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"Life is uncertain; eat dessert first." motto Pacific Desserts, Seattle (c.1990), attr. 
Ernestine Ulmer (1925) 

“Holidays are unpredictable.  Give blood.” Bloodsource 2016 

“Life is uncertain.  Don’t sip!” motto Lagunitas Brewing Company 

“In these matters the only certainty is that nothing is certain.” Pliny the Elder 
(23-79AD) 

“Doubt is not a pleasant condition, but certainty is absurd.” Voltaire (1694-1778) 

“Not to be absolutely certain is, I think, one of the essential things in rationality.” Bertrand Russell (1947) 

“Because we cannot foresee, we must manage now.”  Leonardo da Vinci 

“To know yet to think that one does not know is best; Not to know yet to think that one knows will lead to 
difficulty.”  Lao Tzu (c. 500 BC), Tao Te Ching, No. 71. 

"And the trouble is, if you don't risk anything, you risk even more." Erica Jong 

“Unless you expect the unexpected you will never find truth, for it is hard to discover and hard to attain.”  
Heraclitus (c. 500 BC) 

“Plan, v.t.  To bother about the best method of accomplishing an accidental result.” 
Ambrose Bierce's Devil's Dictionary (1906) 

“Chance favors only the prepared mind.” Pasteur, Louis (1854) 

“Errors using inadequate data are much less than those using no data at all.” C. Babbage (1792-1871) 

“Some problems are so complex that you have to be highly intelligent and well informed just to be 
undecided about them.”  Laurence J. Peter 

“… danger is never so near as when you are unprepared for it.” Francis Parkman (1849), The Oregon Trail 

“The policy of being too cautious is the greatest risk of all.”  Jawaharlal Nehru (1889 – 1964) 

“Hope is not a strategy” – Anonymous 

“There is no such thing as luck. There is only adequate or inadequate preparation to cope with a statistical 
universe.”  Robert Heinlein (1907 - 1988), Time Enough for Love 

“Take calculated risks. That is quite different from being rash.”  George S. Patton (1885 – 1945) 

“Chance is always powerful. Let your hook be always cast; in the pool where you least expect it, there 
will be a fish.”  Ovid (43 BC - 17 AD) 

“2 is not equal to 3, not even for large values of 2.”  Grabel's Law 

 “Certainty is for losers.”  John Lund, age 15 (2006)  
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Many thanks to the students who have helped de-bug and improve these notes over the years. 
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1. Design Philosophy         
 
Most decisions have uncertain outcomes. 
Some examples: 
• The final cost of most construction projects are uncertain until after completion. 
• The environmental impact of the Central Valley Project remains uncertain decades after its completion. 
• If concrete is scheduled to be placed on a given day, will the temperature be sufficient for the concrete 

to cure properly? 
• What is the public health effect of a particular water treatment process? 
• What pesticides should be used (if any) and how should they be used, given their different risks and 

costs? 
• Should major infrastructure be built in anticipation of: 

o Sea level rise and climate change? 
o Urban growth? 
o Possible changes in water treatment standards? 
o Possible increases in environmental requirements? 

• If we build it, they will come.  But how many will there be, how much service will they want, and will 
they be willing to pay enough for the service? 

• Having decided which courses to take this quarter, what will your grades be? 
• Having decided which courses to take this quarter, will you enjoy these classes or learn anything very 

interesting in them? 
• Having selected a job offer, what will be your salary in 5 years?  Will your boss be good? 
• Having selected a graduate program, will they be able to fund you next year and will you be able to 

complete your degree within two years? 
Here is a nice talk by David Rosenberg on optimality and near-optimality: 
https://www.youtube.com/watch?v=b96LsqcJyHM 
 
We will use probabilities to represent uncertainties. 
 
Consider the following mutually exclusive decisions and their outcomes. 
  

Table 1: Probability distributions of outcomes for three decision options 
Decision Outcome: -$1,000 -$500 $0 $500 $1,000 $2,000 

A Probability: 0.05 0.3 0.3 0.2 0.1 0.05 
B Probability: 0 0.4 0.3 0.2 0.1 0 
C Probability: 0.1 0.1 0.2 0.3 0.3 0 

 
Some properties of probabilities: 
 0 ≤  p ≤  1 
 The sum of probabilities for all possible outcomes equals one. 
 
What does probability represent?  Two theories: 
 1. Relative frequency of outcomes.  Example: Throwing a die. 

(You can throw the die many times to determine the relative frequency of each side.) 
 2. "Subjective" certainty of outcome occurrence.  Example: Grade in this class. 

(You can only take this class once.  What is your probability distribution for this class?  How 
will you "update" this distribution as the quarter progresses?  What decisions can you take if 
this probability distribution does not evolve as you would hope? [Drop the course.]) 

 
Are there other quantitative ways to represent uncertainty?  Fuzzy sets?  Why use probability?  
For this course, we use only probabilities.  Other ways are less rigorous. 

https://www.youtube.com/watch?v=b96LsqcJyHM
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How can we incorporate uncertainty in outcomes in selecting and formulating "optimal" 
engineering designs? 
Let's return to the table of decisions, outcomes, and probabilities above. 
 
Which alternative is best? 

• The alternative with the highest expected value, or highest average value, is best. 
If you had to make this choice many times, which choice would give the highest yield? 
We calculate the expected value of alternative j (EVj) as: 

     EVj = ∑
i=1

n
 pij ci , 

where pij is the probability of outcome i given decision j and ci is the value of the consequence of 
outcome i.  We assume there are a total of n outcomes.  
The expected values of the three alternatives are: EV(A) = $100, EV(B) = $0, and EV(C) = $300.  By 
this criterion, decision C is best. 
 
• The alternative with the best worst outcome is best.  Quite often, to be safe, people choose the 
alternative that can go the least wrong.  Some parents encourage their children to become engineers 
because, even though the average salaries of doctors and lawyers might be higher, almost any 
reasonably good and diligent student can become an engineer and find a reasonable job someplace.  
Where the consequences are in terms of gains, this is called a MAXIMIN criteria.  The MAXIMIN 
values of each decision are: MAXIMIN(A) = -$1,000, MAXIMIN(B) = -$500, and MAXIMIN(C) = -
$1,000.  By this criterion, alternative B is the best.  (This is a pessimistic choice or design criterion, 
assuming Murphy's Law will hold.) 
 
• Select the alternative with the most optimistic possible outcome.  Homer Simpson bets his entire 
small Christmas bonus on a long shot at the dog races, hoping he can make enough money to buy 
lavish presents for his family.  This is a gambler's choice.  This would be a MAXIMAX criterion.  
The MAXIMAX values for the decisions are: MAXIMAX(A) = $2,000, MAXIMAX(B) = $1,000, 
and MAXIMAX(C) = $1,000.  Decision A would be the best choice.  (The mob will be after you if 
you don't pay your $2,000 gambling debt by tomorrow.) 
 
• How would you chose an alternative if only A and B were choices? 

 
Some funny things can happen when you make decisions and designs in an uncertain world. 
• You can look stupid in retrospect.  If you chose alternative C and you were unlucky with an outcome of 
-$1,000, you'd feel a bit embarrassed. 
 
• You can get lucky, and look brilliant in retrospect.  By choosing alternative A, a dumb choice on the 
average, you might (p=0.05) come out looking very smart. 
 
• The designs you get by playing the averages can be very different than the designs selected by trying to 
minimize the chance of looking stupid or trying to maximize your chance of looking brilliant.  (This 
poses a philosophical dilemma; you have to decide what you want.) 
 
• Recourse or the flexibility of our designs to respond to events in the future becomes important for 
making initial decisions and designs.  How does the design envision responding to uncertain events?  The 
"optimal" design of a water supply system will vary depending on how well the system can respond to 
shortages via water conservation measures or water purchases.  The design of how the system should 
respond to uncertain outcomes is integrally important in the design.  How many spare tires do you keep in 
your car? 
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Some Roles for Probabilistic Approaches to Design 
1) Formulating design problems as probabilistic analysis problems can help us think about the design 

problem, perhaps suggesting better approaches to the problem and perhaps formalizing the problem to 
make it more easily understood and worked on by a group. 

2) Actual probabilistic analysis can sometimes help in evaluation of competing design alternatives. 
3) The process of probabilistic analysis can make it easier to develop promising novel design approaches.  

Probabilistic optimization can be especially useful here. 
4) Conducting probabilistic analysis can help give confidence to the engineer and ultimate decision-

makers that a proposed design is desirable, when risks and uncertainties are considered. 
 
Game theory example:  The regulation game between Utilities and Regulators [Update from 
Madani 2009] 
Cost outcomes for different combinations of decisions: 
 

Table 2: Game-theoretic payoffs for regulator vs. water utility 
           (regulator value: utility value) Water Utility: Minimize expected value cost; 

design for which standard? 
Current Standard New Standard 

Regulator: minimize 
risk, but stay employed 

Current Standard 0:0 2:-5 
New Standard 1: -10 2: -5 

What should you do if you are a: 
o Water Utility?  Which standard should you design your treatment plant for?  Should you adapt a 

design of intermediate expense that has a contingency for each standard? 
o Regulator?  Which standard should you adopt? 

What criterion is important to you?  EV, minimax, maximin? 
 
Your optimal decision depends on your assessment of the probability of the other agency’s decision. 
 
Let XU be the utility’s decision (0 = build to current standard, 1 = build to new standard) 
Let XR be the regulator’s decision (0 = current standards, 1 = new standard) 
 
Utility:  Max zU = pcR(– 5 XU) + pnR(-10 + 5XU) 
Regulator: Max zR = pcU(1 XR) + pnU(2) 
What is the best strategy for each actor?  Does this affect your estimate of their future decision? 
 
What do you think will be the outcome of this “game”? 
a) Would the regulator ever not adopt the new standard? UR(new std) ≥ UR(current std) regardless of the 
utility’s decision 
b) So, what standard should the utility design for, in this case?  Does the decision change if construction 
to the current standards is “grandfathered” under new regulations (changing its impact from -10 to 0)? 
 
