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Optimal Hedging and Carryover Storage Value
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Abstract: Properties of optimal hedging for water supply releases from reservoirs are developed and discussed. The fundamenta
decision of how much water to release for beneficial use and retain for potential future use is examined analytically. Explicit correspon-
dence is established between optimal hedging and the value of carryover storage. This more analytical view of hedging rules is useful fo
better understanding optimal hedging and simplifying numerical optimization of hedging operating rules. The derivations suggest the
frequent optimality or near-optimality of two-point hedging policies for water supply operations.
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Introduction storage remains. Water availability exceeding the target is held in
storage until at maximum capacikythe reservoir starts to spill.

In reservoir operations for water supply, water can be either re-  In the diagram, feasible releases are constrained between two
leased for beneficial uses or retained in the reservoir for possibleParallel lines. The upper line represents the release of all water
future use. This simple choice becomes devilishly complex in the available, with none left in storage. The lower line represents the

presence of uncertain future inflows and nonlinear economic ben-Storage of all water possible, releasing only water in excess of

efits for released watéBhih and Revelle 1994, 1995The prob- ~ Storage capacity. In essence, SOP places the highest priority on
lem of how much water to withhold from immediately beneficial '€leasing water for immediate beneficial use, up to the level of

deliveries, retaining that water in storage, is known as “hedging” target demand, aftgr \.Nh'Ch remaining water available is stored

(Bower et al. 1962 This paper examines hedging rules analyti- until storage capacity IS regchgd.

cally, deriving them from the benefits of current deliveries com- Hedging rules curtail deliveries over some range of water sup-

pared to their expected value for future uses, through reservoirpIy tp re.tam water in storage for pse in later perigte thmqer
carryover storage. line in Fig. 1. Thus, some water is stored, rather than delivered,

- . . even when there is enough water for full target deliveries in the
The literature concerning development of operating rules for

water resource systems is extensive, particularly for water su present period. Hedging provides insurance for higher-valued
. y . . ' P utarty SUP-\yater uses where reservoirs have low refill potentials or uncertain
plies. In general, reservoir operating rules guide release decisions

; : T inflows.
Good reservoir management therefore requires creating “a set of The intent of hedging is to reduce the risk and cost of large

operation procedures, rules, schedules, or plans that best meet g, qaqes hut at a cost of more frequent small shortages. Hash-
set of objectives(USACE 199). Some general reviews of res-  jqt5 et al.(1982 show that where the loss functiéon releases
ervoir operating rules can be found in Lund and Guzr(&396, is linear, the SOP is the best policy. More generally, for hedging
1999, Loucks and Sigvaldasofi982, and Bower et al(1962. ~ to be optimal requires a convex, nonlinear loss funcfimncave

For water supply systems, the so-called standard operatingngplinear benefits Klemes(1977) found that an optimal policy
policy (SOB is perhaps the simplest reservoir operating rule. The converges to the SOP with increasing hydrologic or economic
SOP(Maass et al. 1962; Loucks et al. 198dppears in Fig. 1. yncertainty. To be optimal, hedging requires not only that the loss
Reservoir release is specified as a function of the total water fynction be convex and nonlinear but also that the hydrology have
available currently(i.e., current storage, plus projected inflows, substantial probability of persistence of dry periods. Hedging
minus evaporation during the present pejidél water supply is  would never be optimal for a hydrology that, perhaps oddly, has
less than a delivery targét, all available water is released; no very severe droughts of one period followed by extremely wet
conditions that always fill the reservoir. Calculation of the optimal
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Let us also assume a value function for storing water at the end
of the current decision period. This carryover storage value func-
tion C(S), represents the expected value of future economic or
other benefits from keeping water in the reservoir when it could
otherwise have been released. The estimation of this carryover
storage value function can be complex, as discussed later, but is
affected by the benefit function for future use, the size of the
reservoir, and the particular hydrologic patterns likely in the fu-
ture. If the benefit function for us8(D) is concave or linear, the
economic value of storing water for the future should be concave

