) can be derived, as shown
in Figure 3. In Figure 3, the horizontal axis shows g;
(October), and the vertical axis shows the corresponding
average revenue per unit of plant generation capacity (ZG’L—E‘:J‘;).
From Figure 3, if the power plant generates at its full capacity
in October, revenue at that power plant is 48 $/MWh times
its generation capacity. Revenue curves for any given fixed-
head Californian hydropower plant in each month can be
derived by multiplying both axes of Figure 3 by generation
capacity of that power plant. Such curves can then be
piecewise linearized or included nonlinearly, and summed
over the months for the objective function of EBHOM
(equation (16) as follows):

12
Maximize Z = Zz,- (&)

i=1

(20)

Revenue/Generation Capacity ($/MWH)

0 T T

0% 20% 40%

60% 80% 100%

Monthly Generation Capacity Used

Figure 3. Revenue generation correlation in October 2005 (Oasis Web site, http://oasis.caiso.com/).
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Figure 4. Comparison of average historical monthly electricity generation and optimal monthly
electricity generation (found by EBHOM) at White Rock Hydropower Plant in California.

This formulation reflects continuous on-peak on off-peak
energy grid prices. These energy market prices occur for the
same hours of the day, across all plants. The price does not
decrease because of the quantity of energy generated, but
because of the hours of the day generated.

5. Reformulation for Cyclical Operations

[24] The EBHOM, as defined earlier, can be sensitive to
the initial storage condition (equation (2)). Each reservoir
has a specific refill and drawdown cycle. To find the best
initial condition (refill month) for a single reservoir, the
EBHOM could be run 12 times for the 12 different possible
refill months, saving the decision values from the best
performing refill month.

[25] Although simple and comprehensible, running the
model 12 times for each reservoir requires excessive com-
putation time for large systems. To decrease the calculation
time the formulation is revised by replacing the first two
constraints (equations (2) and (3)) with the following four
constraints:

S| = big (initial condition)

Sin <85, Vi (22)
Si S Smax: Vl (23)
Simax — Smin < Scap (storage capacity constraint) (24)

where big = an arbitrary large number exceeding Scap;
Smin = minimum energy storage during the year (12 months
period) (a decision variable); and S;,,,x = maximum energy
storage during the year (a decision variable).

[26] This formulation sets initial storage at a large nom-
inal level (big). Storage changes are then made convention-
ally around this nominal level, with storage constrained to
return to this initial level. The storage capacity constraint is
enforced by defining the minimum and maximum storages

from all months (equations (22) and (23)), and then con-
straining the difference (equation (24)), which is the ampli-
tude of the annual drawdown-refill cycle. This limits real
storage within the real storage capacity. Since the nominal
initial storage exceeds the reservoir’s capacity, nominal
storage cannot become negative.

6. Comparison for White Rock Power Plant

[27] Figure 4 compares the average historical (recorded)
hydropower generation (period 1985-1998) and the
EBHOM’s estimation of average optimal monthly hydro-
power generation in the same period at White Rock Hydro-
power Plant, part of the Sacramento Municipal Utility
District (SMUD) reservoir system. Assuming a fixed energy
head, unregulated water runoff is linearly related to avail-
able energy runoff. On the basis of the no-spill assumption,
total annual energy generation for a given hydropower plant
(from observed energy generation data) in a given year
equals the annual available energy runoff at its location in
that year, and only the seasonal distributions differ. Accord-
ingly, the monthly distribution of energy runoff in each year
was assumed to be the distribution of mean monthly runoff
for the period 1928 to 1949. Monthly energy runoff was
computed (for use in equation (4)) on the basis of the
monthly runoff distribution given by the hydrologic record
where annual energy runoff equals the annual hydropower
generation. Monthly revenue curves were based on infor-
mation from California Independent System Operator Open
Access Same-Time Information System Web Site for the
year 2005 (Hourly average energy prices, California Inde-
pendent System Operator Open Access Same-Time Infor-
mation System (OASIS), 2007, http://oasis.caiso.com/). The
nonlinear optimization problem was solved by linear
programming through piecewise linearization of the con-
cave revenue function.