The Course 
• We will live and breathe probabilities. 
• Manipulating probabilities requires lots of calculations, so there will be a lot of computer programming.  
I want this to be a very practical theory course. 
• Look over syllabus. 
• Readings will be from the lecture notes, text, and hand-outs. 
• There will be 5 homework assignments, roughly at 2-week intervals.  Project 2 is most challenging. 
• There is a term project, but no final exam. 
• I want this class to be a bit of ambitious, fast-paced fun.  I think we can solve some problems in this 
class that some parts of the profession agonize over. 
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2. Objectives which Consider Uncertainty 
 
Given the following predictions of alternative design performance, what criterion should we use to select 
the best decision or design? 

 
 Table 3: Probability distributions of outcomes for three decision options 

Decision Outcome: -$1,000 -$500 $0 $500 $1,000 $2,000 
A Probability: 0.05 0.3 0.3 0.2 0.1 0.05 
B Probability: 0 0.4 0.3 0.2 0.1 0 
C Probability: 0.1 0.1 0.2 0.3 0.3 0 

 
The evaluation of alternatives under uncertainty can consider both the consequences of different 
outcomes and their probabilities.  Here are a few common and sometimes useful examples. 
 
Probability of achieving a performance target 
What is the probability that performance will be worse (or better) than a set performance target?  Set 
targets can be somewhat arbitrary, and this approach neglects the range and likelihood of other 
performance levels. 
 
Expected Value (Average Outcome) 
Select the decision with the highest expected value of outcome.  Expected value is defined as: 

      EVj = ∑
i=1

n
 pij ci , 

where pij is the probability of outcome i given decision j and ci is the value of the consequence of 
outcome i.  We assume there are a total of n outcomes.  If this criterion is used for all decisions under 
uncertainty, then the greatest average benefit will be gained over time.  This works particularly well for 
making many, similar, small decisions (Arrow and Lind 1970). 
 
MAXIMIN or MINIMAX 
The MAXIMIN criterion selects the alternative with the best minimum outcome (the best worst-case).  It 
is a very pessimistic criterion, but can be appropriate when the worst-case is particularly dire.  Designs 
selected by performance under "worst-case scenarios" are MAXIMIN designs.   
 Where outcomes are considered benefits this approach is called MAXIMIN.  Where outcomes are 
considered losses, this approach is called MINIMAX. 
 A common example of MAXIMIN design is the design of dam spillways, which use a concept 
called the "maximum probable flood," which is ideally the worst possible flood that could occur at the 
dam site.  Another example that approaches MINIMAX design is traditional sizing of reservoirs, which 
has been to provide full water supply during the worst drought of record. 
 
Maximize "Reliability" 
Sometimes performance within a tolerable range is acceptable, but performance outside the range is not, 
without much other concern for performance.  In this case, maximizing the probability of acceptable 
performance can be a suitable criterion for selecting a design.  Minimizing the probability of a dam or 
structure failing or minimizing probability of a water shortage are commonly-stated objectives.  However, 
these are not careful statements if not accompanied by other objectives or limitations.  For example, the 
only ways to absolutely minimize the probability of a dam failing are to either a) not build a dam or b) 
build it so massively that it would be prohibitively expensive.  Both these approaches would effectively 
minimize the probability of failure to zero.  Maximizing reliability subject to a budget constraint and 
water supply performance would result in a more reasonable design. 
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Expected Utility 
We often do not really value outcomes linearly, as assumed by expected value theory.  I would prefer to 
have $500,000 for sure than 50% chance at $1 million.  MINIMAX criteria are also a bit extreme, 
considering only the worst outcome and disregarding its probability. 
Expected utility tries to avoid these problems.  Expected utility evaluation takes the form: 

EUj =  ∑
i=1

n
 pij U(ci) , 

where EUj is the expected utility of alternative j, n is the number of possible outcomes, pij is the 
probability of each outcome, and U(ci) is the utility of the consequence of outcome i.  The utility function 
U() is used to estimate the actual value to the decision-maker of a given outcome.  This function can be 
difficult to obtain and we will discuss it a lot later. 
 
(What should a utility function look like for beer, say, compared to the utility function for money or 
streamflow for fish?) 
 
Important definitions and some implications 
Monotonic vs. non-monotonic utility   
Utility for water supply is monotonic; more water 
is better.  Utility for water is non-monotonic; at 
first, more water is good, but too much water 
reduces benefits and eventually causes drowning.  
Utility for money is monotonic for most of us, 
but if we spoil our kids it can be non-monotonic. 
 
Risk Aversion versus Risk Seeking in Utility 
Functions 
Consider three probability distributions of positive outcomes (A, B, and C) and three utility functions, one 
“risk seeking” another “risk averse”, and a third “risk neutral.”  The expected value of each distribution is 
the same, with the distribution A being certainty at the expected value of the other distributions.  For the 
risk averse, utility function, A (certainty) is always preferred.  With the risk seeking utility function, the 
disproportionately high values away from the mean raise the expected utility more than the losses of 
utility at the low values, implying that the riskier distributions are preferred.  The opposite is true for the 
risk-averse utility function, where the less certain distributions are preferred, all else being equal. 
For risk neutral, dU/dx = constant and d2U/dx2 = 0; for “risk averse,” d2U/dx2 < 0; and for “risk seeking,” 
d2U/dx2 > 0.   
 
Should risk aversion increase or decrease 
as you become wealthier?  What would 
this say about the third derivative of the 
utility function?  Should d3U/dx3 be 
negative (< 0) also for positive 
outcomes? 

 
For risk-neutral, EU(A) = EU(B) = 
EU(C) and EV(A) = EV(B) = EV(C),  
Risk-averse, EU(A)> EU(B) > EU(C) 
Risk-seeking, EU(A) < EU(B) < EU(C) 
 
 
 

Outcome 
 

Utility 

Risk seeking 

Risk Averse 

Positive Outcome ($) 

Probability 
C 

B 

A 

Risk Neutral 

0 

0 

Utility 

Consequence c 

Monotonic 
(and concave) 

Non-monotonic 
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Risk aversion vs. seeking and Expected values vs. Utilities:  Let c̃ be a set of uncertain consequences 
resulting from a decision.  Risk aversion means people prefer the expected value of a set of consequences 
with certainty to the set of uncertain consequences, so U(E[c̃]) > E[U(c̃)].  Risk seeking occurs then risky 
outcomes are preferred to certain expected value, so U(E[c̃]) < E[U(c̃)]. 
 
Certainty Equivalence: If someone is indifferent in choosing between a certain consequence cc and a set 
of uncertain consequences {p1 c1, …, pi ci, …, pn cn}, then consequence ck is the certainty equivalent to 
the set of uncertain outcomes (Keeney and Raiffa 1976).  Non-monotonic utility functions can have more 
than one certainty equivalent.  The idea of certainty equivalence is useful for estimating a utility function.   
 
Risk premium:  Risk premium (RP) is how much someone prefers the expected value of an uncertain 
consequence to its certainty equivalent, RP = E[c̃] - cc . cc = certainty equivalent of c̃, where U(cc) = 
E[U(c̃)].  This is why we buy insurance.  We would pay an insurance premium up to the certainty 
equivalent (= RP + E[c̃]).  However, a large and perfectly-efficient insurance company sees only the 
expected value cost for the policy E[c̃]. 
 
References 
Arrow, K.J. and R.C. Lind (1970), "Uncertainty and the evaluation of public investment decisions," 

American Economic Review, Vol. 60, No. 3, June, pp. 364-378. 
Keeney, R.L. and H. Raiffa (1976), Decisions with Multiple Objectives. New York: Wiley. Reprinted in 

1993 by Cambridge University Press. 
 
 
  

https://www.jstor.org/stable/1817987?seq=1#metadata_info_tab_contents
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3. Expected Utility Theory  
 
Two objectives commonly are given for utility theory: 
 1.  Utility theory should guide rational decision-making. 
 2.  Utility theory should mimic how real decisions are made. 
 
Today's installment focuses on the use of utility theory to guide rational decision-making.  In the next 
installment, we'll see how well it represents real decision-making. 
 
Recall that in expected utility theory, the objective is to select alternative j that maximizes: 

    EUj = 
1

( )
n

ij i
i

p U c
=
∑ . 

What is rational decision-making?  (You tell me.) 
What characteristics should a measure of alternative performance have to be rational?  Does 
expected utility have these characteristics? 
An evaluation criterion function F() allows for the ordering of alternatives. 
Some notation:  A > B, alternative A is preferred to B 
   A < B, alternative B is preferred to A 
   A ~ B, alternatives A and B are indifferently preferred. 
Some commonly suggested characteristics (axioms) for rational utility measurement are: 
1. Existence of Relative Preference 

For any pair of alternatives, either A>B, A<B, or A~B.  Thus, only F(A)>F(B), F(A)<F(B), or 
F(A)=F(B) are possible. 

2. Transitivity 
For any three alternatives, if A>B and B>C, then A>C.  Thus, if F(A)>F(B) and F(B)>F(C), then 
F(A)>F(C). 

3. Mixture Continuity   
More utility F() is always better.  If α is a constant, 0≤α≤1, and F(A)>F(B)>F(C), then there is a 
value of α such that F(B) = αF(A) + (1-α)F(C). 

4. Existence and Availability of Probabilities for Outcomes 
Probability values exist and can be quantified for each possible outcome of each alternative. 

5. Monotonicity of Probability Effect on Utility 
Higher probabilities make good outcomes better.  For outcome X, where F(X)>0, probability of 
outcome p, and ∆>0, F(p+∆, X)>F(p,X).   

6. Substitution Axiom 
For any three outcomes, X1, X2, and X3, and probability p, if X1~X2 (F(X1)=F(X2)), then the 
choice between bundles of outcomes (X1or X3) and (X2 or X3) are indifferently preferred: 
 pF(X1) + (1-p)F(X3) ~ pF(X2) + (1-p)F(X3). 
This allows substitution of X1 for X2, or vice versa, in decision problems. 

7. Independence of Irrelevant Alternatives 
The principle of the independence of irrelevant alternatives is that if A > B, then A cannot be 
made ~ or < B by introducing some new alternative C.  This axiom can be derived from a 
combination of axioms 3 and 6 (Luce and Raiffa 1957). 

