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The complexity of a model can significantly affect its costs of development, ease of use, and the reliability of its
output. However, it is difficult to find the levels of complexity appropriate for a particular model application
because few quantitative studies of the effects of complexity on model results exist. This paper attempts to
classify various types of model complexity. Using three indicators of spatial complexity, network flow models of
Northern California’s water system are formulated and compared at six levels of spatial aggregation. The results
show that less complex spatial formulations result in fewer modeled shortages and lesser economic costs.
However, the model continues to respond realistically to changes in hydrology. Additional research is needed to
more completely understand the effects of model complexity on results, but these results provide an indication of
the magnitude of these effects for a large water resource system.
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1 INTRODUCTION

Recent advances in computer technology and data management and acquisition have made

possible the development of increasingly complex models. The high level of complexity

incorporated in many recent models has renewed debate over the merits of simple versus

complex models. Advocates of complex models (Nihoul, 1994) argue that they are more

reliable, represent the system more comprehensively, and are less likely to be used inappro-

priately. However, simpler models are said to be less time-consuming and expensive to

develop, require less data, and produce results that are easier to understand and interpret

(Ward, 1989). The most common sentiment (Jackson, 1975; Palmer and Cohan, 1986;

BDMF, 2000) seems to be that modelers should attempt to develop models that contain

just enough complexity to accomplish accurately the project objectives, but no more.

These arguments underscore the importance of selecting an appropriate level of complex-

ity for each model application. The level of complexity incorporated in a model has impor-

tant implications for the costs and availability of input and calibration data, for model run

time, and for interpreting model output. The recent trend for reservoir systems has been to
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develop larger and more complex models. In California, recent examples include CALSIM,

a network flow simulation model of California’s Central Valley water system (DWR, 2001),

and CALVIN, an economically based network flow optimization model of California’s

inter-tied water system (Jenkins et al., 2001; Draper et al., 2003). Models of this complexity

can only be developed with significant time and money. While increased model complexity

FIGURE 1 Sacramento valley water system.

2 B. J. VAN LIENDEN AND J. R. LUND
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will presumably improve the reliability and accuracy of results (given sufficient data to

describe the system), little data exist to evaluate the expected benefits of incorporating addi-

tional complexity into a model. The purpose of this study is to provide some insight into the

magnitude of possible benefits of greater spatial detail in a reservoir systems model.

This paper presents the results of numerical experiments on a large scale network flow model

of California’s Sacramento valley water system. A map of the water system can be seen in

Figure 1. Figure 2 shows the monthly hydrologic inflows and the total monthly demands in

an average year during the model period. While the majority of the natural supply is available

during the winter months, most of the demand occurs during the summer months. Therefore,

the system depends on storage to supply the system’s demands. Water that cannot be stored in

reservoirs flows out through the Sacramento-San Joaquin delta and is lost to the system.

While the results cannot be generalized with great rigor, they offer some practical anecdo-

tal evidence of the relative importance of spatial complexity in the modeling of reservoir sys-

tems. The study was performed by modeling the water system using multi-period optimization

at different levels of spatial aggregation. The paper begins with a definitional discussion of

model complexity, followed by a review of previous studies of the effects of complexity on

model results. Next, the formulation of network flow optimization models of the Sacramento

valley at six different levels of spatial complexity is described and the results of these models

are presented and discussed. Finally, some conclusions are made on the impact of model

complexity on the results and their interpretation.

2 WHAT IS MODEL COMPLEXITY?

There is no single accepted definition of model complexity. Most authors on the subject do

not even attempt a definition. Applying the dictionary definition of complexity, Brooks and

Tobias (1996) define model complexity as ‘‘a measure of the number of constituent parts and

relationships in the model.’’ This is the definition used here.

Model complexity can be divided into several distinct types and numerical indicators can

be developed to quantify each type of complexity (Palmer and Cohan, 1986). Some types of

complexity, with example indicators, appear in Table I. Among these types a distinction can

FIGURE 2 Average monthly demand and supply.

SPATIAL COMPLEXITY AND RESERVOIR OPTIMIZATION RESULTS 3
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be made between those types of complexity that can be determined during model selection

(spatial, temporal, uncertainty, programming, and interface) and those that are products of the

overall complexity of the model (input, run-time, interpretation, and calibration).

