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Abstract 
 A mathematical programming approach is developed for deriving estimates of the 
willingness-to-pay of water customers for improvements in water supply reliability.  
Reliability is represented as a probability distribution of different shortage levels, allowing 
the valuation of different profiles of water supply reliability.  The approach is examined 
analytically and a two-stage linear programming variant is developed for applied problems.  
The approach can be applied to estimate the willingness-to-pay for improved reliability of 
different classes of customers and for suggesting promising water conservation programs 
for different customer classes.  An example application is presented to illustrate the 
approach. 
 
Introduction 
 While much effort has been devoted to estimating the reliability of urban water 
supplies, little effort has been expended in developing methods to value different reliability 
profiles.  Most recent attempts to value urban water supply reliability have been empirical, 
through the use of direct contingent valuation studies and have examined only one 
shortage level and frequency combination at a time (CUWA, 1994; Howe and Smith, 
1993, 1994; Howe, et al., 1990).   
 The approach taken here provides somewhat more derived estimates of 
willingness-to-pay.  Two-stage mathematical programming is used to estimate a 
customer's willingness-to-pay to avoid a particular and complete shortage probability 
distribution, given estimates of consumer willingness-to-pay to avoid implementing 
specific short- and long-term water conservation measures and estimates of the water 
conserving effectiveness of those measures.  The method assumes expected value cost-
minimizing behavior by the consumer, where the costs of specific conservation activities 
can be merely financial or include perceived costs (and benefits) as estimated by more 
focused contingent valuation studies.  Additional limitations of these estimates of the 
willingness-to-pay to avoid a set of probabilistic shortages are discussed.  In addition to 
providing an estimate of customer willingness-to-pay to avoid a given shortage probability 
distribution, the method also suggests the least-cost mix of long- and short-term water 
conservation measures for customers to implement in response to such a shortage profile. 
 This derived approach should have uses for a) estimating customer willingness-to-
pay to avoid a set of probabilistic water shortages without the expense of situation-specific 
contingent valuation surveys of probabilistic situations, b) providing a check on the results 
of direct contingent valuation estimates of willingness-to-pay to avoid shortages, and c) 
suggesting promising designs for long- and short-term water conservation programs 
suitable to local conditions.  However, implementation of the proposed approach often 
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will require contingent valuation studies focused on customer willingness-to-pay to avoid 
implementing specific water conservation measures.  Some difficulties with the approach 
are discussed later in the paper. 
 The greatest advantage of this method over other approaches to valuing water 
supply reliability is its ability to value an entire probability distribution of shortage levels.  
Other approaches to valuing shortages have examined single shortage levels with different 
probabilities (CUWA, 1994; Howe and Smith, 1993, 1994; Howe, et al., 1990) or merely 
examine different shortage levels with no frequency distribution.  The fuller probabilistic 
incorporation of shortage levels allowed by the proposed method matches that provided 
by system planning and operation models (Ng and Kuczera, 1993).  
 The paper begins with an analytical formulation and solution of the problem and a 
discussion of the meaning of the solution conditions for this formulation.  More practical 
two-stage linear and integer-linear programming formulations are then developed.  The 
linear programming solution approach is then applied to an example problem.  Finally, 
some implications and limitations of the approach are discussed and conclusions 
presented. 
 
Analytical Formulation and Solution 
 The customer is assumed to seek the lowest expected value annualized cost 
combination of long and short-term water conservation measures that will allow 
accommodation of each level of a range of probabilistic shortages.  The problem is 
formulated as a two-stage decision process.  The decisions in the first stage consist of 
long-term conservation measures, with enduring water conservation effects, such as 
xeriscaping, toilet retrofitting, and installing other water-conserving plumbing fixtures.  
The costs of these measures are expressed by their annualized costs.  Second-stage 
decisions are implementation of short-term water conservation measures for different 
shortage levels.  The costs of these second-stage decisions are accounted for on an annual 
basis, but accrue only for years they are implemented.  The costs of second-stage decisions 
are weighted by the probability of their corresponding shortage event. 
 The result is the following mathematical program, which minimizes the expected 
value of shortage costs over all shortage levels: 

(1)  Min z = f(X1) + ∑
j=1

n
 P(sij) g(X1, X2ij)  