Delivery
D,

T

Deliver all,
1O CaITyover,

o T e T+k (Gal 1979.
Water Availability (A= S¢; + I, - E¢ The economic value of carryover stora@éS) is the expected
value of the sum of its useful benefits discounted at raeo the
Fig. 1. Standard operating policthicker ling future[Eq. (1)], if the carryover storag8is partitioned into uses

and losses; at future timest, such thatS=3%s,. The value of
each future use or loss of carried-over storage released intyear
« Two-point hedging, where a linear hedging rule begins from a Would be the marginal value of additional release at that future
first point(parameteroccurring somewhere up from the origin  time (9B/dD), multiplied by an appropriate discount factor
on the shortage portion of the SOP rule to a second point [exp(-rt)]. Losses of carried-over storage in the future from
occurring where the hedging sloge 1) intersects the target ~ Spills and evaporation create no benefiB(9D;=0). Future re-
release (Bayazit and Unal 1990; Srinivasan and Philipose leases also may be increased by the presence of carryover storage
1996, in the reservoir from previous years. For each future time, this
« Three-point hedging, where an intermediate point is specified increased release due solely to the presence of carryover storage
in the above rule, introducing two linear portions to the hedg- could be expressed as the rate of release per unit of water avail-

ing portion of the overall release rule, able times the remaining carryover storage at each future time,
« Continuous hedging, where the slope of the hedging portion of (dD/dA)(S—32!_;s,). The estimation ofC(S) might not be
the rule can vary continuousiHashimoto et al. 1982 and trivial but the existence of a carryover storage value function

« Zone-based hedging, where hedging quantities are discretereduces the operations problem to a deterministic equivalent
proportions of release targets for different zonal levels of water form.
availability (Hirsch 1978.

o t
aD
C(S)=Max EV{ > | B Dy+s+ —| S— > s

= aA; =1
Optimal Carryover Storage
The water availablé\, in the present time period, is the sum of —B¢(Dy) exp(—rt)H (1a)
water currently in the reservoir plus the expected value of current
period inflows minus any expected reservoir evaporation or seep-°"
age losses. This water is allocated to either delivery for immediate “ (4B t

> . . «(Dy) dDy

beneficial purposeB, or storage in the reservo8 for potential C(S)=Max| EV E — |5+ —| S E s,
future use. =1\ dbDy dA =1

A value function typically can be specified for current water
delivery benefits BD). This value function can be economic in Xexq—rt))]
nature or represent some other metric of the benefits from deliv-
ering water from the reservoir for immediate use. Typically, this n
benefit function is concave or linear, with the marginal benefits ~ Reléase and carryover storage decisions should be made to
usually decreasing with increasing use. Beyond some mhint maximize the sum of immediate use and carryover storage ben-

there is no additional value for increasing water deliveries. Of €fitS. This situation can be summarized in the following simple
course mathematically, deliveries are also non-negati®éen mathematical program:

these functions are expressed as “loss” or “penalty” functions, Max z=B(D)+C(S) (2)
representing reductions in benefits from some ideal level of de-

(1b)

liveries) Economic benefit functions for deliveries should gener- subject to

ally be rather smooth and convex for large water supply service S+D=A (3
areas with many consumers and heterogeneity among consumers.

Water-supplying institutions and consumers usually have a large S=0 (4)
variety of water conservation and demand management options, S<k (5)
which tend to be used in order of cost-effectiveness, leading to a

generally convex economic loss functidiconcave benefiis D=0 (6)

Mathematically, where benefit functions are conyksses con-
- _ X - D=<d,, (7

cave, rather unusual optimal operating rules result which mini-

mize the frequency of shortages, but when shortages are unavoidThis formulation only applies where water available is less than

able, shortage magnitudes tend to be maximized to keep water inmaximum demand plus storage capacity<(d,,+k). If A>d,,

storage to reduce the probability of shortages in the next time-step+k, hedging is irrelevant since ample water exists to supply all