In this study, the CALVIN model of California (Jenkins et al., 2001; Draper et al., 2003) is

used to model the water system at six different levels of spatial complexity. Run-time and inter-

pretation are used as additional measures of complexity for each case. Because the same model

is used in each case, the indicators for the uncertainty, programming, and interface classes of

complexity are the same for each case. Temporal complexity is identical for all cases since the

same monthly 72-year period of record is used for all six test cases. Input complexity is

neglected because the test cases are simplifications of an existing model and so it is difficult

to evaluate how much effort would have been required to assemble the data for each individual

alternative. In some cases, data were already available in disaggregated form, so the input data

cost may actually increase slightly for the less complex models. Finally, calibration complexity

is neglected because this study is not concerned with the accuracy of any of the individual

model runs, but only with the differences between them. The indicators used to measure

spatial, run-time, and interpretation complexity are discussed below.

2.1 Spatial Complexity

In this study, the spatial complexity is measured as the sum of the number of inflow links,

reservoirs, and demand nodes contained in the system. A disadvantage of this measure is

that certain aspects of spatial complexity, such as the representation of conveyance facilities,

are neglected. However, in general the overall schematic complexity of each test case

approximately corresponds to the relative values of spatial complexity.

2.2 Model Run-Time

Model run-time complexity is measured in terms of the number of decisions required of

the optimization model and the number of iterations needed to find a solution. These are con-

sidered more reliable measures of complexity than the actual run-time because they are

not influenced by the computer’s processing speed. With recent advances in computer tech-

nology, model run-time complexity is becoming less important as a practical consideration in

model selection.

2.3 Interpretation Time

The interpretation time is the amount of time required by the modeler to analyze the results

produced by the model and to interpret their practical meaning. An important factor to

TABLE I Types of Model Complexity.

Complexity type Example indicator

Spatial Number of spatial variables
Temporal Number of time steps in the model
Uncertainty Number of stochastic variables in the model
Programming Lines of programming code
Interface Complexity of user interaction with the model
Input Amount of input required to run the model
Calibration Amount of data needed to run the model
Run-time Time required to run the model
Interpretation Time required to interpret model results

4 B. J. VAN LIENDEN AND J. R. LUND
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consider when making such a comparison is what output should be generated from each

model. A more complex model usually generates more detailed results than a simpler model.

The time needed to generate and evaluate all of the potential results from a complex model

can be much greater than is required to interpret more aggregated results similar to those

produced by a simpler model. However, it is often necessary to look at a model’s detailed

results to ensure that the model is behaving reasonably. In this study, it would be difficult

to gauge accurately the amount of time required to evaluate each case individually because

all six test cases involve the same water system. Interpretation time is estimated simply by the

number of output time series reviewed in the results analysis for each case.

3 STUDIES OF MODEL COMPLEXITY

Despite the perceived importance of model complexity, relatively few studies compare the

results of models at different levels of complexity, both generally and for reservoir systems

models. This section provides a summary of available water-related studies and attempts to

classify each study according to which type of complexity from Table I that each study is

designed to evaluate. All of the studies analyzed either spatial or programming (i.e., solution

scheme) complexity, or both. Two studies looked at temporal complexity and one group of

studies looked at uncertainty complexity as well.

Studies of spatial complexity include Palmer and Cohan (1986), who modeled the hydro-

power system of the Columbia river using both a single reservoir and a multi-reservoir model

and found a net annual difference of only about 1%. This is the only study found that directly

compared the results of simpler and more complex reservoir models. Spatial complexity has

received more attention in the field of hydrologic modeling. Wood et al. (1988) and others

(Wood, 1995; Woods et al., 1995) have attempted to find an intermediate scale at which

the average hydrologic response is invariant or varies only slowly with increasing catchment

area. Warwick and Cale (1987) proposed a method for water quality models that achieves a

desired reliability by balancing errors caused by choosing a model of inappropriate spatial

complexity and errors caused by uncertainties in parameter characterization to minimize

overall modeling error. Warwick (1989) found that reducing one type of error often increases

the other kind of error, often with an overall reduction in model reliability.