  Subject to 
(2)   h(X1, X2j) � sj, ∀j, 
where z is the minimum expected cost to accommodate (or overall willingness-to-pay to 
avoid) the entire discrete shortage probability distribution P(sj), where sj is the jth of n 
levels of shortage imposed on the consumer.  X1 is the vector of long-term water 
conservation decision variables, with a total annualized cost of f(X1).  X2j is the vector of 
short-term (drought) water conservation measures implemented in response to the jth level 
of shortage, whose total annualized cost is g(X1, X2j), accounting for interaction of these 
short-term response costs with long-term water conservation decisions.  The function 
h(X1, X2j) represents the water conservation effectiveness of all water conservation 
measures taken relevant to a particular shortage level j.   
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 The first-order solution conditions for this problem can be found using Lagrange 
multipliers.  The Lagrangian for this problem is: 

(3)  L = f(X1) + ∑
j=1

n
 P(sj) g(X1, X2j)  - ∑

j=1

n
 λj [h(X1, X2j) - sj] . 

 
The first-order solution conditions are: 
 

(4) 
�f(X1)
�X1i

   +  ∑
j=1

n

 P(sj) 
�g(X1, X2j)

�X1i
    =  ∑

j=1

n

 λj 
�h(X1, X2j)

�X1i
  , ∀ i, and 

 

(5a)   P(sj) 
�g(X1, X2j)

�X2jk
    =  λj 

�h(X1, X2j)
�X2jk

  , ∀ j,k. 

Here the index i indicates a specific long-term conservation measure.  Rearranging, this 
becomes: 
 

(5b)   

�g(X1, X2j)
�X2jk

�h(X1, X2j)
�X2jk

    =  
λj

P(sj)
  , ∀ j,k. 

 In words, condition 4 states that the marginal expected cost of implementing a 
particular long-term conservation measure (X1i) should equal the summed marginal values 
of water use reductions resulting from implementation.  Similarly, for short-term drought 
conservation decisions, condition 5a states that the expected marginal cost of 
implementing a particular short-term conservation measure k during a shortage of the jth 
level should equal the value of water conserved from the marginal implementation.  Note 
that λj is the shadow price of water for each shortage level, which is the marginal value the 
customer or utility should be paying for acquiring additional water during shortages of the 
jth level, theoretically linking the economics of supply and demand management during 
drought.  Equation 5b further implies that for each shortage level the ratio of marginal 
cost to marginal effectiveness must be equal for all short-term measures. 
 The two first-order conditions can be combined and rearranged, beginning with 
substituting a modified Equation 5 for λj in Equation 4 to yield: 
 

(6a)  
�f(X1)
�X1i

  +∑
j=1

n

P(sj)
�g(X1, X2j)

�X1i
   = ∑

j=1

n

P(sj) 
�h(X1, X2j)

�X1i
 

�g(X1, X2j)
�X2jk

�h(X1, X2j)
�X2jk

  , ∀ i,k. 

Condition 6a implies that the least-cost implementation of long-term measures occurs 
where the marginal expected value cost of a long-term measure equals the expected 
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marginal cost of any short-term measure k, when weighted by the ratios of marginal water 
conservation effectiveness.  Where the marginal effectiveness of long-term conservation 
measures is unaffected by the implementation of short-term measures, �h(X1, X2j)/�X1i 
is constant for all j.  Under this condition Equation 6a becomes: 

(6b)  

�f(X1)
�X1i

 + ∑
j=1

n

 P(sj) 
�g(X1, X2j)

�X1i

�h(X1, X2j)
�X1i

    =  ∑
j=1

n

P(sj) 

�g(X1, X2j)
�X2jk

�h(X1, X2j)
�X2jk

   , ∀ i,k. 

Since this result would hold true for any combination of long-term measures i and short-
term measures k, each side of the above condition must equal a constant which applies to 
any single measure X1i or X2jk.  This result implies that the marginal expected cost per 
marginal demand reduction should be equal for all water conservation measures, 
regardless of whether they are long-term or short-term conservation measures. 
 While the above derivations yield some theoretical insight into optimal design of 
conservation plans at the individual consumer level, they are of limited practical use.  The 
functions f(), g(), and h() must be continuous, a problematic condition in real water supply 
systems.  Also, available data on customer preferences, costs, and water conservation 
effectiveness cannot support the specification of these functions in any complex form.  The 
next section develops a linear programming approach to solving a common, somewhat 
simpler form of the above problem. 
 