 
Expected utility theory satisfies these characteristics of rational evaluation. 
Several "derivations" of expected utility exist from sets of axioms similar to those above (von Neumann 
and Morgenstern 1947; Luce and Raiffa 1957; Machina 1990).  For us, it is sufficient that the expected 
utility form satisfies these characteristics (or definition) of "rationality."  So expected utility is a common 

definition of rational behavior (Fishburn 1988), F() = EUj = 
1

( )
n

ij i
i

p U c
=
∑ . [F() is linear with probability.] 
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Some History of Utility Functions 
Daniel Bernoulli (1738): U = c log(Y/Ys), where U is utility, c is a constant, Y is income, and Ys is 

subsistence income. 
Weber-Fechner Law:  U = c log(∆Y/Y0), where U is utility, c is a constant, ∆Y is income change, and Y0 

is initial income. 
Von Neumann and Morgenstern’s (1944) work revolutionized the basis and thinking about utility 
functions. 
 
How can we estimate a utility function? 
Now that we know that decision-making by expected utility is "rational," how can we estimate the 
necessary utility function U() for a single type of consequence, such as monetary gains and losses?     
 Most modern approaches to estimating utility functions begin by establishing an arbitrary 
consequence as the origin and an arbitrary unit of utility.  Some common origin and scale conventions 
are: • Let U(Cmin) = 0, U(Cmax) = 1, 
 • Let U(Cmin) = -1, U(Cmax) = 0, or 
 • Let U(C = 0) = 0, U(Cref) = 100, 
where Cmin is the minimum possible consequence or outcome, Cmax is the greatest possible outcome, 
and Cref is some arbitrary reference consequence (say, $1,000).  In theory, any other scale could be used. 
 Having established an origin and a scale, the certainty equivalent method seeks to define 
additional utility values for other consequence values by offering a choice between a certain outcome and 
a probabilistic outcome (von Neumann and Morgenstern 1944). 
 Let U($0) = 0, U($1,000) = 100.  To find the utility of $2,000, the question is asked, "At what 
probability p would the following two alternatives be indifferent to you?" 
  A) $1,000 for certain. 
  B) probability p of $2,000 and probability 1-p of $0. 
For indifference between these two alternatives, by expected utility theory, EUA = EUB, or 
  U($1,000) = pU($2,000) + (1-p)U(0), or 
  100 = pU($2,000) + (1-p)0. 
Therefore, U($2,000) = 100/p. 
 For the utilities of consequences less than the utility scale length, say $500 in this case, similar 
choices of wagers can be made.  At what p are you indifferent between the following choices: 
  C) $1,000 with a probability p and $0 with a probability 1-p. 
  D) $500 for certain. 
Since at indifference, pU($1,000) + 0 = U($500), U($500) = 100p. 
 
Several variations exist on how to implement this general approach (de Neufville 1990).  Most variations 
are attempts to overcome some problems of 1) propagating "errors" in interview responses and 2) 
responses which violate some of the axioms of utility theory (such as those we shall see when comparing 
certain, uncertain, and rare events). 
 
Multi-objective Utility Functions 
Many real problems have multiple dimensions to performance, where it is difficult or controversial to 
collapse all indicators of system performance into one overall objective.  Truth, beauty, money, and 
viability of a population of endangered species cannot always be expressed and compared in the same 
units.     Keeney and Raiffa (1976) and de Neufville (1990) propose the use of multi-objective utility 
models for such problems.  [This work is interesting, and I recommend you read it.  Someday, I’ll add 
more about it here, when I figure out a way to distill it to a page or two.  If you take this interesting 
approach too seriously, you never escape the multi-utility function estimation problem, especially with 
multiple decision-makers.  The probabilistic dominance material in an earlier section has a multi-utility 
theory basis, I believe.  It just hasn’t been worked out.  Stochastic dominance conditions also should be 
possible for multi-utility theory.  Perhaps this is a good student exercise?] 
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Practical Use of Utility Theory 
In the more than half-century since modern utility theory was first developed and despite its theoretical 
appeal and long-standing academic calls for its use, it is used very rarely in practice.  Some reasons for 
this include: 

• There are several psychometric problems in estimating utility functions from individual survey 
responses.  We shall see some of these later.  Also, it is possible to make utility estimates for only 
about 30-50 values of a single type of consequence (de Neufville 1990). 

• You can imagine how utility responses might vary between individuals and even vary for the same 
individual on different days.  Furthermore, many planning problems evolve over decade-long 
periods, during which utility functions are likely to change considerably.  People's valuations are 
likely to change as they learn and think more about a problem. 

• It is often difficult to decide who in a large organization or group should be interviewed for 
estimating a utility function.  For a private company, should the president, middle-manager, board 
members, or stockholders be interviewed?  For public decisions, should the utility function be that 
of the agency head, private citizens, or elected officials? 

• High-level decision-makers are busy people; it is often hard to get their time for interviews. 
• Decision-makers are often unsure what their preference structure/utility function is.  For newly 

controversial issues, these preferences may be highly unstable as new information develops. 
• Many decision-makers have political reasons to avoid revealing their true preference or utility 

functions. 
• Utility theory and processes for estimating utility are somewhat abstract and subjective.  The 

process of estimating utility functions is somewhat artificial.  These aspects do not help potential 
users "feel good" about the process. 

• Utility function risk aversion is likely to vary between interests.  For dam operations for flood 
control, a large federal interest should probably have a linear utility function (expected cost), but 
downstream homeowners or elected officials are likely to be risk-averse, and some short-term land 
developers might even be risk-seeking (given their economies of scale and short time-horizon). 

Utility estimation is by no means an easy or exact exercise. 
 
When can I avoid utility functions? 
Several problems exist with this approach or virtually any approach to estimating utility functions.  This 
is why the ideas of stochastic dominance and the Arrow-Lind theorem can be so useful.  (See references 
in notes for Lecture 2.) 
 • Arrow-Lind (1970) prove that expected value is as good as expected utility for decisions with 
relatively "small" ranges of consequences, especially where the consequences are “small” relative to the 
total budget or economic scale of the enterprise.  For such small changes in performance relative to 
overall performance of the system, the shape of the utility function should be rather linear.  
 • Stochastic dominance can help weed out many inferior alternatives under a wider range of 
conditions (Levy 1992).  With some luck, stochastic dominance can eliminate any need for utility 
function estimation. 
 • Where the magnitude and range of consequences is a little larger than that discussed by Arrow 
and Lindh (1970), but still small compared to the economic scale of the enterprise, a mean-variance 
approximation of the utility function should be possible.  But this requires a separate (utility-based) 
weighting of performance variance, relative to mean. 
 • Bouchart and Goulter (1998) suggest using an artificial neural network (ANN) to represent 
water users' preferences for different probability distributions of water availability.  The ANN would be 
calibrated based on user preferences among many hypothetical shortage probability distributions.  This 
approach avoids need for establishing a utility function, but rests more on empirical preferences based on 
water users' ability to compare probability distributions.   
 • Change the design to affect the probability distribution of outcomes.  Structure recourses in the 
design so low-probability big costs are transformed into higher probabilities for smaller costs, in essence, 
insurance.  Ideally, this allows you to come closer to using expected value as a decision criterion. 
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Mean-variance approximation of a utility function for small consequences 
If consequences are all very small compared to the scale of the overall enterprise, a common condition for 
public policy, then utility functions within this small range should be linear, and expected value is an 
equivalent decision-making criterion to expected utility (Arrow and Lindh 1970).  But, if the 
consequences are merely small compared to the overall enterprise, then a mean-variance approach will 
better approximate a utility function, at the cost of estimating one parameter (Keeney and Raiffa 1976, p. 
161).  For this case, 

EUj = U(E[cj]) – k σcj
2 , 

where E[cj] is the average consequence for decision j, σcj
2 is the variance of consequences with decision j, 

and k is the ration of the second to first derivatives of the utility function at the magnitude of the average 
consequence. 
 
This result can be derived from the definition of certainty-equivalence, in the context of the average 
consequence µc, so U(c) = U(µc + c̃’), where E[c̃’] = 0.  Begin with the definition of certainty-
equivalence: E[U(c̃)] = U(cc) and risk premium rp = E[c̃] - cc , where cc = certainty equivalent of c̃.  
Expand about the mean: 

E[U(c̃)] = U(µc - rp) = E[U((µc + c̃’)], where c̃’ = c̃ – E[c̃], E[c̃] = µc. 
Taking a first-order Taylor series expansion for U(µc - rp) gives: 

U(µc - rp) ≈ U(µc) - rp dU(µc)/dc  
and a second-order Taylor series expansion for E[U((µc + c̃’)] gives: 

E[U((µc + c̃’)] ≈ E[U(µc) - c̃’ dU(µc)/dc + 0.5 c̃’2 dU2(µc)/dc2] 
Setting equivalence, simplifying (note E[c̃’] = 0), and solving for rp: 

rp ≈ E[- 0.5 c̃’2 (dU2(µc)/dc2)]/(dU(µc)/dc) =  k(µc) σc
2. 

For these conditions, the risk premium is proportional to the variance of the consequence σc
2.  Returning 

this result to develop an estimate of utility based on mean and variance: 
 E[U(c̃)] ≈ U(µc) – k(µc) σc

2 . 
So where the mean consequence is the same, and the range of consequences is small enough to neglect 
higher order terms, it is sufficient to make decisions based on minimizing the variance of the 
consequences.   
 
Where the range of consequences around the mean consequence for each decision is small (and the mean 
consequence differs), then the full utility analysis is reduced to consideration of only the mean and 
variance of consequences for each decision alternative. 
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3b. Does Expected Utility Theory Work With Real People?  
 
The last lecture was meant to establish expected utility as a rational way to evaluate decision options.  
How closely does expected utility mimic real decision-making? 
 
Allais Paradox 
We begin with the famous Allais Paradox (Allais 1953).   
 
Consider 2 sets of choices: 
Choice Set 1: 
 A) p=0.8 of $4,000 and p=0.2 of zero 
 B) p=1 of $3,000 
Choice Set 2: 
 C) p=0.2 of $4,000 and p=0.8 of zero 
 D) p=0.25 of $3,000 and p=0.75 of zero 
 
For each choice set, select a choice, A or B and C or D.   
 
Let U(0)=0. Therefore,  EU(A)=0.8 U($4,000) 
    EU(B)=U($3,000) 
    EU(C)=0.2 U($4,000) 
    EU(D)=0.25 U($3,000). 
Most people prefer B and C. 
 