Loague and Freeze (1985), Jakeman and Hornberger (1993), and Boyle et al. (2001) stu-

died the effects of spatial and programming complexity on rainfall-runoff models and found

that simpler model formulations provided as good or better results than more complex for-

mulations. However, Fontaine (1995) showed how a rainfall-runoff model with greater

programming complexity produces better results for extreme flood situations. Ponce et al.

(1978) and Keskin and Agiralioglu (1997) compared the accuracy and computational effort

of numerical solution schemes of the Saint Venant equations and found that a simpler model

formulation usually gave good results.

Studies of temporal scale include Sinha et al. (1995), who studied the effects of time and

space scales flood routing results model, finding that the order of accuracy with time discre-

tization is more important than with space discretization. Costanza and Sklar (1984) studied

87 models of freshwater wetlands with varying solution schemes and time and space scales,

finding that simpler models tended to produce a better match with historical data.

A common technique for modeling multi-reservoir hydropower systems is to use spatial

aggregation methods to simplify the solution of a stochastic dynamic program (Turgeon,

1981; Saad et al., 1996; Archibald et al., 1997; Turgeon and Charbonneau, 1998).

Turgeon (1981) and Archibald et al. (1997) compared the solutions obtained with their

stochastic methods with those obtained by solutions of the same system using deterministic

SPATIAL COMPLEXITY AND RESERVOIR OPTIMIZATION RESULTS 5



D
ow

nl
oa

de
d 

By
: [

U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
] A

t: 
23

:2
2 

4 
Ju

ne
 2

00
7 

optimization models. Turgeon found a difference in the average annual value of less than 1%

for a system of reservoirs in series, while Archibald et al. found a difference in the average

annual value of 3.1% for a system of 17 reservoirs.

Other studies of model complexity exist in a variety of fields. These include comparison of

two point snowmelt models under different weather and snowpack conditions (Bloschl and

Kirnbauer, 1991), a study of models describing the decrease of galactic cosmic rays applied

at both one and two dimensions (Le Roux and Potgieter, 1991), Stockle’s (1992) study of the

performance of plant canopy models at different levels of complexity, Palsson and Lee’s

(1993) study of red blood cell metabolism models, and a study of the effects of model

complexity on the performance of automated vehicle steering controllers (Smith and

Starkey, 1995). With the exception of Stockle (1992), all of these studies concluded that sim-

pler models yield inadequate results in some situations. Thus, these models differ from reser-

voir, hydrologic, and water quality models in that the accuracy of their results is greatly

influenced by model complexity. Perhaps more complete data sets are typically available

in these fields to characterize more complex formulations.

4 THE CALVIN MODEL

CALVIN is an optimization model developed to better understand California’s inter-tied

water system (Jenkins et al., 2001; Draper et al., 2003). CALVIN uses the network flow

reservoir optimization model HEC-PRM (USACE, 1994) to maximize economic benefits

by allocating water over a 72-year period of historical inflows. Economic benefits are repre-

sented by piece-wise linear economic value functions at each demand location and time. The

entire CALVIN model contains 51 surface water reservoirs, 28 groundwater reservoirs, 19

urban demand regions, and 24 agricultural demand regions. The model results contain

monthly time series of flow and storage for every element in the system. The alternative

used as a base case for this study is an unconstrained water market, with water allocations

limited only by physical and environmental constraints. This study was performed using a

preliminary version of CALVIN, before calibration flows were introduced to normalize the

available water supply. Because preliminary CALVIN runs showed few shortages under

this scenario, water availability was artificially reduced for this study by reducing the external

inflows by 20% and increasing the losses on return flows by 30%. While these assumptions

are acceptable for studying model complexity, the optimization results presented here are not

intended to represent accurately the system’s current or potential operation.

For this study, only the northern portion of the CALVIN model (the Sacramento valley and

Sacramento-San Joaquin delta) is used. The portions of the state outside of the modeled area

are assumed to be operated identically for each alternative and are not modeled. The

Sacramento valley portion of CALVIN contains 17 surface water reservoirs, 9 groundwater

reservoirs, 7 urban demand regions, and 9 agricultural demand regions. Groundwater storage

in each agricultural region is represented by a single reservoir. This detailed representation is

considered the base case (test case A) for the present study and is the most complex model

tested. Simpler model formulations are aggregated versions of this base case.