Two-Stage Linear Programming Formulation 
 The above problem often can be formulated and solved easily as a two-stage linear 
program.  Again, all costs are expressed in annualized terms, representing a year's 
implementation.  The total annualized expected value cost of water conservation measures 
is represented by Equation 7, the objective function of the mathematical program.  This 
objective is subject to several constraints.  Equation 8 requires that the selection of long-
term and contingent short-term conservation measures accommodates each shortage level 
in the shortage probability distribution.  As a practical matter, the formulation must 
include enough water conservation measures to meet the most severe shortage 
represented, even if extreme conservation measures (such as emigration or importation of 
bottled water) are required.  Equations 9 and 10 ensure that each conservation measure 
can be implemented only once.   
 Equation 11 allows some short-term conservation measures to be precluded by 
implementation of specific long-term measures.  This constraint can be modified, as in 
Equation 12, to allow some short-term measures to be adopted only if accompanied by a 
particular long-term measure; for instance, drought pricing would be impossible without 
water metering.  These two constraint types allow representation of mechanisms for 
"demand hardening," where implementation of long-term conservation reduces the 
effectiveness of short-term water conservation measures. 
 Equation 13 is added if there is no possibility of a measure being implemented in 
part, although in many cases this will be possible.  With the addition of Equation 13, the 
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problem becomes an integer-linear program; otherwise it can be solved as a linear 
program. 

(7) Min z = ∑
i=1

m
 ci X1i    +  ∑

j=1

n

 pj ∑
k=1

r
 cjk X2jk    

Subject to: 

(8) ∑
i=1

m
 q1i X1i    +  ∑

k=1

r
 q2jk X2jk   � sj, ∀ j  

(9) X1i � 1, ∀ i 
(10) X2jk � 1, ∀ j,k 
(11) X1i + X2jk � 1, ∀ j and ∀ k precluded by implementing i 
(12)  X1i - X2jk � 0, ∀ j and ∀ k requiring implementation of i 
(13) Integer X1i , ∀ i 
where  ci = cost of long-term measure i (annualized),  
 cjk = the annual cost of short-term measure k during shortage interval j,  
 m = number of long-term measures, 
 n = number of shortage levels (events), 
 pj = probability of shortage interval j, 
 r = number of short-term measures, 
 q1i = annual water saved by long-term measure i, 
 q2jk = annual water saved by short-term measure k during shortage of interval j, 
 sj = shortage amount for shortage interval j, 
 X1i = 1 if long-term measure i is implemented, = 0 otherwise, 
 X2jk = 1 if short-term measure k is implemented for event j, = 0 otherwise. 
This formulation of the problem has m + r*n decision variables and at least m + r(n+1) + 
n*v constraints, where v is the number of conflicts or symbiotic relationships between long 
and short-term conservation measures (v� m*n). 
 To accommodate common situations where shortages vary in duration, as well as 
magnitude (rate) and frequency, a joint shortage-rate and shortage-duration probability 
distribution can be employed.  Replacing the shortage rate distribution p(sj) (with an 
assumed constant duration) with a joint shortage rate-duration distribution essentially adds 
to the number of shortage events characterized (n).  This could be represented by adding 
another subscript to describe each event probability (p), type of shortage (s), and short-
term conservation measure cost (ck) and decision variable (X2k).  However, since the 
shortage event descriptions (rates, durations, and probabilities) are likely to result from 
system simulation modeling efforts (Hirsch, 1978), it seems most straight-forward to 
represent each shortage event as a single event (subscript j in the formulation above), with 
the effects of duration reflected in the estimation of the relevant cost coefficients cjk, 
effectively increasing the number of shortage events n. 
 