(Hashimoto et al. 1982 demands, fill the reservoir, and spill, as with the SOP rule.
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The Lagrangian for this problem, within the bounds of the b +2¢.S* =by+2c4D*, or bg+2csA—D*)=by+2c4D*

inequality constraints where hedging is relevant, is (14)
L=C(S)+B(D)+X(A—S—-D) (8) bs—bg+2cA
The first-order conditions for solving this problem are D* = 2(cstCy) (15)
izoz_ac(s)_ , ) This linear form of hedging would apply in the region where
S aS inequalities(4)—(7) do not bind. This generally restricts this linear
aL aB(D) hedging rule to where
m=0= D =X, (10)
A>(bs—bg)/(2¢cqy) (16)
Iy ~0=A-S-D (11) representing where the hedging rule intersects the release of all

water available boundary and
Eq. (11) gives the constraint

S+D=A 12) _ cq|  bg—bsg Cs| bg—bgy
N A<Min|d,| 1+ —|+ —— k| 1+ —| + a7
Egs.(9) and(10) simplify to Cs 2¢q Cyq 2¢cy
IC(S) — 9B(D) (13) representing the hedging portion of the rule encountering the
aS ) maximum useful release,, or the release of all water remaining

In words, Eq.(13) states that at optimality the marginal benefits after filling storage capacitly constraint. Eqs(15)—(17) result in

of storage must equal the marginal benefits of release. These conthe general form of hedging rule shown in Fig. 2, what has been

ditions, Egs.(12) and (13), can be used to derive the optimal called “two-point hedging.”

hedging rules for a range of conditions. Some interesting special cases exist. First, whgn0, the
carryover storage value function is a constant, and there exists a
constant target release which may differ from that in the pure SOP

Optimal Hedging Rules rule. Second, wherbs=Dby (including whenb,=b4=0), a “one-
point” hedging rule results, with a constant slope from the origin.

Optimal hedging rules can be derived from E{s2) and(13) for

a variety of circumstances. B(D) is linear for 0<D<d,,, then

hedging is not optimal under any circumstances, leaving the SOPCubic Benefit and Carryover Value Functions

(Fig. 1) as the optimal rule. The release rule is bound by the . .

non-negativity of storage constraint fr<d,,, and then bound  !f Poth C(S) and B(D) are cubic functions, of the fornas

by D=d,, (maximum usable delivenand finally byS<k (spil).  *bsS+ ¢S +dsS* and ag+byD+cgD*+dyD?, respectively,
Some example derivations of optimal hedging rules follow, with then combining Eqs(12) and(13) to give optimal releas®” as
their implications. a function of total water availability gives

2 * *2
Quadratic Use and Carryover Value Functions bs+2C4S* +3d5S* “=bq + 2¢4D* +3dyD*7, or  (18)

If both C(S) and B(D) are quadratic functions, of the foran bo— D)+ 2¢(A—D*)+ 3d(A—D* )2=2c.D* + 3d.D*2
+bsS+c.S? anday+byD +cyD?, respectively, then combining (bs~ba) +2¢4( )+ 3ds( ) d d (19)
Egs. (12 and (13) to give optimal releas®* as a function of

total water availabilityA gives This can be solved as a quadratic equationdéras

Dk — (Cs+Cq) +3dAx V(Cs+Cq) %+ 3(dg—dg) (bs—by) + 6(cyds+ cdyg) A+ 9dsdyA2

3(d.—dg) (20)

This results in a form of hedging that differs somewhat from the Power Benefit and Carryover Value Functions

linear hedging obtained for quadratic delivery and storage value

functions in Eq.(15). However, increasing the order of the value Another common form of water demand value function is the
functions does not increase the order of the optimal hedging rule POWer law, where valueqDP, whereq andp are constants and

D*(A) proportionately. If the squared term parameters ¢, p<1'for a concave benefit function. Applying E@.3) with this
=0 and the linear term parametebs=b,, then Eq.(20) be- function gives

comes a purely linear hedging function Afwith only the cubed

term parameters remaining. Again, the applicability of the hedg- gsPs(A—D*)(Ps~ V=g pD* (Pa~1) (21)
ing portion of the rule is restricted to the areas not bound by Egs.