[28] Generally, the difference of historical and modeled
values is due to the mismatching runoff, hydropower
generation, and price data sets used, and nonenergy hydro-
power operations such as maintaining spinning reserves.
The summer generation peak found by the model (in
September) is due to the high price of energy in September
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Table 1. Summary of Results of the Two Methods Used to Study the SMUD System®
Scenario
Method Historic GFDLA2 GFDLBI1 PCMA2 PCMBI1
Annual Runoff Change With Respect to the Historical Case
NA NA —52% —37% —12% —3%
Annual Generation (GWh)

EBHOM 1,672 793 1,055 1,428 1,605
Traditional 2,647 1,217 1,655 2,246 2,546
Annual Generation Change With Respect to the Historical Case
EBHOM NA —53% —37% —15% —4%
Traditional NA —54% —37% —15% —4%
Annual Revenue (million $)

EBHOM 118 71 87 105 115
Traditional 167 98 122 150 163
Annual Revenue Change With Respect to the Historical Case
EBHOM NA —40% —26% —11% —3%
Traditional NA —41% —27% —10% —2%

“The two methods are EBHOM and the traditional hydropower optimization of Vicuna et al. [2008]. For the SMUD system, see Madani et al. [2008].

NA means not applicable.

in the data set, which might not be true for the period 1985—
1998. Often hydropower generators presell their power
through long-term contracts with fixed prices and control
only that portion of hydropower generation not already sold.

7. Reliability

[29] To examine the reliability, advantages, and limita-
tions of the proposed method, EBHOM was tested against
an existing hydropower optimization model on California.
Therefore, in a collaborative-comparative study, Madani et
al. [2008] studied the climate change effects on hydropower
generation of Sacramento Municipal Utility District’s
(SMUD) hydropower facilities in California through two
different approaches. The studied high-elevation hydropow-
er system, known as the Upper American River Project
(UARP), is in El Dorado and Sacramento counties within
the Rubicon River, Silver Creek, and the South Fork
American River drainages, on the west slope of the Sierra
Nevada Mountains in California. The UARP has 11 reser-
voirs which can hold over 524 million m> (425,000 acre-
feet) of water, 8 powerhouses which can generate up to
688 MW of power, and about 45 km (28 miles) of power
tunnels/penstocks [Madani et al., 2008].

[30] In the first approach, the energy storage capacities,
corresponding to each hydropower facility, were estimated
through the NSM. Then EBHOM was developed for the
each hydropower facility. In the second approach, a tradi-
tional hydropower optimization model [Vicuna et al., 2008]
was developed for the whole system. This second (physi-
cally based) model used the conventional volumetric units
and restricted the operations to physical constraints (i.e.,
turbine and reservoir capacity) and operational constraints
(e.g., minimum in-stream requirements). This model as-
sumed no head-storage effect (storage does not significantly
affect hydropower head in high head units) which made the
model formulation linear when off-peak and on-peak pric-
ing were not considered. To incorporate the on-peak and
off-peak pricing, the formulation of the model was modified
on the basis of the introduced energy price representation
method (equations (17)—(20)) which made the model non-

linear (similar to EBHOM). While EBHOM had a perfect
foresight into future hydrologic conditions and used a
monthly time step, the second model used a moving horizon
approach [Hooper et al., 1991] with variable time steps
(daily to monthly) which gave the model a partial foresight
at different temporal resolutions into future inflow condi-
tions [Vicuna et al., 2008].