If EU(B) > EU(A), then 0.8 U($4,000) < U($3,000). 
 
If EU(C) > EU(D), then 0.2 U($4,000) > 0.25 U($3,000),  
   or 0.8 U($4,000) > U($3,000). 
These two statements seem to conflict and illustrate some problems with getting actual human choices to 
mimic the axioms of utility theory.  Allais holds, and the example illustrates, that people have a 
preference for a sure thing (high reliability) greater than that predicted by expected utility. 
 
Other Work 
Work by several people has illustrated various interesting deviations of real decision-making from 
expected utility decision-making (Kahneman and Tversky 1979; Kahneman, et al. 1982).  Simon (1976) 
is a leader of another interesting approach, “bounded rationality”. 
 
There is sometimes professional dilemma between making rational designs and giving people what they 
say they want.  Ideally, good management tries to make these converge. 
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4. Stochastic Dominance Decisions under Uncertainty 
 
Stochastic Dominance 
It is often possible to select an alternative using the expected utility criterion without exact knowledge of 
the utility function U().  This approach is known as stochastic dominance.   
 
Zero-Degree Stochastic Dominance 
 Which alternative below is better, if x is good?  Why? 

 
This can be used to eliminate bad alternatives (B) for any utility function that is non-decreasing with x.  
(Larger values of x are never worse, always better or equal to, smaller values of x.) 
 
First-Degree Stochastic Dominance 
Which alternative is better?  Why? 

 
Alternative A will usually be better.  This too can be used to eliminate lesser alternatives for any 
monotonically increasing utility function.  The mathematical definition of first-degree stochastic 
dominance for alternative A over B requires, 

   ⌡⌠
-∞

x
 pA(s) ds   ≤  ⌡⌠

-∞

x
pB(s) ds , for all values of x, 

and strict inequality holds for at least one value of x, where pA(s) and pB(s) are the probability density 
functions of the performance of alternatives A and B.  These conditions are often written in terms of the 
cumulative distributions of A and B's performance FA(s) and FB(s):  FA(x) ≤ FB(x), for all values of x, 
and strict inequality holds for at least one value of x.  For first-degree stochastic dominance to apply, the 
utility function may be any non-decreasing function with finite values for finite values of x (risk averse, 
risk seeking, or risk neutral). 
 
Second-Degree Stochastic Dominance 
The mathematical definition for second-degree stochastic dominance for A dominates B is: 

  ( )
x

A

t
p s dsdt

−∞
−∞
∫ ∫ ≤ ( )

x

B

t
p s dsdt

−∞
−∞
∫ ∫ , for all values of x, 

and strict inequality holds for at least one value of x, where pA(s) and pB(s) are the probability density 
functions of the performance of alternatives A and B. 

  

Alternative B Alternative A Probability 

Value of Outcome, x 

Probability 

Alternative B Alternative A 

Value of Outcome, x 

Alternative B 

Alternative A 

Value of outcome, x 

Cumulative 
Probability 
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These conditions are often written in terms of the cumulative distributions of A and B's performance 
FA(s) and FB(s): 

   ⌡⌠
-∞

x
 FA(s) ds  ≤  ⌡⌠

-∞

x
 FB(s) ds , for all values of x, 

and strict inequality holds for at least one value of x.  For second degree dominance to apply, the utility 
function must be non-decreasing and concave (any form of risk averse). 
 
Third-Degree Stochastic Dominance 
If the utility function is non-decreasing, concave, and has a non-negative third derivative, third degree 
stochastic dominance can be applied (Whitman 1970; Bawa 1975).  A non-negative third derivative for 
the utility function implies decreasing risk aversion as absolute positive outcomes increase – Richer 
people should be less risk averse.  These conditions for A dominates B are: 

  ( )
x

A

t
F s dsdt

−∞
−∞
∫ ∫ ≤ ( )

x

B

t
F s dsdt

−∞
−∞
∫ ∫ , for all values of x, 

and strict inequality holds for at least one value of x.  Bawa (1975) finds some simplifications of 3rd-
degree stochastic dominance for several common classes of probability distributions. 
 
If an appropriate stochastic dominance condition is met, it is a sufficient condition for proving that 
Alternative A is better than Alternative B.  However, if a stochastic dominance condition is not met, 
Alternative A might still be better than Alternative B.  Stochastic dominance is not a necessary condition.   
 
While stochastic dominance cannot always yield selection of the best alternative, these criteria are easy to 
apply and can sometimes yield a single optimal solution or a smaller sub-set of solutions without the need 
to specify a complete utility function.  As we shall see, this can be quite an advantage.  Good general 
references for stochastic dominance are Chapter 11 of Park and Sharp-Bette (1990), Bawa (1975), and 
Levy (1992).  A nice application is Su, et al. (1991). 
 
Ordinal Stochastic Dominance 
Frequently, the potential outcomes of alternatives are not interval-scales ($0-$1,000), but fall on an 
ordinal scale (awful, bad, good).  Spector, et al. (1996) develop first and second degree stochastic 
dominance methods for this ordinal performance case.  Given our frequent inability to assess outcomes on 
a numerical interval scale, ordinal stochastic dominance can be useful. 
 
Ordinal First Degree Stochastic Dominance (OFSD) 
Where performance outcomes are ordinal, Alternative A dominates Alternative B if FA(i) ≤ FB(i), for all 
outcome levels i, ordered from worst to best.  This case is depicted below.  Like FSD, it can be applied to 
any case with a non-decreasing utility function. 
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Ordinal Second Degree Stochastic Dominance (OSSD) 
Ordinal Second Degree Stochastic Dominance applies where the relative ordering of the differences in 
outcomes is decreasing.  This would be the case if the difference between "Awful" and "Bad" were 
considered to be greater (worse) than the difference between Bad and OK.  By OSSD, Alternative A 
dominates Alternative B if 

1 1

jk

Ai
j i

p
= =

∑∑ ≤  
1 1

jk

Bi
j i

p
= =

∑∑ , for all performance levels k, 

where pAi and pBi are the probabilities for each outcome i.   
 
OSSD applies only if the utility function is non-decreasing (positive first derivative) and has a negative 
second derivative, as with ordinary Second Degree Stochastic Dominance. 
 
Anyone want to derive or research ordinal third degree stochastic dominance? 
 
Example of Ordinal Stochastic Dominance 
Consider the case of two alternative designs (of equal cost) for a habitat restoration project intended to 
protect a species.  Three potential outcomes are considered, as shown in the table below. 
 

Table 4: Comparison of two alternatives with ordinal stochastic dominance 
 Alternative outcome 

probabilities 
OFSD (cumulative 

probabilities) 
OSSD (twice cumulative 

probabilities) 
Outcome A B FA(i) FB(i) ∑∑pAi ∑∑pBi 

Extinction 0.20 0.30 0.20 0.30 0.20 0.30 
Species OK 0.20 0.05 0.40 0.35 0.60 0.65 
Recovery  0.60 0.65 1.00 1.00 1.60 1.65 
Total 1.00 1.00     

 
By OFSD it is unclear if Alternative A is better than Alternative B, since B has a higher chance of 
Recovery, but also a higher chance of Extinction.  This is shown in the OFSD columns of the table.   
 
If the difference between extinction and OK is seen as greater (worse loss) than the difference between 
OK and recovery, then OSSD can be applied, as in the last pair of columns.  Since each sum is greater for 
Alternative B than Alternative A, then if it is worse to go from OK to extinction than from recovered to 
OK, then Alternative A dominates Alternative B. 
 
Multi-objective stochastic dominance 
There is some literature on multi-objective stochastic dominance for continuous (Denuit et al. 2013) and 
ordinal performance (Yalonetzky 2013).  Stochastic dominance might be useful for bringing uncertainty 
better into Pareto-optimality analyses. 
 
Multi-objective Probabilistic Dominance 
Pareto-optimality or deterministic dominance is used to eliminate poorer-performing solutions for multi-
objective problems.  How can such ideas of dominance be extended to multi-objective problems with 
probabilistic performance of alternatives?  If the boxed areas in Figure 1 (Table 5) are uniformly and 
independently distributed probabilities of cost and environmental performance for each alternative, then 
we can calculate the probability of each alternative having superior performance for each objective, 
separately and together, Table 6 (Lund, et al. 2008).  This indicates the probability of multi-objective 
Pareto-optimality for each alternative (Cohon 1978).  This is called “probabilistic dominance” because the 
dominance between alternatives is not certain (Teich 2001; Fieldsend and Everson 2005, Hudgins 1994).  
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Figure 1 - Performance and Superiority 

 
 Table 5 - Costs & Fish Population Viability for Delta Alternatives (Lund, et al. 2008) 

How can we evaluate the overlap of performance in multi-objective space?  What is the probability that 
each alternative is superior to others?  (Table 6)  How can we calculate such results? 

 
Table 6 - Probabilities That Each Export Alternative is Superior to Others, With Fish 

Viability as the Environmental Objective (%) 
 
Alternatives 

Fish 
Viability 

Statewide 
Cost 

Both 
Objectives 

Through-Delta better than peripheral canal 27 6 1 
Through-Delta better than dual conveyance 27 19 5 
Through-Delta better than no exports 0 95 0 
Peripheral canal better than no exports 6 100 6 
Peripheral canal better than through-Delta  73 94 69 
Dual conveyance better than no exports 6 100 6 
Dual conveyance better than through-Delta 73 81 60 
No Exports better than peripheral canal  94 0 0 
No Exports better than through-Delta 100 5 5 
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Continued through-Delta exports 0.55–1.86 5–30 
Peripheral canal 0.25–0.85 10–40 
Dual conveyance 0.25–1.25 10–40 
No exports 1.50–2.50 30–60 
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Figure 2 – Ranges of estimated performance for four alternatives 

 
Figure 2 helps illustrate this concept.  Here, alternative D is clearly inferior to alternatives A, B, and C, 
having no possibility of performing better than A, B, or C on either the fish or economic objective.  Let 
P(AsB) be the probability that alternative A is superior to alternative B.  Then, from Figure 2, P(AsD) = 
P(BsD) = P( CsD) = 1 for either objective, and for both objectives taken together. Alternative A is always 
superior to B in terms of cost.  Half the time A will be superior to B in terms of fish viability, with an 
equal probability that B will be superior to A for fish.  Overall, there is a 50% chance that A is superior to 
B for both fish and cost, and zero probability that B will be superior to A on both objectives. 
 