Illustrative Example 
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 The approach is illustrated by an example.  A particular class of household is 
assumed to have the following long and short-term conservation measures available: 
Long-term measures: 
 1. retrofit first toilet from 3.5 gallons per flush (gpf) to 1.6 gpf, 
 2. retrofit second toilet from 3.5 gpf to 1.6 gpf, 
 3. reduce lawn area by 200 square feet, and 
 4. install a water-conserving shower head. 
Short-term measures: 
 1. installation of a displacement device in toilet 1, 
 2. installation of a displacement device in toilet 2, 
 3. reduce lawn watering, 
 4. reduce lawn watering, given lawn area reduction, 
 5. eliminate lawn watering, 
 6. eliminate lawn watering, given lawn area reduction, 
 7. take shorter showers, and 
 8. take shorter showers, given water-conserving shower head. 
This numbering of measures will apply to the relevant subscripts in the mathematical 
program.  Some measures are mutually exclusive, both within the short-term measures and 
between long- and short-term water conservation measures.  The costs, water-conserving 
effectiveness, and mutual interference of each water conservation measure is given in 
Table 1 and have values representative of those available from the literature (Schulman 
and Berk, 1994).  In practice, estimates of effectiveness have been better studied than the 
actual and perceived costs of implementing specific water conservation measures.  It is 
likely that contingent valuation studies of willingness-to-pay to avoid implementation 
would be required to develop cost coefficients for individual water conservation measures.  
Integer constraints are neglected in this problem, since many of the measures could be 
partially implemented, or implemented by only a fraction of the households in a particular 
class. 
 The mix, costs, and effectiveness of different water conservation measures would 
vary with different household types.  The mix of measures chosen here might apply to 
existing single-family detached houses with several occupants. 
 For illustrative purposes, four alternative shortage probability distributions are 
examined.  These might result from different capacity expansion or reservoir operation 
alternatives.  The probability distributions for different shortage amounts appear in Table 
2.  The form of the shortage distributions has been kept artificially simple for purposes of 
illustration. 
 
 Some results of the linear programming solutions are found in Table 3.  Estimates 
of willingness-to-pay to avoid a particular shortage entirely are given by the objective 
function value for each solved linear program.  In this case, comparing shortage 
distributions A and B, the more dire shortage distribution (B) increases the estimated 
household willingness-to-pay to avoid shortage by $35.62/year from the lesser shortage 
distribution (A).  Theoretically, households in this class would be willing to pay an 
additional $35.62/year to avoid shortage distribution B in favor of the more reliable 
distribution A.  This sum might finance additional water source capacity, water market 
purchases, or conservation by other water users. 
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 The more frequent shortages in distribution B also encourage significant long-term 
water conservation measures.  The common-sense result is that long-term conservation 
efforts become more desirable as shortages become more frequent.  As a consequence of 
adopting long-term water conservation measures for shortage distribution B, no short-
term water conservation measures are needed for small levels of shortage and lesser 
reductions are needed for higher shortage levels. 
 For the most part, the fractional implementation of conservation measures is an artifact of 
the summed conserved amounts for full measure implementation not equaling the exact shortage 
amount.  Other results are used to examine "demand hardening" effects. 
 
Demand Hardening 
 A common concern of water conservation planners is the increasing difficulty and 
expense of achieving high short-term water conservation levels as more long-term 
conservation measures are implemented.  This so-called "demand hardening" is illustrated 
by the reduced short-term (drought) water conservation potential arising from the 
implementation of low-flow toilets and xeriscaping.  Both measures reduce the amount of 
normal water use, reducing the potential for water savings from short-term conservation 
and increasing the user inconvenience and cost of achieving short-term conservation from 
these water uses. 
 Demand hardening can be examined with this two-stage mathematical 
programming approach.  The shortages from Table 2 for four increasingly severe shortage 
distributions are applied to the example household.  The results in Table 3 indicate the 
effect of demand hardening, increased cost for short-term water conservation and 
increased overall costs with increased optimized long-term water conservation effort.  The 
implementation of long-term measures 3 and 4 (reduction of lawn area and shower-head 
installation) reduced the ability to employ short-term measures 3 (reduced lawn watering 
during drought) and 5 (further elimination of lawn watering).  This forced adoption of 
more expensive and less individually cost-effective water conservation measures 4 and 6.  
This is the economic process of demand hardening. 
 However, the importance of demand hardening is limited.  While both the expected 
value of shortage and the probability of shortage doubled from scenario A to scenario B 
(from 25 gpm to 50 gpm and 0.2 to 0.4), the expected cost of responding increased only 
seventy percent.  This less than proportionate increase in cost results from economies 
gained when long-term water conservation measures are employed; once implemented, 
long-term measures reduce water use regardless of shortage frequency or level.  This 
effect is seen by the progressive reduction of short-term measure implementation for mild 
shortages under scenarios B and C, compared with scenario A.   
 The limitations of "demand hardening" effects for severe shortage conditions are 
illustrated by results for scenarios C and D.  Here, demand hardening has no effect on 
measure selection, particularly since the most severe shortages are of equal severity (but 
different frequency).  The only rise in expected value cost results from the more frequent 
implementation of short-term conservation measures.  While some of these effects can 
result from the common range of shortages chosen for this example, both the 
consequences and limitations of demand hardening effects are illustrated by application of 
this mathematical programming approach.  Greater "demand hardening" effects would 
result where water saved by long-term conservation were used to serve exogenous growth 
in water demands, effectively worsening the range of shortages seen by individual 
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customers.   With growth, long-term demand hardening effects must be traded against 
their short-term effectiveness at reducing short-term total demand and improving overall 
reliability.  The current formulation of the problem takes a static view of this situation; 
long-term conservation measures are implemented without regard to potentially worsening 
or improving shortage conditions in the future.  This longer-term feedback between 
reliability and demand might be addressed by stochastic dynamic programming 
formulations of the problems. 
 