[31] The two models where solved through piecewise
linearization to estimate the monthly hydropower revenues
between October 1984 and September 1998 under four
climate change scenarios and the historical scenario. The
climate change scenarios used were the outputs from the
variable infiltration capacity (VIC) model, a macroscale,
distributed, physically based hydrologic model [Liang et al.,
1994]. The climate scenarios considered in the analysis
corresponded to the projections of the NCAR PCM and
GFDL CM2 climate models run under the greenhouse gas
emission scenarios SRES A2 and SRES B1 [Cayan et al.,
2006]. Generally, a decline in spring and summer stream-
flows and an increase in streamflows in winter would be
expected under these climate warming scenarios. In terms of
extreme daily conditions, higher flows during winter time
and lower flows in spring and early summer months were
projected. Table 1 shows the results of the two models.
Although the two methods predicted different generation
and revenues for different climates, they predicted the same
changes in generation and revenue from the historical case.
The annual generation predicted by EBHOM exactly
equaled the historical annual generation, as EBHOM had
used the historical annual generation as an annual energy
inflow to the system. The conventional method overesti-
mated the annual generation and revenues, however, its
predicted generation reduction under climate warming sce-
narios matched the results of EBHOM.

[32] Figure 5 shows the recorded average monthly gen-
eration and the predicted average monthly generation from
both methods for historical inflows. One reason for the
mismatch between the modeled and recorded generations is
the use of 2005 hydropower prices for the whole modeling
period (1985—1998) because of the unavailability of earlier
price data. Although there was a difference between actual
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Figure 5. Recorded and modeled monthly hydropower generation of the SMUD system (methods 1 and
2 correspond to EBHOM and the traditional hydropower optimization model of Vicuna et al. [2008],

respectively) [Madani et al., 2008].

and simulated generation, both models suggested a compa-
rable monthly generation pattern, similar to the average
monthly hydropower price pattern in 2005. Both models
overestimated generation in September—January and under-
estimated generation in other months.

[33] Figures 6a and 6b show the predicted average
monthly hydropower generation distribution (equation (9))
through both methods for different climate scenarios and
recorded average monthly hydropower generation during
the study period. Both models predicted similar monthly
generation patterns under each climate scenario.

[34] Figures 7a and 7b show the estimated end of month
used storage capacity from both methods for different
climates. Figure 7 indicates what percentage of storage
capacity (energy storage capacity in Figure 7a and volu-
metric storage capacity in Figure 7b) used at the end of each
month. Although the units are different, both methods
predicted the same pattern of changes under different
climate scenarios. Although, spills are expected with cli-
mate change, Figures 7a and 7b may imply that the storage
never reaches the maximum capacity and there is no spill.
However, what is shown here is the maximum capacity of
the whole system. Thus, while one reservoir spills, other
reservoirs might not be full. On the basis of the results, not
all reservoirs fill at the same time. Thus, the used storage
capacity never reaches 100% of the systemwide storage
capacity. A comparison of Figures 7a and 7b implies that in
general, more systemwide storage is used with EBHOM.
This is for two reasons. First, the NSM underestimates
system storage capacity. Second, the NSM considers energy

Generation (% of Annual)

Oct Nov Dec Jan Feb Mar Apr May Jun Jul

Recorded ====GFDLA2 —— GFDLB| —&—PCMA2
PCMB1 = = = Hist

storage capacity as that portion of the total capacity actually
used for energy generation. Thus, it ignores that portion of
the actual capacity which might be used for other purposes
or remain unused in the average year. NSM also does not
allow carryover storage (Figure 7a). However, the tradition-
al model allows for carryover storage, and with a foresight
of future inflow conditions might use carryover storage to
supply generation under dry future hydrologic conditions.
For the traditional model, monthly storage never reaches
Zero.

[35] Since NSM underestimates storage capacities, the
energy-based method underestimated the adaptability of the
studied system to climate change. EBHOM optimizes
monthly hydropower generation on the basis of its perfect
foresight into future hydrological pattern. This kind of
management is impossible in practice as there is always
some risk in reservoir operation decisions because uncer-
tainty in future hydrologic and price conditions. Despite
these drawbacks, EBHOM’s results were very similar to
those of the traditional optimization model. Both methods
predicted almost the same changes in annual generation and
revenues under climate warming scenarios and predicted the
same trend of monthly generation and monthly water
(energy) storage. EBHOM’s simplicity and the amount
of detailed information required for modeling a given
hydropower system are its advantages over traditional
volumetric-based models. Since modeling large high-eleva-
tion hydropower systems like that in California with more
than 150 hydropower plants through traditional methods
would be tedious and costly, EBHOM can be used in