If C overlaps area B by 25%, as shown with the southwest corner of C at the centroid of B, there is a 
87.5% chance that C is better for fish than B (or A) (=0.5 + 0.5(0.5+0.25)), with a 12.5% chance that B 
(or A) is better for fish (=0.5*0.5*0.5).  For cost, there is a 87.5% chance that B is superior to C, and 
12.5% chance that C is better than B.  Overall, there is a 10.9% chance that B is superior to C for both 
objectives, and a 10.9% chance that C is superior to B for both objectives.  C will never be superior to A 
for both objectives, but there is a 12.5% chance that A is superior to C for both objectives.  For the 
remaining probability, each alternative would be better on a different objective, indicating a performance 
trade-off requiring a value judgment.  These calculations are explained more in the next section. 
 
For many cases, the performance will not be uniformly distributed, but have some central tendency, often 
near the centroid.  In these non-uniformly distributed cases with a centroidal central tendency, the above 
calculations are somewhat skewed, especially for overlaps of corners far from the centroid of an 
alternative’s performance region. 
 
A More Formal Derivation 
Given two alternatives, each with uncertain and probabilistic performance on two objectives, what is the 
probability that the actual (point) performance of each alternative will be superior (non-dominated or 
Pareto-optimal) relative to the other?  Consider the problem as in Figure 3, with the assumption that more 
of Z1 is inferior and more of Z2 is superior (monotonic single-objective utility functions), so ideal 
performance is in the Northwest corner of the diagram. 

 
Figure 3 - Performance and Superiority for Two Overlapping Alternatives 
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Let actual performance of alternatives A and B be points in this multi-objective space, but our knowledge 
of their future performance is only given by probability distributions PA(Z1, Z2) and PB(Z1, Z2).  What is 
the probability that alternative A will be superior to B in terms of each objective and what is the 
probability that the performance of A will be superior to B for both objectives (i.e., B is a dominated 
solution)? 
 
Let P(AsB) be the probability that A is superior to B for both objectives, and let PZi(AsB) be the 
probability that A is superior to B with respect to objective i. 
 
To define overall probabilistic dominance or superiority of A over B,  

2

1

1 2 1 2 2 1 1 2( ) ( , ) ( , )
Z

A B
Z

P AsB P Z Z P z z dz dz dZ dZ
∞ ∞ ∞

−∞ −∞ −∞

 
=   

 
∫ ∫ ∫ ∫ , 

where the probabilistic performance of each alternative is independent.  If not independent, the 
probabilistic performance of alternative B is a joint probability with alternative A, then 

2

1

1 2 1 2 1 2 2 1 1 2( ) ( , ) ( , | ( , ))
Z

A B
Z

P AsB P Z Z P z z A Z Z dz dz dZ dZ
∞ ∞ ∞

−∞ −∞ −∞

 
=   

 
∫ ∫ ∫ ∫ , 

where 1 2 1 2( , | ( , ))BP z z A Z Z is the probability distribution of B’s performance given A’s performance at 
Z1, Z2.   
 
For a single objective, the probability that A is superior to B is 

1

1 1 1 11( ) ( ) ( )A B
Z

PZ AsB P Z P z dz dZ
∞ ∞

−∞

 
=   

 
∫ ∫  

for independent probabilistic performance, where less of objective Z1 is better.  Where more of objective 

Z2 is better,    
2

2 2 2 22( ) ( ) ( )
Z

A BPZ AsB P Z P z dz dZ
∞

−∞ −∞

 
=   

 
∫ ∫  

This should apply to any two alternatives in a two-dimensional performance space.  Higher dimensional 
objective spaces can be incorporated with suitable additional integrals.   
 
Consider special conditions where the point performance of A and B are independent probability 
distributions, each of which is uniform between different ranges of performance on each objective, with 
some overlap of these distributions as in Figure 3.  Overlapping and partially overlapping sub-areas of 
each distribution can be defined as in Figure 4, with more Z2 and less Z1 being better. 

 
Figure 4 - Performance and Superiority for Two Overlapping Objectives - Detailed 
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( ) 1 0.5 0.5 0.5 0.25I II ii iv IV iii III iii iv IV ii IV iv ii iii IVP AsB
A A B B A B B A B B B

+ + + + +     = + + + + + + +     
     

 

where A is the total area of A, B is the total area of B, and each Roman number represents a different 
quadrant area, as shown in Figure 4.  If A falls in area I, there is 100% chance that A is superior to B for 
both objectives.  If A falls in area II, there is 100% chance of A being superior for both objectives if B 
falls in areas ii or iv, and a 50% chance of A being superior if B falls in areas IV or iii.  If both A and B 
fall in area IV, there is a 25% chance of A being superior to B and an identical chance of B being superior 
to A for both objectives.  With complete overlap for both objectives, there is a 25% change of dominance.  
With an overlap for one objective, there is a 50% chance of dominance for that objective.  When there is 
no overlap for any individual objective dimension, one solution will completely dominate the other. 
 
The area-based equation above can be expanded to the coordinate-based equation: 

( 2 2 )( 1 1 )( ) a b b aP AsB
A
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2
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+
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If terms are given values of zero when they become negative, this equation should be generalizable 
without foreknowledge of the geometric arrangement of alternatives in objective space.  The calculations 
are much simpler when the alternatives overlap on only one objective, or if they do not overlap at all.  
Where probabilities of performance are independent, the product of the probabilities of dominance for 
each single objective is the probability that an alternative is superior for all objectives. 
 
This is the basis for calculations in Table 6.   
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5. Structure of Decision Analysis  
 
"The test of usefulness of decision theory lies mainly in the future, and it will be made by those who learn 
about decision theory early enough in their lives that practical experience will not yet have made them 
feel that orderly, careful thinking about human decisions is futile." – H.V. Roberts, Journal of Business, 
Vol. 43, No. 1 (Jan., 1970), pp. 66-68. 
 
One of the hardest parts of examining choices in a probabilistic framework is depicting the logic and 
structure of the choices to be made and the precise structure of uncertainties.  This becomes particularly 
difficult and important when choices can be made contingently, sequentially, or in stages (allowing 
recourse) in a context with multiple uncertainties.  Creating designs which are flexible in responding to 
uncertainties usually requires the representation of sequential and contingent decisions within a structured 
context of uncertainties. 
 
Decision Trees 
Decision trees are commonly used to depict the structure of decision-making problems.  Each branch of 
the tree represents a different choice or outcome.  Where the branches connect, represent opportunities for 
choices or chance. 
 
Here's a decision tree: 

A
B
C

D

E

p1
p2

p3

p4

1-p4

p5

1-p5

c1 or U(c1)
c2 or U(c2)
c3 or U(c3)
c4 or U(c4)
c5 or U(c5)
c6 or U(c6)

c7 or U(c7)

c8 or U(c8)
 

 
Boxes denote choice nodes, where a decision must be made. 
Circles denote chance nodes, where outcomes are uncertain. 
Rectangles denote the values of outcomes in raw form or in utility form. 
 
Each branch emanating from a choice node is an alternative; a name is attached. 
Each branch emanating from a chance node is a possible outcome, with a probability attached. 
 
While many decision analysis problems are too complex to be represented by a full tree (forest?) diagram, 
the technique is useful for small problems and can help one think about or talk about how a large problem 
is structured. 
 
An Example with a Twist 
 Here's an example where a decision tree can illustrate the difference between two seemingly 
identical choices (Lund 1991).  Consider an engineer deciding between two water supply sources, surface 
water or ground water.  Both are uncertain.  Streamflow is certainly uncertain.  The yield of the aquifer is 
also uncertain in this case. 
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 Imagine that by an astounding coincidence the initial costs of developing each source is the same 
(K) and the probability distribution of the annual supply from each source is exactly the same PS(Q) = 
PG(Q).  In the event of a shortfall, the engineer has two alternatives, either constructing additional 
capacity (at cost Ka) or buying additional water (at a present value cost of C/r).  Each outcome cost and 
the probability distributions are identical for the two alternatives.  Are the values of the two initial choices 
(surface versus ground water) identical? 
 
Let's see, using an expected value criterion. 
For the surface water source: EVCS = K + Min[PS(Q < D) C/r , Ka], 
For the ground water source: EVCG = K + PS(Q < D) Min[C/r , Ka], 
Wait, these are different.  Why?  Look at the decision tree below.  If surface water shortages occur their 
magnitude will be the same in every year, very much like the random variables of probability theory.  If 
groundwater yield is insufficient, it is unlikely that the permeability or recharge into the aquifer will 
change enough over time to vary the aquifer's yield.  PS happens every year, with Q being different every 
year.  PG happens mostly now, but once the aquifer has been in operation for some time PG should be a 
much narrower distribution.  The decision tree shows the logic and structure of the decision-making 
problem, including the recourses available after the initial design decisions have been made. 

*

P  (Q < D)S

P  (Q > D)S
$K

$K + C/r

$K + K a

Buy as  
Needed

Add More 
Capacity

Surface  
Water

P  (Q < D)G

P  (Q > D)G

$K

$K + C/rBuy Water

$K + K aAdd More 
Capacity

Ground  
Water

Figure 1:  Decision Tree for Water Supply Example
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The Value of Information: Perfect Tests 
A common use of decision analysis is to estimate the value of a test that would help us make a decision.  
Consider the example below adapted from Stokey and Zeckhauser (1978), where we want to know if we 
should adopt an innovative design or a time-tested venerable design.  We can also test the innovative 
design at cost T; this test is perfect. (If the innovation passes the test, there will be no problems with the 
design.)  How much should we be willing to pay for the test.  First, some decision forestry: 
 

Innovate

Venerate

Test

p=0.6, Works

p=0.4, Fails, oops,  
then venerate

p=0.6, Works, innovate

p=0.4, Fails, so venerate

10

10 + 14

14

10 + T

14 + T
 

 
Let's resolve this.  Each decision has an expected value: 
 Innovate:  15.6 
 Venerate:  14 
 Perfect Test:  T + 11.6. 
What is the value of the perfect test?  4 or 2.4? 
 