5 TEST CASES

Six test cases have been developed at different levels of aggregation. Table II shows the spa-

tial complexity of each case, which is defined as the sum of the number of inflow, reservoir,

6 B. J. VAN LIENDEN AND J. R. LUND
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and demand locations in each model formulation. Figure 3 depicts the spatial complexity of

each case, with brief descriptions of each case given below. Complete descriptions can be

found in Van Lienden (2000).

Test case A: Full CALVIN Representation – Case A is the full CALVIN representation of

the northern portion of the California water system as described above.

TABLE II Complexity Measures for Each Case.

Case Spatial complexity # Iterations # Decision variables Interpretation complexity

A 80 1,523,663 442,603 129
B 65 1,383,246 382,551 103
C 44 816,591 203,695 69
D 26 373,372 118,660 37
E 8 105,396 44,498 15
F 5 53,037 32,114 14

FIGURE 3 Schematics of cases A–F.

SPATIAL COMPLEXITY AND RESERVOIR OPTIMIZATION RESULTS 7
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Test case B: Local Aggregation – Some regional storage and demand elements are

aggregated.

Test case C: Aggregation by River System – The system is divided into nine regions.

Within each region, the surface water storage nodes, groundwater storage nodes, agri-

cultural demand nodes, and urban demand nodes are combined into single aggregate nodes

of each type.

Test case D: Aggregation of Eastern and Western Sacramento Valley – Case C is

expanded so river regions emanating from the eastern portion of the Sacramento valley and

those emanating from the northern and western portions are combined.

Test case E: Aggregation by Group Types – Surface water storage, groundwater storage,

agricultural demand, urban demand, and the environmental refuges are each aggregated

into individual nodes representing the entire contents of the modeled system.

Test case F: Full Aggregation – All agricultural and urban demands are combined into

a single demand node.

6 ISSUES AFFECTING CASE COMPARISONS

Some aspects of spatial aggregation make it difficult to compare the results of particular runs.

These limitations can be divided into two classes – those caused by the aggregation of spatial

elements and data and those caused by limitations of the network flow optimization model.

6.1 Aggregation Limitations

When developing cases B–F, the data in case A was duplicated as thoroughly as was possible

given the simplified spatial formulations. In doing so, however, assumptions had to be made

to combine data from several different links and storage nodes in case A onto individual ele-

ments in the aggregated systems. Of these, the most problematic involved aggregating

demand regions and the constraints and costs of conveyance facilities.

Aggregation of demand regions was done such that the total demand of each aggregated

region would equal the sum of demands of the component demand regions. While this

assumption allows for one-to-one comparisons of deliveries between different cases, it

does not account for the reduction in demand caused by reuse between the demand regions.

To account for reuse, reuse links were added to each aggregated demand region that allowed

return flows to be re-routed back to the region’s delivery node. The amount of return flow

available for reuse was conservatively limited to the amount available to the downstream

demand if the upstream demands were fully supplied. While this exaggerates the amount

available for reuse in virtually all months for most of the aggregated agricultural regions,

the actual implementation of reuse was very low. For example, while case F has a reuse capa-

city of 986 million cubic meters (mcm) per year, the addition of this reuse link increased the

average annual deliveries by only about 12 mcm=year.

The aggregation of conveyance facilities affected the representation of canal capacities,

minimum flow requirements, and pumping costs in the simpler cases. Because aggregated

elements essentially have infinite and costless capacity between them, many canal capacity

constraints are neglected altogether, and many of the canals that do appear are limited by

the demand of a particular region within an aggregated region rather than by the size of

the canal. While most minimum flow constraints and pumping costs are represented in all

cases, they are aggregated in the simpler cases and therefore do not reflect local conditions.

In a few cases it was necessary to eliminate certain data altogether. For example, in case F the

8 B. J. VAN LIENDEN AND J. R. LUND
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pumping costs on deliveries to San Francisco Bay Area demand nodes are neglected because

the urban and agricultural demands are combined. This limitation may affect the economic

results of case F, and could explain why the shadow values for case F are consistently higher

than those shown for case E.