Generation (% of Ann

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
Recorded ====GFDLA2 ———GFDLB! —&—PCMA2
PCMBI1 = = = Hist

Figure 6. Hydropower generation of SMUD system under different climate scenarios: (a) EBHOM
results and (b) traditional optimization results [Madani et al., 2008].
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Figure 7. End of month used storage in the SMUD

optimization results [Madani et al., 2008].

preliminary studies of the high-elevation hydropower sys-
tems in California. A detailed traditional optimization
model can provide information on more detailed local
operations including water storage in the reservoirs, spills
in different months of the year, and minimum downstream
flows. EBHOM is useful for studying large hydropower
systems when there is less interest in details of the system
and the traditional method is preferable when more detail is
needed for particular systems.

8. Estimation for 137 Plants in California

[36] EBHOM was applied for modeling the high-elevation
hydropower system in California. One hundred fifty-six
(156) high-elevation (above 305 m or 1,000 feet) hydro-
power plants in California were identified. Monthly hydro-
power energy generation information from U.S. Energy
Information Administration Databases for the period 1985
to 1998 was used to estimate average monthly hydropower
energy generation of each power plant. Instead of using the
name plant capacity of each hydropower plant, the maxi-
mum actual monthly generation over the 1982—-2002 period
was used as the monthly generation capacity. For estimating
energy storage capacity available for each hydropower unit,
mean monthly generation and mean annual generation were
estimated. Mean monthly values were then normalized into
percent of mean annual generation (equation (9)) to char-
acterize the average seasonal distribution of energy gener-
ation at each unit. Since runoff patterns vary by elevation,
three elevation ranges are considered (305-710 m or
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system: (a) EBHOM results and (b) traditional

1,000-2000 feet, 710-915 m or 2000—-3000 feet, and
above 915 m or 3000 feet). Monthly runoff data for the
study period were obtained from several USGS gauges
representing these elevation ranges, selected in consultation
with the former California Department of Water Resources
(DWR) chief hydrologist. For each elevation range, mean
monthly and mean annual runoffs were estimated.
Mean monthly values were then normalized into percent
of mean annual runoff (equation (8)) to characterize the
average seasonal distribution of available water runoff for
each elevation range. Energy storage capacity of each unit
was then estimated using the NSM. Real time hourly energy
prices were obtained from the California ISO OASIS for the
year 2005 (OASIS Web site, http://oasis.caiso.com/) to
derive convex monthly revenue curves.

[37] EBHOM was used to estimate the optimal historical
monthly generation. The EBHOM for each plant was solved
in Microsoft Excel (through piecewise linearization) with
“What’s Best,” a commercial solver package for Microsoft
Excel. With the cyclic EBHOM formulation, each run for
one reservoir for each year under a given hydrology takes
3—4 s. Historical generation data was complete for 137 high-
elevation plants for the period of 1985—1998. The piecewise-
linear optimization model was run for each year to find
revenue-maximizing monthly reservoir storage and energy
generation for these 137 power plants with the historical
hydrology. Assuming no over-year storage, release deci-
sions in each year are independent. Figure 8 shows the
range of the estimated energy storage and generation
capacities of the studied high-elevation hydropower plants.
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Figure 8. Range of the estimated energy storage and generation capacities of the 137 studied high-

elevation hydropower plants in California.
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Figure 9. Comparison of historical average monthly electricity generation and optimal average monthly
electricity generation (found by EBHOM) of 137 hydropower units in California in the 1985-1998

period.

The annual energy storage capacities of almost half of the
studied power plants are at least 1.5 times larger than their
monthly generation capacity, which provides some flexi-
bility in operations. For more than 100 studied power
plants, energy storage capacity exceeds one month of
generation capacity.