 
It is too late to estimate the value of an imperfect test.  We'll do that next time. 
 
References 
Corner, J.L. and C.W. Kirkwood (1991), "Decision Analysis Applications in the Operations Research 

Literature, 1970-1989," Operations Research, Vol. 39, No. 2, March-April, pp. 206-219. 
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6. The Value of Imperfect Information   
 
Let's modify the example from Lecture 5 on the value of perfect information to see the value of imperfect 
information from an imperfect test.  This involves adding another test type to the decision tree. 
 
With imperfect information, there is a chance that if the innovation passes the test, the prototype will fail 
and a chance that if the prototype fails the test, that the prototype would succeed.  This can be expressed 
as the set of conditional probabilities: 
 
                           Prototype Result   
Test Result P(result) Works    Fails  
Pass  P(p) = 4/7 P(W|p) = 0.9  P(F|p) = 0.1  
Fail  P(f) = 3/7 P(W|f) = 0.2  P(F|f) = 0.8  
 
This complicates the tree structure of the decisions and outcomes of the test option in the Lecture 5 
problem.  The following set of branches represents the outcomes and probabilities for the new, imperfect 
test.  You could replace the perfect test branch in the Lecture 5 problem with this, if you like. 

Pass Test

Fails Test

Innovate

Venerate

Innovate

Venerate

Innovation Works

Innovation Fails

Innovation Works

Innovation Fails

P(W|p)

P(F|p)

P(W|f)

P(F|f)

P(p)

P(f)

T + 10

T+10+14

T + 14

T+10+14

T + 14

T + 10

 
Note that P(W) = P(p) P(W|p) + P(f) P(W|f) and P(F) = P(p) P(F|p) + P(f) P(F|f).  P(W) and P(F) are 
called the prior probabilities (prior to the test) and the conditional probabilities P(W|p), P(w|f), P(F|p), 
and P(F|f) are the post-test posterior probabilities.  For this case the priors are P(W) = 0.6 and P(F) = 0.4, 
the probabilities without testing. 
 
If the testing decision is chosen and the imperfect test is passed, then the innovation should be chosen if  
10 P(W|p) + (10 + 14) P(F|p) < 14.  This reduces to 10 + 14 P(F|p) <14 or P(F|p) < 4/14.  Since P(F|p) = 
0.1, innovate if the test is passed. 
 
If testing is chosen and the test is failed, then innovate if 10 P(W|f) + (10 + 14) P(F|f) < 14, or P(F|f) < 
4/14.  Fortunately, this is not the case here, and the test does help us make decisions.  To be useful, a test 
must yield a different decision when the test fails than when the test is passed. 
 
If a passed test encourages innovation and a failed test encourages veneration, then the expected cost of 
this total test option will be T+10P(p)+ (P(f)+P(F|p)P(p))14=T+(4/7)(10)+ [(3/7) + (0.1)(4/7)]14  
= T + 12.514.  What is the value of the imperfect test, compared to the perfect test and other options?  
How much should we be willing to pay for the imperfect test?  How much cheaper must the imperfect test 
be before it is preferred to the perfect test? 
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Updating, Combining, and Reversing Conditional Probabilities 
Let P(p) and P(f) be our estimates of whether the innovation will work or fail without the test.  Let us 
assume that experiments with the test were made on both working and failed innovations; thus, we have 
P(p|W), P(p|F), P(f|W), and P(f|F).  Bayes' Theorem lets us reverse these conditional probabilities to those 
needed to solve the problem above. 
 

P(W|p) = 
P(W) P(p|W)

P(W) P(p|W) + P(F) P(p|F)   = 
P(W) P(p|W)

P(p)  ,  

 
P(F|p) = 1 - P(W|p), 
 

P(F|f) = 
P(F) P(f|F)

P(F) P(f|F) + P(W) P(f|W)  = 
( ) ( | )

( )
P F P f F

P f
, and 

 
P(W|f) = 1 - P(F|f). 
 
Derivation of Bayes' Theorem 
Jaynes (1996) has a nice derivation of Bayes' Theorem using the 
product rule from probability theory.  The probability product rule 
is: P(A and B) = P(A) P(B|A) = P(B) P(A|B). 
Bayes' Theorem is found by merely dividing the product rule by 
P(B) to yield: 

  P(A|B) = 
( ) ( | )

( )
P A P B A

P B
. 

 
By using the sum rule of probability, P(B) = P(B|A) P(A) + P(B|not A) P(not A), the more common form 
of Bayes' Theorem can be produced: 
 

 

  P(A|B) = 
( ) ( | )

( | ) ( ) ( | ) ( )
P A P B A

P B A P A P B notA P notA+
. 

 

 
Example: Bayes' Theorem and Water Meter Readings 
This is a minor application of Bayes' Theorem (Lund 1988), but it illustrates how Bayes' Theorem can get 
you out of a bind.  We want to estimate the probability a meter has failed by inspecting the meter reading 
Q and knowing the meter's age, P(f|Q,t).  Meter maintenance records indicate the proportion (probability) 
of failed meters for every meter age, P(f|t).  From distributions of household consumption and assuming 
that meters fail randomly between meter readings P(Q|f,t) can also be found.  P(Q| not f,t) is merely the 
unmodified probability distribution of household consumption (i.e., the meter works), assuming only a 
very few failed meters exist in the population.  The failure probability is updated to incorporate the 
additional information of the meter reading using Bayes' Theorem: 
 

  P(f|Q,t) = 
( | ) ( | , )

( | ) ( | , ) ( | ) ( | , )
P f t P Q f t

P f t P Q f t P notf t P Q notf t+
. 

 
Thus, we combine a number of probabilities that we know (P(f|t), P(Q|f,t), P(not f|t), and P(Q|not f,t)), 
using Bayes' Theorem, to find a probability of failure based on things we know (like flow measurement Q 
and meter age t) to help identify failed meters for maintenance. 

xkcd.com/1236/ 
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Example: Life, Death, Treatment, and Testing 
This is a grim example.  Only 5% of a region’s population has Sleeping Sickness (SS), a disease spread 
by the bite of the tse fly.  If untreated, an infected person has a 20% chance of dying.  However, treatment 
is hazardous as well; 5% of treated patients die of a reaction to the treatment (whether they are infected or 
not).  The treatment cures SS in an infected person 90% of the time, if they survive treatment.  A 
screening test is available to test a patient for SS infection.  The test has the following reliabilities, 
estimated from clinical trials. 
 
1) When should a patient be treated? 
2) Is this test worthwhile? 
  SS No SS 
 P( ) 0.05 0.95 
 P(+| _ ) 0.90 0.20 
 P(-| _ ) 0.10 0.80 

P(+|_) is the probability the test result is positive given condition _ .  Note that for each sickness event, 
the sum of P(+|_) and P(-|_) must equal one. 
 
Use Bayes Theorem for reversing the probabilities, 

P(SS|+)  =  
( ) ( | )

( | ) ( ) ( | ) ( )
P SS P SS

P SS P SS P NSS P NSS
+

+ + +
=  

( ) ( | )
( )

P SS P SS
P

+
+

 

and similarly for P(SS|-), P(NSS|+), and P(NSS|-). [Have class derive these.] 
 
This gives the following table of probabilities: (students can fill these in, completed in appendix to notes) 
  P(disease|test result) Test Result  
  SS NSS Probability 
 + 0.1915   
 -   0.765 

 
For decision-making, the following table of results can be used: (again to be filled in by students) 
  Overall Probability of Death 
 Test Treated Untreated 
 No Test 0.05095  
 +  0.0383 
 - 0.050123  

P(D|no test, Treat) = 0.05 + 0.95*0.05*0.10*0.20  [Have class derive other equations.] 
 
  Probability of Death 
 

Test 
 

 
No Test 

 
0.01 

A decision tree for this situation appears on the next page. 
 
[Add a new homework question: If a new treatment is 99% effective with only a 3% fatality from 
treatment, is the test now worthwhile?] 
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7. Example of Decision Analysis: Levee Design  
 
The following method for designing a levee illustrates many of the good and bad features of probabilistic 
design (Davis, et al. 1972).  The earliest probabilistic levee design is van Dantzig (1956) which formed 
the basis of modern Dutch flood management practice (Voortman 2003). 
 
The Problem 
• Find the design levee height which minimizes net economic costs (construction and damage costs).  
• Flood damages are related to peak annual flood flows, Q 
• The design parameter for the levees is the design flow, q 
• Higher levees (higher q) cost more and lower qs result in greater and more frequent flood damages. 
• Flood flows are probabilistic and are imperfectly described by a probability distribution with a vector of 
uncertain parameters, θ.  For most flood problems, θ would include the mean annual peak flood Qav, the 
standard deviation of annual flood peaks sQ, and the skew of annual flood peaks γQ.   
• P(Q, θ) is the probability density function of flood peak Q, given parameter values θ. 
• Let f(θ) be the probability density function of the parameter values θ. 
• D(Q) is the damage wrought by a flood of Q 
• C(q) is the annualized cost of building a levee for design flow q 
 
Problem 1: certain parameter values 
Find the best levee design q* for a given certainly known set of flood frequency parameter values θ.  This 
expected value cost is given by: 

(1)        
q

Min EVC(q| θ) = ( ) ( | )
q

D Q P Q θ
∞

∫ dQ + C(q) 

Solve for q* by enumeration, iterative search, or whatever.   
 
This is how this problem is often addressed in advanced states of practice.  But it neglects our uncertainty 
in the parameter values θ. 
 
Problem 2:  uncertain parameter values 
Here, the parameters in the flood frequency distribution θ are also uncertain.  The mathematical form of 
the flood frequency distribution (lognormal, Gumbel, etc.) is the only thing assumed to be known with 
certainty.  Now the objective function to minimize for the least-cost levee design is: 

(2)         
q

Min EVC(q| f(θ)) =  
q θ θ θ1 2 3

∞

∫ ∫ ∫ ∫ D(Q) P(Q| θ) f(θ) dθ3 dθ2 dθ1 dQ + C(q), 

where θ1, θ2, and θ3 are three parameters of the flood frequency distribution (mean, standard deviation, 
and skew, say).  Again, we solve by enumeration or iterative search. 
 