Discussion 
 The willingness-to-pay interpretation of the result rests on the assumption that the 
model's cost coefficients are estimates of the willingness-to-pay of customers to avoid 
implementing specific water conservation measures.  For commercial and industrial 
customers, cost coefficients can be estimated directly based on financial costs of 
implementing specific water conservation measures.  For residential customers, these 
implementation costs include both financial and inconvenience costs (and perhaps benefits 
from participation in a conservation ethic).  Estimation of this full range of costs and 
benefits would likely require a contingent valuation or other non-market valuation 
technique.  Such specific contingent valuation studies might be an improvement over 
direct contingent valuation studies of willingness-to-pay to avoid probabilistic shortages 
since the contingent valuation questionnaires would not require subjects to evaluate 
probability statements, but would only solicit evaluations of direct water conserving 
actions that subjects might take in response to shortages.  Such a conservation measure-
specific contingent valuation study is currently underway by Dr. Richard Berk at UCLA.  
These cost coefficients should also include the benefit of annual reduction in water bills 
from implementation of conservation measures. 
 In some cases, the proposed method should provide potentially useful information 
in the absence of rigorous, but probably more expensive, contingent valuation-based 
estimates of customer willingness-to-pay to avoid specific conservation measures.  The 
use of purely financial methods for estimating model cost coefficients should provide a 
lower bound estimate of customer willingness-to-pay to system reliability, if inconvenience 
costs for implementing water conservation measures are thought to exceed any benefits 
customers perceive from fulfilling some environmental or community ethic.  If the reverse 
is true, then the financially-derived willingness-to-pay to avoid shortages would be an 
upper bound on the true willingness-to-pay. 
 A further technical and behavioral limitation of the linear programming formulation 
is its assumption of few economies of scope and scale in implementing water conservation 
measures.  It assumes implementation costs of water conservation measures are largely 
independent, whereas it is probably less than twice as inconvenient to retrofit two toilets 
as one.   This problem can be remedied by adding additional constraints or moving to 
more of a dynamic programming formulation.  These add only computational and 
formulation difficulties beyond the linear programming approach employed here. 
 Valuation of cost coefficients is almost always an estimation problem in itself.  One 
advantage of the linear programming method applied here is its provision of some useful 
sensitivity analysis information, allowing the user to estimate the sensitivity of results to 
uncertainty in cost coefficient values.  For example, sensitivity analysis results from the 
linear program solver indicate that, for case B, less than a sixty-percent increase in the cost 
of installing a water-conserving shower head (all else remaining the same) would not 
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change the solution.  For case A, the cost of retrofitting the first toilet would have to 
decrease from an annualized $9/yr to $5.60/yr to merit implementation.  More complex 
and flexible sensitivity results can emerge from re-running the linear program for different 
sets of parameter values.  Such sensitivity analyses are typically unavailable from direct 
empirical estimates of willingness-to-pay for system reliability. 
 Another advantage of the mathematical programming approach is its reliance on 
more detailed cost and willingness-to-pay estimates for specific water conservation 
measures.  Such detailed costs should be more transferable between situations than 
aggregate estimates of willingness-to-pay for system reliability.  This should allow the less 
costly estimation of willingness-to-pay for system reliability for a wider variety of 
household and land-use characteristics and shortage probability distributions with a more 
limited set of cost parameter estimates (perhaps empirically-derived by contingent 
valuation studies of willingness-to-pay to avoid specific conservation measures).   
 Engineering design and planning in water resources have long required estimates 
of willingness-to-pay (Dupuit, 1844).   In engineering and planning practice, the 
mathematical programming approach for estimating willingness-to-pay for system 
reliability has additional applications and advantages.  This quasi-derived approach is likely 
to be less expensive than direct contingent valuation alternatives.  More importantly, the 
approach has a flexibility to examine a wide variety of explicitly stated shortage probability 
distributions, similar to those generated from water resource systems models (CUWA, 
1993; Hirsch, 1978).  The mathematical programming approach also might find use for the 
design of cost-effective water conservation programs for particular water use sectors, 
using the method to estimate explicitly the package of water conservation measures which 
is most for local shortage conditions. 
 There is a long-standing literature regarding behavioral problems with cost-
minimizing expected-value decision-making assumed by this method (Khanemann and 
Tversky, 1979).  Nevertheless, this approach should apply more strictly to estimating the 
willingness-to-pay of commercial, industrial, and institutional customers.  The method also 
would have use for checking the reasonableness of direct empirical estimates of 
willingness-to-pay for system reliability and as a basis for the rational design of water 
conservation programs.  From a public policy perspective, it may be desirable to act as if 
water users are rational.  For public policy purposes, the use of expected-value decision 
making for such public policy problems, where losses are small relative to the societal 
scale and where individual losses are typically small relative to household incomes, is well-
supported (Arrow and Lind, 1970).  
 