6.2 Limitations of Network Flow Optimization

For many water resource problems, numerous near optima may arise. Thus, small variations

in formulation (such as might arise in aggregation) can result in different solutions (Rogers

and Fiering, 1986). While these solutions will have similar objective function values, and

most likely similar overall results, the values in any given year or local region can be very

different. It can therefore be difficult to interpret differences in results between different

cases for particular time periods because small changes in the input data can cause the

model to arrive at a different optimum and yield different results. For example, although aver-

age annual outflows from the Sacramento-San Joaquin delta for case E are less than those for

cases A–D, for the wet 1982–83 water year case E has much larger delta outflows. To test the

effect of such deviations, case E was re-run with an arbitrarily imposed cost of $0.08 per

thousand cubic meter (tcm) added for every tcm of delta outflow above 13,600 mcm in

any given month. The overall results of case E with this cost were very similar to those with-

out the cost included, with the same average annual shortages and delta outflows, but with

delta outflow in March 1983 reduced from 30,800 to 13,600 mcm.

7 MODEL RESULTS

The primary indicators used to evaluate the performance of the six cases are the average

shortages and groundwater mining resulting from each model formulation. These results

can be found in Table III. In CALVIN, shortage is defined as the difference between the maxi-

mum economic demand and the actual delivery. Each case has 2176 mcm=year of urban

demand and 11,175 mcm=year of agricultural demand. Cases with higher complexity show

larger urban and agricultural shortages and more groundwater mining. Because urban deliv-

eries are valued much more highly than agricultural deliveries, all cases show much fewer

urban shortages. Only cases A–C show significant urban shortages. While all cases show sig-

nificant agricultural shortages (due to the artificial reduction of available water), there is a

gradual increase in shortage quantity as the complexity increases. The groundwater mining

in cases A–D is a function of the water balance in individual groundwater basins.

To evaluate the accuracy of each case, it is assumed that the case A results are 100% accu-

rate and that deviations from case A result from spatial aggregation. While in actuality case A

TABLE III Comparison of Results for Cases A–F.

Case

Total
shortages
(mcm=year)

Urban
shortages
(mcm=year)

Groundwater
mining

(mcm=year)
Net delivery
(mcm=year)

% Error
in net
delivery

% Error
in total
shortage

A 2814 10 52 10,485 0.0 0.0
B 2642 9 42 10,667 1.7 6.1
C 2623 9 42 10,686 1.9 6.8
D 2365 0 42 10,944 4.4 16.0
E 2120 0 0 11,231 7.1 24.7
F 2017 n=a 0 11,334 8.1 28.3

SPATIAL COMPLEXITY AND RESERVOIR OPTIMIZATION RESULTS 9
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(as an optimization model) represents a major deviation from actual system operation, it is

assumed that, given sufficient data, the most complex formulation will be the most accurate

and therefore can be used as a benchmark for evaluating other formulations. Two measures

used for comparison are the total shortages and the average annual net delivery, which is cal-

culated as follows:

Net delivery ¼ Total demand � (total shortages þ groundwater mining):

The percent errors are calculated for each case by taking the percent difference between the

net delivery or total shortage for the case in question and that for case A. The percent errors

in net delivery and shortage are shown for each case in Table III. Table II contains the com-

plexity measures for each case. Figure 4 shows the percent error in net delivery versus per-

cent complexity for each complexity measure. These results show good correlation between

the complexity measures. As complexity decreases, the percent error increases. However, the

percent net delivery error does not increase linearly with complexity. The error increases the

most between cases E and F but very little between cases B and C. When measured in terms

of shortage rather than net delivery, the percent errors of cases B–F are much larger. Figure 5

shows the percent errors in shortage and net delivery for each case. The percent shortage

errors are less than 7% for cases A–C but greater than 16% for cases D–F, which indicates

that some aggregation is possible with minimal error but that greater aggregation may

produce unacceptable errors.

The remainder of this analysis focuses on more specific aspects of the results. First, the

annual time series results will be analyzed for the entire system. Then, monthly time series

analysis will be performed on the entire system for specific time periods. Finally, the differ-

ences in results for surface water reservoirs at different levels of aggregation will be analyzed.