This gives a more realistic optimal design, incorporating both the probabilistic variation in flood flows 
and uncertainty in flood frequency parameters.  (We might also include uncertainty in the flood frequency 
distribution's mathematical form (Wood and Rodríguez-Iturbe 1975b) or nonstationarity in the flood 
frequency distribution (Zhu et al. 2007).) 
 
Solving this problem gives an optimal design q* if we had to build the levee today.  Would it be 
worthwhile waiting a year or several years to collect more flood experience (data) to improve our 
estimates of the parameters θ, probably narrowing the distribution f(θ). 
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Expected Loss from imperfect information: a digression 
What is the expected loss in our design for not having perfect information regarding the values of θ?  
Surely, if we knew θ with certainty, we would feel more comfortable about the optimality of our design 
q*. 
 
If we did know the true parameter values θT, we would probably choose a better (more omniscient) levee 
design flow qT.  The difference between the expected economic costs of the designs q* and qT is the 
"loss" L.  You can think of it as our "regret" associated with our design q* on finding out that the true 
parameter values were θT with the associated best design was qT.  Here's the loss function: 

 

 (3)       L(q*, qT) = EVC(q*| θT) - EVC(qT| θT) 
 

 
But θT and qT are unknown.  However, we have or can develop probability distributions for qT and θT.  
This distribution of θT is merely f(θ), and we have already used it.  Using this insight, the expected loss 
resulting from design q* is: 
 

 (4)      XL(q*| f(θ)) = 
θ θ θ1 2 3

∫ ∫ ∫ {EVC(q*| θ) - EVC(qT(θ)| θ)} f(θ) dθ3 dθ2 dθ1   

Here, q* is a constant, the one we found in problem 2.  And qT(θ) varies for each individual set of 
parameter values θ.  qT(θ) is the value of q which solves the problem given perfectly known parameter 
values (problem 1): 

 (5)  Min
q

   EVC(q, θ) = ( ) ( , )
q

D Q P Q θ
∞

∫ dQ + C(q). 

XL, the expected loss, represents the expected value of having perfect estimates of the parameters θ. 
 
The Benefits of Waiting a Year 
If we wait one year to make a decision we will have more data to estimate f(θ).  This new data will be in 
the form of next year's flood peak QN, whose flow we will record.   
 
If next year's flood were known today, we could update our current f(θ) using Bayes theorem: 

 (6)    f(θ | QN) = ( ) ( | )

( ) ( | )

N

N

f P Q

f P Q d
θ

θ θ

θ θ θ∫
. 

So next year we can use f(θ | QN) to update XL(q*, f(θ)) to see if waiting was worthwhile. 
 
Unfortunately, we must decide today if the additional flood observation is worth waiting for.  While we 
do not know QN, we do know its probability distribution.  The distribution of QN is merely the current 
flood frequency distribution with the current uncertain parameter distribution: 

 (7)       P(QN) =  ( | ) ( )NP Q f d
θ

θ θ θ∫  

  

q* qT 
q 

EVC(q|      ) θ Τ 

0 

Regret or Loss 
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When we put all this together, the expected value of the benefits (reduced expected loss) of waiting for 
one year of additional flood flow record is: 

 (8)    EVBQN = XL(q*| f(θ)) - 
∞

0
∫ XL[q*(f(θ | QN))| f(θ | QN)] P(QN) dQN  

Whew! 
 
The Costs of Waiting One Year 
The expected value of costs of waiting one year is the damage to be expected during the next year, given 
that there is no levee, plus the annualized cost avoided by deferring construction by one year.  Thus, 
 

 (9)    EVCQN =  
∞

0
∫ D(QN) P(QN) dQN  - C(q*) 

 
The Big Decision 
If EVBQN ≥ EVCQN then we should wait a year for more data. 
 
Some Thoughts on Practice 
The foregoing method requires little that is not available in practice.  The major theoretical problem is 
estimating f(θ), but this can be done without too much difficulty.  For instance, the Central Limit 
Theorem would hold that the distribution for Qav is Gaussian.  Distributions for sQ and γQ might be 
gotten from regional data, as the USGS does (Wood and Rodríguez-Iturbe 1975a).  Everything else, even 
D() and C(), is fairly common.  Probably the biggest practical problems with this method are explaining it 
to regular engineers and doing the greater amount of computations required.  (But with computers, this 
latter problem should be minimal.) 
 
Some Extensions 
1. Flood flows and the parameters of the flood frequency distribution are not the only uncertain aspects of 
this problem.  The cost and damage functions are also somewhat uncertain, as is the mathematical form of 
the flood frequency distribution.  Of likely particular importance is uncertainty in the stage-discharge 
relationship which, in this formulation, is embedded in the functions D() and C().  Stage-discharge 
relationships can be particularly uncertain in the region of high flows, where simultaneous measurements 
of stage and discharge are rare and fairly crude approximations are often unavoidable.  Uncertainties in 
these aspects of the problem could be incorporated into more elaborate formulations, adding probability 
distributions for parameters in the functions D() and C(), for example.  Data gathering and probability 
distribution estimation for this problem are problematic in practice.  Adding additional uncertainties also 
adds computational burden, since in the formulation we add an additional integration for each new 
uncertain parameter. [Cite USACE studies of these things.] 
 
2. Levees commonly fail by other mechanisms than by overtopping (e.g., undermining, wave action, 
piping, slope failure).  A probabilistic model of levee failure by other mechanisms can be developed and 
incorporated into this scheme (Wood 1977; Tung and Mays 1981a; Voortman 2003). 
 
3. Many levee projects take place in multi-reach systems. Tung and Mays (1981b) propose solution of 
this problem by dynamic programming. 
 
4. The problem so far has assumed that once the levee is built, it cannot be altered if in the future we find 
that it was too low or too high.  In practice, it is hardly economical to reduce levee heights, but it is 
common to find that levees should be increased in height.  What happens if the problem is modified 
further to allow for increasing levee heights in the future?  This becomes a multi-stage decision-making 
problem.  It is solvable by stochastic dynamic programming, a later topic in the course. (Zhu, et al. 2007) 
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8. A Probability Primer 
 “When one admits that nothing is certain one must, I think, also admit that some things are much more 

nearly certain than others.” Bertrand Russell (1947) 
"Probability theory is nothing but common sense reduced to calculation." Laplace 1819 
   
Probability and Plausible Reasoning 
 The subjective or Bayesian school of probability theory holds that probabilities should represent 
the plausibility of uncertain events (Raiffa 1968).  More plausible events have higher probability.  Events 
occurring with certainty have probabilities of one.  Impossible events have probabilities of zero. 
 The calculus of probability is based fundamentally on the analogy between mathematics and 
deductive logic.  So, much of probability comes from the use of symbolic logic, or Boolean algebra.  In 
addition to Boolean algebra and set theory, probability theory rests on three fundamental desiderata that 
correspond to desirable goals of plausible reasoning (Jaynes 2003). 

Desiderata 1:  Degrees of plausibility are represented by real numbers.  As a convention, a larger number 
means greater plausibility.  The plausibility number we assign also should depend on evidence; therefore 
the plausibility of an event A should be affected by what we already know B.  This conditional nature of 
probabilities creates the need for a notation P(A|B), the probability of A given B. 

Desiderata 2:  Qualitative correspondence to common sense. If B is evidence that A will occur, and B gets 
updated to B' so as to increase the plausibility of A, then P(A|B') > P(A|B).  More supportive evidence of 
A should make A more plausible. 

Desiderata 3:  Consistency.  The desirability of consistency has three more detailed meanings: 
 a. If a conclusion can be reasoned out in more than one way, then every possible way of 
reasoning through the problem must lead to the same result. 
 b. All evidence relevant to evaluating plausibility must be taken into account. 
 c. Equivalent levels of plausibility must be represented by equal probabilities. 
Rules have been developed for probability calculations using these desirable features for a calculus of 
plausible reasoning (Jaynes 2003). 
  
Fundamental Rules of Probability 
Scale:  The scale of a probability theory is somewhat arbitrary.  The traditional scale of [0,1] does not 
violate the desiderata and is used.  If P(A) = 0, then A is impossible; if P(A) = 1, then A is certain to 
occur. 
 
Product Rule:  The product rule allows us to evaluate the plausibility of jointly-occurring conditional 
events. 

 

  P(A∩B|C) = P(A|B∩C) P(B|C) = P(B|A∩C) P(A|C) 
 

The product rule is that the probability of two events A and B both happening is P(A∩B) = P(A|B) P(B).  
If events A and B are independent, P(A|B) = P(A) and the probability of these two independent events 
both happening is P(A∩B) = P(A) P(B). 
 
Sum Rule:  The sum rule allows us to evaluate the plausibility of aggregated events such as (A∪B|C).  
The fundamental sum rule is: P(A|B) + P(not A|B) = 1.  A more general form of the sum rule is: 

       P(A∪B|C) = P(A|C) + P(B|C) - P(A∩B|C) 

 
Mutual Exclusivity: Two events are mutually exclusive if P(A∩B) = 0.  Mutually exclusive events by 
definition cannot both occur.  For mutually exclusive events A and B, P(A∪B|C) = P(A|C) + P(B|C). 
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Approaches to Assigning Probability Values 
Principle of Insufficient Reason 
Laplace (1819?) found that for n mutually exclusive and collectively exhaustive events, and in the 
absence of any other plausibility information, the probability of each event should be 1/n.   
 
Proportion of Total Outcomes 
By combining the sum rule with the principle of insufficient reason, we can find James Bernoulli's 
original (1713) definition of probabilities.  If there are n equally likely outcomes, of which m would be 
classified as event A, then P(A|m,n) = m/n. 
 
Observed Relative Frequency 
True subjective probabilists poo-poo using relative frequency ideas in determining probabilities.  Still, if I 
flip a coin 100 times and get 90 heads, I'm tempted to believe the probability of heads for this almost 
certainly weighted coin is roughly 0.90.  Relative frequency may be theoretically impure, but empiricism 
is often useful for engineers. 
 
Subjective Probability 
Sometimes an experienced person's opinions regarding the likelihood of events is a useful guide for 
assessing probability values for events.  There are some well-known biases in such assessments, however 
(Morgan and Henrion 1990). 
 