Conclusions 
 A mathematical programming approach has been developed to estimate the 
willingness-to-pay of customers to avoid particular probability distributions of water 
shortages.  If model cost coefficients are estimated as the willingness-to-pay to avoid 
implementing specific water conservation measures and consumers behave to minimize the 
expected value of perceived costs (without economies of scale and scope), then the 
mathematical programming results should be fair estimates of consumer willingness-to-pay 
to avoid a given set of probabilistic shortages. The approach has both advantages and 
disadvantages compared with direct contingent valuation approaches to estimating 
willingness-to-pay to avoid probabilistic shortages.  The major advantages of this 
approach are an ability to explicitly consider a probability distribution of shortage levels, 
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greater flexibility in examining a wide variety of shortage distributions with a relatively 
parsimonious data set, and derived rigor.  The major disadvantages are assumption of 
expected value behavior and the difficulties of estimating customer willingness-to-pay to 
avoid implementing specific water conservation efforts.  The approach also might find 
application in the design of water conservation programs. 
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________________________________________________________________________ 
Table 1:  Characteristics of long- and short-term measures for example problem 

Number of    Number of 
short-term    Long-term measure 
measure c2jk q2jk 1 2 3 4 
1  1 4 X - - - 
2  1 2 - X - - 
3  150 80 - - X - 
4  100 60 - - R - 
5  400 160 - - X - 
6  350 120 - - R - 
7  20 2 - - - X 
8  25 1 - - - R 
c1i:    9 9 25 1 
q1i:    12 6 50 2 

X = measures are mutually exclusive, R = short-term measure requires long-term measure. 
________________________________________________________________________ 
________________________________________________________________________ 
Table 2:  Alternative Shortage Probability Distributions for Example 
 

   Shortage 
Shortage  Amount  Probability 
Interval (gpd)  A B C D  
1      0  0.8 0.6 0.4 0.2 
2    50  0.05 0.1 0.15 0.2 
3  100  0.05 0.1 0.15 0.2 
4  150  0.05 0.1 0.15 0.2 
5  200  0.05 0.1 0.15 0.2 

________________________________________________________________________ 
________________________________________________________________________ 
Table 3:  Costs and Implemented Measures for Each Example Shortage Probability 
Distribution (partial implementation in parentheses) 
      A   B  
Estimated WTP ($/household-year)  51.03   86.65 
Implemented long-term measures  none   4; 3 (88%) 
Implemented short-term measures for  
   each shortage level: 
 No shortage    none   none 
 50 gpd shortage   1; 2; 3 (55%)  1 
 100 gpd shortage   1; 2; 3; 5 (9%) 1; 2; 4 (80%) 
 150 gpd shortage   1; 2; 3; 5 (40%) 1; 2; 3 (12%); 
         4 (88%); 5 (12%); 
         6 (14%) 
 200 gpd shortage   1; 2; 3; 5(71%) 1; 2; 3 (12%); 
         4 (88%); 5 (12%); 
         6 (55%)   