7.1 System-Wide Analysis of Annual Time Series

Figure 6 shows the reliability of total annual deliveries for each case. All six cases show the

same basic pattern of reliability. With a few exceptions, the curves are ordered as might be

expected, with the more complex cases suggesting less reliability of delivery. The greatest

FIGURE 4 Net delivery error versus complexity.

10 B. J. VAN LIENDEN AND J. R. LUND
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exception is case B, which is less reliable than case C for deliveries that are exceeded more

than 60% of the time. While spatial aggregation tends to allow greater delivery reliability

during the years with more water available, these gains can be made at the cost of greater

shortages during drier years. Aggregation of storage allows more efficient water use during

wetter years but is less of a factor during drought years. It is unclear why the model does not

use the greater flexibility of aggregated formulations to mitigate the more severe droughts, in

which the marginal cost of shortage would be higher. This may be caused by the problem of

flat objective function surfaces in the CALVIN model, by which several different possible

solutions give similar objective function values. The spatial aggregation may cause minor

deviations in individual years that skew the shape of the reliability curves. This explanation

is supported by the annual time series of shortages which show frequent fluctuations in mag-

nitude order between cases from year to year. For example, Figure 7 shows shortages for each

case from 1973 to 1993. In 1974, case B has slightly more shortage than case A, which is

followed by cases C, D, F, and finally E. By 1976 case B has fewer shortages than case

FIGURE 5 Percent error for each case.

FIGURE 6 Reliability of total deliveries for each case.

SPATIAL COMPLEXITY AND RESERVOIR OPTIMIZATION RESULTS 11
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A, C, or E. Between 1988 and 1989, both cases B and C show sharp drops in shortage while

the other four cases stay flat. Case D shows a unique response to both droughts in that its

level of shortage rises the fastest of all six cases in both 1975 and 1984, to about

2700 mcm, but then remains flat so that case D has the lowest shortage in 1977 and from

1990 to 1993. Such fluctuations in curve order make it difficult to draw definite conclusions

about the differences between the models in individual years. However, the results in Figure 7

indicate that all model formulations are reacting realistically to changes in hydrology, with

shortages during the drought years of 1976–77 and 1987–92 and virtually no shortages dur-

ing the extremely wet years of 1982–83.

Urban shortages for this period appear in Figure 8. All cases with urban shortages (A–D)

experience them during the 1987–93 drought and case A, with the largest total urban

shortages, has additional shortages from 1976 to 1978. Although the differences in urban

FIGURE 7 Total annual shortage.

FIGURE 8 Total annual urban shortage.

12 B. J. VAN LIENDEN AND J. R. LUND
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shortage are small, they are significant because of the high economic value of urban

demands. All urban shortages occurred in the demand node for the East Bay Municipal

Utilities District (EBMUD), which is isolated from the rest of the system and can only

receive water from the Pardee reservoir on the Mokelumne river via the Mokelumne aque-

duct. In cases B and C, the Pardee reservoir is combined with the Camanche reservoir, pro-

viding additional storage space for EBMUD. With this change, the 1976–78 shortage is

eliminated. The further aggregation in case D of the Mokelumne river with the rest of the

Eastern Sacramento valley eliminates almost all of EBMUD’s shortage, while additional

aggregation in cases E and F eliminates the shortage altogether. Thus, there is a gradual

reduction in EBMUD’s shortage as the amounts of storage and external inflows available

to supply the region increase.

7.2 System-Wide Analysis of Monthly Time Series

On an average monthly basis, there is very good correlation between the model complexity

and the level of deliveries, as shown in Figure 9. All cases have little shortage from

October through to March, a time of few agricultural water demands. During the summer,

all cases have higher shortages and, with a few exceptions, more complex cases have higher

shortages than simpler cases for each month. The remainder of this section is focused on the

1976–77 drought.

As shown in Figure 7, each case responded differently to the 1976–77 drought. While

cases A, B, C, and F experienced shortage peaks during 1976 and 1977, shortages in

cases D and E tended to plateau at smaller levels, but maintained that level longer. In addi-

tion, although case B had larger overall shortages, case C tended to have larger annual

shortages during the drought years. These trends also can be seen in the plot of monthly agri-

cultural shortages shown for each case from January 1976 to January 1978 in Figure 10.