[38] Figure 9 shows the historical and modeled average
energy generation of 137 hydropower plants for the period
1985 to 1998. (The analysis has not been done for an
average year but for 14 years of hydrologic (energy inflow)
annual variability, spanning dry, wet, and average years.
The results are reported as averages over the 14 year period
for which 14 model runs were required). The optimized
generation for the historical climate differs from historical
observations (the dashed curve in Figure 9). Differences
arise from a variety of factors, including nonhydropower
operating factors, different hydropower prices for the
recorded years, nonenergy hydropower operations such as
spinning reserves, and the foresight of the model regarding
incoming flows. Another reason for divergence between the
EBHOM’s results and the observed generation is applica-
tion of a representative annual hydrograph for each eleva-
tion band rather than locally measured inflows for each year.
Generation results are price driven and follow the California
ISO energy price trends in 2005.

[39] Figure 10 shows the average optimized end-of-
month energy storage in all reservoirs combined. EBHOM

~

suggests that reservoirs reach their minimum storage level
by the end of December in preparation to capture inflow
from winter precipitation and spring snowmelt. On average,
reservoirs fill by June and gradually empty for energy
generation over summer when prices are higher and there
is little natural inflow. Thus, under historical conditions,
refill starts in January and drawdown starts in July.

[40] Figure 11 indicates the average shadow prices of
annual energy storage and generation capacities (the aver-
age increase in annual revenue per unit of annual capacity
expansion) for all 137 reservoirs for the study period.
Figure 11 shows the average increase in annual revenue
(y axis) per MWh annual energy storage/generation
capacity expansion for corresponding number of power
plants (x axis). For instance, increase in annual revenue is
less than $10 per MWh energy storage capacity expansion
for 18 of the studied power plants. For most plants, one unit
of annual storage capacity expansion is more beneficial than
one unit of annual generation capacity expansion as water
can be stored in the reservoir in low-value months to be
released in summer when energy prices are higher. Al-
though expansion of storage and generation capacities is
always beneficial, expansions might not be justified because
of expansion costs. In some cases, where hydropower plants
are in series and draw on the same upstream reservoir, the
value of expanding that reservoir would be the sum of
storage expansion values for all downstream plants. Since

Storage (1000 GWh/Month)
- N w = (6] [}

o

Oct Nov Dec Jan Feb

Mar

Apr May  Jun Jul Aug
Month

Sep

Figure 10. Average modeled total end-of-month energy storage (found by EBHOM) of 137
hydropower units in California in the 1985—1998 period.
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Figure 11.

Average shadow prices of monthly energy generation and energy storage capacities (found

by EBHOM) of 137 hydropower units for California in the 1985—1998 period.

the NSM (no-spill method) tends to underestimate energy
storage capacities, the values for storage capacity expansion
are probably high estimates.

9. EBHOM Applications

[41] Generally, an EBHOM can be applied in any hydro-
power system operation study where there is relatively little
effect of storage on head and there is an interest in the big
picture of the system and details are of lesser importance
(e.g., large-scale policy, preliminary planning, and adaptation
studies). Some potential applications are discussed below.

[42] Climate warming is a hydropower concern in regions
with significant snowmelt runoff, such as California. High-
elevation hydropower systems in California rely on snowpack
for seasonal storage of precipitation, which makes those
systems more vulnerable to climate warming [Vicuna et al.,
2008; Madani and Lund, 2007]. EBHOM is convenient for
studying climate change effects on large-scale hydropower
systems. Monthly runoff (energy inflow) can be perturbed for
various climate change scenarios. The effects of several
climate scenarios can be calculated quickly for broad sys-
tem-scale studies to accompany more local conventional
hydropower optimization studies [ Vicuna et al., 2008].

[43] Effects of energy demand/pricing changes on hydro-
power generation and resulting downstream flows also can
be studied using EBHOM. Greater energy demand increases
energy prices. Currently, electricity is more expensive in
summer and winter months from cooling and heating.
Energy demand can change for various climatic, economic,
technologic, policy, or market reasons. Climate warming
also can reduce winter energy use and prices (for heating)
and increase use and prices in summer (for cooling). Energy
prices also might change from changes in supply. For
instance, more energy generation from earlier snowmelt
might reduce energy prices in early spring. Energy prices
also can change with long-term changes in energy use
technologies (e.g., for heating and cooling), economic
growth, energy market conditions (availability of nonhydro-
power energy supplies), energy conservation, or energy
regulatory policies. The effects of changes in energy
prices on hydropower generation can be studied conveniently
by developing representative revenue curves (similar to
Figure 3) for conditions of interest.