(4)—(7). which can be solved as
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Fig. 3. Plots of example benefit functions
D* (Pg—1/ps—1)
— *
A=D*+ Gpa| (WP (22)
o cally increasing and concav@sses convex and monotonically
dPd

decreasing Draper(200)) recently estimated parameters for qua-
For this case, the optimal hedging rule is nonlinear, but always dratic carryover storage economic value functions for several res-
passes through the origin. ervoir systems in California using nonlinear and grid search tech-
niques. Carryover storage value functions were found which
optimized the total economic value of system operations over a
lllustrative Example 73-year period of record. Draper found in all cases that a variety
of parameter sets provided near-optimal carryover storage value
The following examples illustrate the derivation of hedging rules functions. Under these circumstances, it seems likely that qua-
from carryover storage and water demand value functions. Param-dratic carryover storage value functions are adequate for many
eter values for quadratic, cubic, and power value functions appearpractical purposegAs seen in Eq(15), a quadratic benefit func-
in Table 1 and are plotted in Fig. 3. The constant parameigrs tion and a linear carryover storage value function, where0,
anday are omitted since they disappear in the derivatives. will lead to a SOP-type rule being optimpLhus, for many cases
Applying Egs.(15), (20), and(22) yield the hedging portions  where hedging is desirable, “two-point” hedging rules appear
of the release rules appearing in Fig. 4. The applicable range ofreasonable. Drap&€2001) and Howitt(unpublisheglalso estimate

these rules is limited by where they intersect the Iine A, rep- carryover storage value functions using stochastic dynamic pro-
resenting full release of all available water, and either the releasegramming(SDP) methods. SDP has some advantages in explicitly
of full demand,D=d,,, or full storageD=A—k. providing carryover storage value functions and including dis-

count rates, but requires that hydrologic patterns follow one of a
few probabilistic processe®.g., Markovian, that there be good
Commentary parameter estimates for these processes, and that the system can
be represented with only a few reservoirs. Overall, methods for
Water resources engineers and planners are well accustomed testimating optimal carryover storage value functions are not yet
estimating direct benefit functions for water uses, sudd(@) in mature.
this paper. Economic and noneconomic benefit functions are now  Where user benefit functions and optimal carryover storage
commonplace in academic, theoretical, and even practical work.value functions are available, optimal hedging rules can be de-
For water supply purposes, economic benefit functions for water rived for water supply operations. Indeed, it may be easier to
deliveries are usually concavisses convex
Less common is the estimation of benefit functions for water

storage, particularly carryover storage. G#79 reasons math- 15 |
. . P N EE R max release
ematically that carryover storage value functions are monotoni- || min release
Quadratic Values
—=a— Cubic Values
Table 1. Example Parameter Values 10 Power Velues
Value function b, q c,p d d, k qzz,‘ d
Quadratic 8
Demand 1,000 —60 NA 8 NA 5 |
Carryover storage 800 -30 NA NA 10
Cubic
Demand 1,000 —-35 -2 8 NA
Carryover storage 800 —-30 -1 NA 10 0 & .
Power ° Water Availability 1° x
Demand 1,000 0.7 NA NA NA
Carryover storage 800 0.7 NA NA 10 Fig. 4. Resulting hedging portions of reservoir release rules
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search for the optimal carryover storage value function, and then  simulation analyses.Design of water resources systems Maass,
derive the optimal hedging rule, than to search directly for the M. M. Hufschmidt, R. Dorfman, H. A. Thomas Jr., S. A. Marglin, and

optimal hedging rule. G. M. Fair, eds., Harvard University Press, Cambridge, Mass.
Where optimization is used directly to identify optimal hedg- Draper, A. J.(200J). “Implicit stochastic optimization with limited fore-
ing rules, often it may be adequate to examine only “two-point” sight for reservoir systems.” PhD dissertation, Dept. of Civil and En-

vironmental Engineering, Univ. of California, Davis, Calif.
Gal, S.(1979. “Optimal management of a multireservoir water supply
system.”Water Resour. Resl5(4), 737-748.