While all six cases had the largest shortages during June and July, cases D and E had the

smallest peaks in both years with the exception of case B in 1976. In addition, case C had

the largest peak in 1976 and virtually the same shortages as case A in 1977. The magnitude

of particular shortages for each case in 1976–77 may help to explain the economic differ-

ences between the cases in those years.

FIGURE 9 Average total monthly shortages.

SPATIAL COMPLEXITY AND RESERVOIR OPTIMIZATION RESULTS 13
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Because HEC-PRM is a deterministic optimization model, it can anticipate a drought and

fill the reservoirs to capacity to increase later deliveries. The model also can anticipate the

drought’s end and completely drain the reservoirs during the last dry year. Thus, all cases

reach a peak in total surface water storage in March 1974, reach another peak in May

1975, and then are depleted until a minimum in November 1977. During March 1974,

some reservoirs in all six cases have a very high shadow value on reservoir capacity. This

shadow value reflects the cost of shortage during the coming drought. The reservoir contain-

ing the Shasta lake is at capacity in every case, and the shadow values in March 1974 for this

reservoir for each case appear in Table IV. Table IV also shows the shadow values for required

delta outflow and required deliveries to Sacramento valley wildlife refuges in April 1974.

Each of the economic values are highest in case C, followed by cases A, B, D, F, and E.

The low values shown for case E are caused by the unusually low shortages of case E in

1974 (see Fig. 7). While the other cases have agricultural marginal willingness-to-pay values

in 1974 comparable to those in 1976–77, the maximum agricultural marginal willingness-to-

pay for case E is only $35.0=tcm in 1974. With the exception of the Sacramento valley

refuges, all values are similar. The increased economic values for cases C and F may be

due to their unusually high shortages during 1976–77. The economic values for case F

may be higher than those for case E because of the absence of pumping costs to urban

demand regions. The Sacramento valley refuges shadow value is $6–16=tcm less than the

FIGURE 10 Total agricultural shortages.

TABLE IV Economic Output (in $=tcm) for Each Case.

Case

Lake Shasta storage
shadow value
(March 1974)

Required delta
outflow shadow

value (April 1974)

Sac valley refuges
shadow value
(April 1974)

Agricultural marginal
willingness-to-pay

(1976–77)

A 108.3 108.6 94.1 112.3
B 107.5 107.9 94.1 92.1
C 112.3 112.7 95.5 119.0
D 97.5 97.9 81.9 93.1
E 40.2 40.3 34.1 84.3
F 84.5 84.8 71.6 84.3

14 B. J. VAN LIENDEN AND J. R. LUND
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storage shadow value in every case. This difference occurs because the refuge is typically in

parallel with the agricultural demand region while the reservoir and the delta outflow are in

series. Thus, if the agricultural delivery increases 1 tcm because of reduced refuge demand,

all return flow from that 1 tcm would remain needed to supply delta outflow. However, if the

delta outflow requirement was reduced by 1 tcm, all of return flow from that 1 tcm would be

available for reuse, increasing the value of that unit of water.

Marginal and shadow values are related to marginal willingness-to-pay values for the agri-

cultural regions. The marginal willingness-to-pay is defined as the amount that the demand

regions would be willing to pay to receive one thousand additional cubic meters of water in a

given time step. Table IV shows the largest marginal willingness-to-pay value for any agri-

cultural region in the Western Sacramento valley for every case during 1976 or 1977. These

marginal willingness-to-pay values are of the same magnitude as the marginal values and sha-

dow values. It is difficult to draw conclusions from a comparison of the marginal willingness-

to-pay across different cases because for the more complex cases they represent the

maximum value of many different demand regions, each of which has a different marginal

willingness-to pay.