[44] In some parts of the world, large-scale expansions of
hydropower storage and generation are being contemplated.
EBHOM formulations can be used to explore and identify

promising types and locations of power plant expansions,
employing the Lagrange multiplier (shadow price) results
for energy storage and generation capacity constraints.

[45] A final application of this type of coarse model
might be for seasonal energy production and market studies
and forecasts. A coarse EBHOM can quickly give seasonal
energy planners and schedulers insights into when and how
much hydropower is likely to be produced over a coarse
seasonal horizon, although operators are likely to have
access to more detailed proprietary models.

10. Limitations

[46] The no-spill method (NSM) for estimating energy
storage capacity should be applied to the systems where
there is little or no spill in many years and little over-year
storage. Nevertheless, the NSM will tend to underestimate
storage capacities and therefore also underestimate the
adaptability of the hydropower system to hydrologic and
economic conditions. More detailed studies could improve
estimates of energy storage capacities.

[47] For this application to California, we assume that
inflow distributions adhere to fixed seasonal patterns, which
seem reasonable for California’s Mediterranean climate.
This EBHOM is formulated without environmental flows.
Environmental constraints sometimes restrict the flexibility
of operations and introduce trade-offs between hydropower
generation revenues and ecosystem conservation benefits.
These tend to be less for high-elevation reservoirs, but will
probably increase with time. Environmental constraints
could be included as minimum releases or as changes in
the objective function or the frequency distribution of prices.

[48] EBHOM is a deterministic model and optimizes
generation on the basis of perfect foresight for seasonal
inflows and the frequency distribution of prices. Such
management is impossible in practice, because of imper-
fectability of forecasts of hydrologic and price conditions.
Long-term generation contracts also will affect operations.

11.

[49] This study introduced an innovative simplified
approach for exploring the performance of high-elevation
hydropower systems without detailed information on volu-
metric storage capacity, inflow, turbines, or geometric
configuration. Estimation of energy storage capacity is from
seasonal shifts of energy inflows to generation, energy

Conclusions
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inflows from seasonal inflow distributions, and generation
capacity from maximum observed generation rates.

[s0] The goal of this study was to explore an approach for
studying extensive multifacility high-head hydropower sys-
tems with minimal available information and efficient com-
putation. This approach is used to represent 137 high-elevation
(high-head) units in California. Although the developed meth-
od required some simplifying assumptions, EBHOM was
found reliable when tested against an existing hydropower
optimization model in a collaborative-comparative study of
climate change effects on hydropower generation of Sacra-
mento Municipal Utility District’s (SMUD) hydropower fa-
cilities in California. EBHOM can be applied in high-elevation
hydropower operation studies examining climate change
effects and adaptations for hydropower generation, exploring
the effects of electricity demand and pricing changes on
hydropower generation, early planning for extensive capacity
expansions, and seasonal energy forecast and scheduling
studies. EBHOM’s simplicity and the amount of detailed
information it requires for modeling a given hydropower
system are its advantages over traditional volumetric-based
models. EBHOM should be useful for studying large hydro-
power systems when there is less interest in system details.

[5s1] The contributions of this work are as follows: (1) an
energy unit—based model (Energy-Based Hydropower
Optimization Model or EBHOM) of single-purpose hydro-
power generation systems, requiring little model develop-
ment effort for low-detailed modeling, (2) the no-spill
method (NSM) for estimating energy storage capacity,
(3) a price-frequency method of better representing hourly
energy prices in models with larger time steps, (4) a cyclic
storage formulation to decrease calculation time and cost,
and (5) a simple approach for developing a good represen-
tation of an extensive system with little time or resources for
policy and adaptation studies for various purposes.
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