of h h ical | Iso h limitati Hashimoto, T., Stedinger, J. R., and Loucks, D(1282. “Reliability,
course, these theoretical results also have some limitations. resilience, and vulnerability criteria for water resource system perfor-

Most reservoirs are not operated solely for water supply purposes.  yance evaluation.Water Resour. ResL8(1), 14—20.
Flood control, recreation, hydropower, environmental, and other yjrsch, R. M. (1978. “Risk analyses for a water-supply System—

uses further complicate real operating rule studies. Even where  occoquan Reservoir, Fairfax and Prince William Counties, Virginia.”

these benefit function complications are surmountable, estimation  Open-File Rep. 78-452).S. Geological Survey, Reston, Va.

of optimal carryover storage value functions can remain challeng- Klemes, V. (1977. “Value of information in reservoir optimization.”

ing, particularly for more complex multi-reservoir systems Water Resour. Resl3(5), 857—850.

(Draper 2001 Loucks, D. P., and Sigvaldason, 0.(I982. “Multiple-reservoir opera-
tion in North America.” The operation of multiple reservoir systems
Z. Kaczmarck and J. Kindler, eds., IIASA Collab. Proc. Ser., CP-82-

Conclusions 53, 1-103. _ .
Loucks, D. P., Stedinger, J. R., and Haith, D.(A981). Water resources

This paper demonstrates that the optimal hedging policy for water sgsten;s pIa(rj‘ming and analysBr;nticle-Hall, Englewc|>od OCI::iffs, N.J.
supply reservoir operations depends on a balance between beneft-U"d: J: R., and Guzman, 0L996. Developing seasonal and long-term
reservoir system operation plans using HEC-PRIéchnical Report

C!al release and_carryover st_orage Yalues' Opt_'”.‘a' hedglng poli- RD-40, Hydrologic Engineering Center, U.S. Army Corps of Engi-
cies can be derived for a given pair of beneficial delivery and neers. Davis. Calif

carryover storage value functions. This provides an analytical Lund, J. R., and Guzman, (1999. “Derived operating rules for reser-

hedging rules, which have only two parameters. This result
should reduce the difficulty of direct searches for optimal hedging
rules.

view of hedging rules and operations. voirs in series or in parallel.J. Water Resour. Plan. Managd253),
Given that quadratic carryover storage value functions may fit  143-153.

a range of reservoir operations settings w@kaper 200}, it Maass, A., Hufschmidt, M. M., Dorfman, R., Thomas, H. A., Jr., Marglin,

seems likely that where hedging is desirable, a linear “two-point” S. A, and Fair, G. M.(1962. Design of water resources systems

hedging policy may be near optimal for a wide range of circum- Harvard University Press, Cambridge, Mass.

stances. Even where a third-order carryover storage function isMoy, W.-S., Cohon, J. L., and ReVelle, C. 8986. “A programming

optimal, the optimal hedging policy might not deviate greatly model for analysis of the reliability, resilience, and vulnerability of a

from a “two-point” linear policy. water supply reservoir.WWater Resour. Res22(4), 489—498.

Oliverira, R., and Loucks, D. R1997. “Operating rules for multireser-
voir systems.”"Water Resour. Res33(4), 839—-852.

Shih, J.-S., and ReVelle, G1994. “Water supply operations during
drought: Continuous hedging ruleJ. Water Resour. Plan. Manage.,

. . . . 120(5), 613-629.
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