7.3 Reservoir Shadow Values

When two or more reservoirs are combined, the probability that the aggregated reservoir will

have a storage equal to its maximum or minimum storage is less than the probabilities of any

of the reservoirs represented individually. The reduced pressure on reservoir storage is

reflected in the average storage shadow values. Table V shows the reservoir in each case

with the largest average shadow value on its capacity constraint. In case A, lake

Englebright has the highest average shadow value, $7.39=tcm. In case B, lake Englebright

is aggregated with New Bullards Bar, reducing the aggregated reservoir’s average shadow

value to only $2.85=tcm, much less than Black Butte lake’s $4.61=tcm. In case C, Black

Butte lake is aggregated with other reservoirs, leaving the Pardee=Camanche aggregated

reservoir with the highest average shadow value. In case D the Pardee=Camanche reservoir

is aggregated with additional reservoirs and the EBMUD local storage has the highest sha-

dow value. The EBMUD local storage is one of two disaggregated reservoirs in case D – the

two aggregated reservoirs have average shadow values of $0.79 and $1.22=tcm, which are

very similar to the average shadow values for the aggregated surface water reservoirs of

cases E and F. All of the reservoirs with the highest shadow values in cases A–D are rela-

tively small reservoirs. Englebright lake has a capacity of 81 mcm, Black Butte lake has a

capacity of 185 mcm, Pardee=Camanche reservoir has a capacity of 790 mcm, and the

local EBMUD storage has a capacity of 189 mcm. Because aggregated reservoirs tend to

have relatively large capacities, they are likely to have smaller average shadow values.

Thus, reservoir aggregation can significantly affect the valuation of surface storage. For capa-

city expansion planning and valuation purposes, more aggregate representations are likely to

TABLE V Storage Shadow Values.

Case Reservoir Average shadow value ($=tcm)

A Englebright lake 7.39
B Black Butte lake 4.61
C Pardee=Camanche reservoir 3.25
D EBMUD local storage 2.77
E Total aggregated reservoir 0.80
F Total aggregated reservoir 0.91

SPATIAL COMPLEXITY AND RESERVOIR OPTIMIZATION RESULTS 15
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reduce the estimated values of new capacity and change the locations of preferred expansion

locations.

8 CONCLUSIONS

The results in this paper provide insight into the effects of spatial complexity on the results of

a network flow optimization model. Given sufficient quantity and quality of data, more com-

plex model formulations are presumed to give more accurate results. However, time, budget,

or data constraints may require simpler formulations. Based on the results of this study, the

following differences can be expected when using spatially simpler formulations.

1. Less detailed models tend to generate higher deliveries and consequently fewer shortages.

Here, the simplest model had 8% higher average deliveries and 28% fewer shortages than

the most detailed model. (Because deliveries tend to exceed shortages, a percent error in

shortage will usually exceed the percent error in deliveries.)

2. Because its shortage magnitudes are less, the simpler model will generate lower shadow

and marginal willingness-to-pay values, and so may underestimate the economic values of

facility expansion and increased deliveries.

3. While shortage magnitudes and economic values will be reduced in a more aggregated

model, these values will continue to respond realistically to annual changes in hydrology.

All cases experienced the largest shortages and economic costs during historical drought

periods.

4. A simpler model will not produce results for localized regions that are not represented

explicitly. Greater levels of aggregation diminish the value of results for localized

questions.

These conclusions make general and common sense, and would be applicable to most water

resource systems. Even with greater spatial aggregation it may still be possible to develop a

reasonable and useful model, depending on the particular concern. Because both agricultural

and urban shortages were reduced with aggregation, modelers might compensate when devel-

oping a simpler model by making parameter and input adjustments that increase the demand,

reduce aggregated reservoir storage capacities, or reduce quantities of water available.

Perhaps water reuse within aggregated demand areas can be neglected. In many cases, the

magnitude of error may not be a major concern because the study involves questions of dif-

ferences in results between two or more alternatives, each of which may be similarly affected

by errors from spatial aggregation.

Choosing an appropriate level of model complexity might be easier if more studies were

conducted to broaden understanding of the effects of different types of model complexity

on results. This study is just an example of what could be studied concerning the complexity

of reservoir network flow models. Such studies could be expanded to explore the effects of

proposed policy alternatives at each level of aggregation. In addition, any of the types of

model complexity listed in Table I could be examined for their relative effects, and these stu-

dies could be expanded to test the effects on many different systems. The next logical step may

be to explore the effects of temporal complexity by running the model at different time steps.
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