Bayes' Theorem 
Bayes' theorem reverses conditional probabilities and is used commonly to update probability 
distributions to incorporate new information.  It is derived quickly from the product rule.  The product 
rule states: P(A|B∩C) P(B|C) = P(B|A∩C) P(A|C).  Dividing both sides by P(B|C) yields: 

 

P(A|B∩C) = 
( | ) ( | )

( | )
P B A C P A C

P B C
∩

. 

 

Using the sum rule gives Bayes' Theorem in its more familiar form: 
 

P(A|B∩C) = 
( | ) ( | )

( | ) ( | ) ( | ) ( | )
P B A C P A C

P B A C P A C P B notA C P notA C
∩

∩ + ∩
. 

 

A graphical derivation follows this section. 
 In the Bayesian view, we are always updating our distributions of plausibility/probability as new 
observations become available.  Logically, we should do this using Bayes Theorem.  The distribution 
P(A|C) is the prior probability distribution (or just prior), before a new observation.  Event B is the new 
observation, a particular event.  P(B|A∩C) is the likelihood of the new observation B given A.   
 The resulting P(A|B∩C) is the posterior probability distribution (or just posterior), accounting 
for the new observation B.  In essence, we are multiplying the prior P(A|C) by the ratio of the probability 

of observation B given A and the probability of B: 
( | )

( | )
P B A C

P B C
∩

.  If seeing A enhances the probability 

of seeing event B, then this ratio > 1. 
 If our prior distribution is very broad and with very "fat" tails, we obviously have little initial idea 
what will happen.  Such a prior is called an uninformative prior. 
 Using Bayes' Theorem to provide probability distributions can require a lot of computation.  
There are some particular forms of prior distribution for which Bayes' Theorem can be applied 
analytically to give an analytical probability distribution, so-called conjugate priors.  Typically, we must 
be prepared for manipulation of approximate discrete, numerically derived distributions when employing 
Bayes' Theorem. (Agarwal and Daumé 2010) [add references for conjugate priors] 
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Graphical derivation of Bayes' Theorem 
Given the situation represented below by a Venn diagram, let's look at the probability of different non-
mutually-exclusive events, A, B, C, and D each represented by the areas a, b, c, and d. 

    
Let P(A|C) = a/c, P(B|C)=b/c, P(C)=c, and P(D|C)=d/c.  These are the priors.  It helps to assume c = 1. 
 
From the diagram, P(D|C) = P(D|B∩C) P(B|C) or d/c = P(D|B∩C) b/c or P(D|B∩C) = d/b. 
 
Since the only way A can occur, given B is through D, then P(A|B∩C) = P(D|B∩C) = d/b 
 
Similarly, P(B|A∩C) = d/a. 
 

Therefore, P(A|B∩C) = 
( | ) ( | )

( | )
P A C P B A C

P B C
∩

= 
( )( )

( )
/ /

/
a c d a

b c
= d/b, Bayes' Theorem. 

This provides a conceptual and mathematical way to update our prior probability of A, given that B has 
occurred.  To do this we need the priors for A and B (P(A|C) and P(B|C)) as well as the probability of B, 
given A and C, P(B|A∩C) = d/a here.  The result P(A|B∩C) is called the posterior probability of A. 
 
Probability Distributions 
 Probability distributions can be either discrete or continuous.  In engineering, we often are forced 
to use more numerically-friendly discrete distributions.  In fact, this may be a blessing, since it is often 
easier for engineers to solve problems numerically than analytically.  If we want to be in this business, we 
have a choice of being good with computers or very good with math. 
 Probability Density Functions (pdfs) are equations or numerical results that represent the 
probability that an observation falls within a small unit range of possible outcomes.  The dimensions of a 
pdf for a flood frequency distribution are the probability that the greatest flood occurring in a given year 
will be within 1 cfs of some Q.  Therefore a pdf for a variable with a very narrow possible range, such as 
Manning's n, can have a probability density greater than one. 
 Cumulative Density Functions (CDFs) are integrals, or cumulative summations, of pdfs or 
discrete probability distributions. 

      CDF(Q) = ⌡⌠
-∞

Q
 pdf(q)dq  

Probability Distributions from Random Processes 
If a particular organization of events yields a particular and consistent probabilistic result, that process is 
called a random process.  Rolling a die is a random process that yields a discrete uniform distribution of 
outcomes in the range of integers [1,6].  A flipped coin does the same, but in the range [heads, tails].  
Many common probability distributions result from particular random processes. 
 
Binomial Distribution:  If only two events can occur, A or C, and P(A) and P(C)=1-P(A) are constant, 
then the probability of seeing A m times out of n independent observations is: 

B 
A D 

C 
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   B(m|n, P(A)) = 
!

!( )!
n

m n m−
P(A)m P(C)n-m. 

Geometric Distribution:  If the probability of failure in a given year is constant at P(f), then the 
probability distribution of the year of the first failure t is: 
   G(t|Pf) = Pf (1-Pf)t-1. 
Poisson Distribution:  If N is the average number of independent discrete events that occur in a unit area 
or time period, then the probability that M such events will occur within that region or time period is: 

   P(M|N) = 
!

N Me N
M

− −

. 

Gamma Distribution:  For events that happen according to a Poisson process, with an arrival rate of N per 
time-step, the probability distribution of having t time-steps elapse before the r-th event is a Gamma 
distribution.  (Sometimes called an Erlang distribution for integer values of r.) 

G(t) = ( )
( 1)!

N Nt
r −

r-1 e-Nt, for t ≥ 0 and = 0 for t < 0. 

Exponential Distribution:  An exponential distribution describes the time until the first arrival of a 
Poisson process.  The exponential distribution is a Gamma distribution for r = 1. 

fE(t) = Ne-Nt, for t ≥ 0 and = 0 for t < 0. 
Gaussian (Normal) Distribution:  If multiple continuous random errors (with any distributional form) 
occur in an additive way, the probability distribution of the measurement will be Gaussian.   
f(x) = [1/(σx SQRT(2π))] exp(-0.5((x-µx)/σx)2, where σx is the standard deviation of x and µx is its mean. 
 
Log-Normal Distribution: The product of multiple random variables is a log-normal distribution – very 
useful.  (Proof: X = aX1X2X3. ln(X) = a + ln X1 + ln X2 + lnX3 . The natural log of X is normally 
distributed by the central limit theorem.) 

   f(x) = 
( )

1
2 lnxxπ σ

exp








-0.5 






lnx - µlnx

σlnx

2
 . 

To transform mean and variance values to the ln-scale for the log-normal distribution, use: 

  σlnx2 = ln






σx2

µx2 + 1    and  µlnx = ln(µx) - (σlnx2)/2,  

The coefficients of skew and kurtosis are given by: 
2 2
ln ln[exp( ) 2] exp( ) 1x xγ σ σ= + − , and 2 2 2

ln ln lnexp(4 ) 2exp(3 ) 3exp(2 ) 3x x xκ σ σ σ= + + −  
A “shifted lognormal” has y = ln(x + c) being normally distributed, with a lower bound of c. 
Rosenberg (2007) has a nice application of log-normal distributions for water conservation problems. 
 
An odd implication of lognormal distributions is something called “Benford’s Law”, that the first digit in 
a list of lognormally-distributed random numbers will be a one, about 30% of the time.  This can be 
extended to predict the probability of later digits and is a technique can be used for fraud detection. (Hill 
1995; http://en.wikipedia.org/wiki/Benford%27s_law)   (I wonder if this idea could be used to detect 
stream gage errors.) 
 
Gumbel Distribution:  If independently distributed floods occur each week, and the probability 
distribution of the peak flow of each weekly flood is exponential, then the probability distribution of the 
biggest flood peak flow in each year, approaches a Gumbel (Extreme Value 1) distribution (Gumbel 
1958).  The cumulative Gumbel distribution is: 
F(Q) = e-e-a(Q-u), where a is a scale parameter and u is the modal value of the distribution. 
These parameters have values a = π/(SQRT(6)σ) and u = µ - 0.5772/a, where µ is the mean annual flood 

http://en.wikipedia.org/wiki/Benford%27s_law
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peak and σ is the standard deviation of flood peaks. 
 
Other distributions:  A great number of probability distributions have been derived for particular random 
processes.   Still, it is often difficult to find the right distribution for a particular engineering problem.  
There are many approximate and numerical approaches for these cases, such as first-order second-
moment approximations and Monte Carlo methods. 
 
Fitting Parameters to Probability Distributions 
Once a probability distribution is selected, establishing parameter values for that distribution is the next 
problem, which we largely avoid here (Stedinger 1980). 
 
Uncertain Probabilities in Decision Analysis 
The probabilities we use in decision analysis are usually uncertain.  What should be done?  Must we 
develop and carry entire probability distributions representing the uncertainty of probability estimates?  
Fortunately, no.  For expected utility (or expected value) decision criteria, only the mean or expected 
value of an uncertain probability is needed (Howard 1988).  This works for any evaluation measure that is 
linear with probability (as expected utility and expected value are).  (Mosleh and Bier 1996 provide some 
counter-examples.) 
 
Given the expected utility of an alternative A, where each outcome i has an uncertain probability Pi 
distributed fi(Pi) for each outcome utility Ui: 

    EUA = 
1

0

( )i i i i i
i

f P PU dP∑∫ , 

Since the definition of the expected value of event probability is,
1

0

( ) ( )i i i i iEV P f P PdP= ∫ , this becomes: 

    EUA = ( )i i
i

EV P U∑ . 

This is simply the expected utility, calculated using the expected value of the probability of each outcome.  
(Whew!  This saves us a world of worry and estimation effort.) 
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9. "Maximum Entropy": Assigning Probabilities with Little Information 
We often must assign a probability distribution to outcomes when we have little information regarding the 
relative frequency or likelihood of each event.  Laplace’s "principle of insufficient reason" is an extreme 
illustration of this case.  In the late 1940s, Shannon (1948) developed an indicator of the information 
content of a probability distribution.  In his approach, one would assign probability values to outcomes 
such that the probability distribution has the minimum amount of "information" while still representing 
aspects of the outcomes and their frequency that are felt to be known. 
 
What is the information content of a probability distribution?  A probability distribution consisting of one 
outcome with probability of one and other outcomes with zero probability obviously is more informative 
than a uniform distribution of probability among outcomes.  How can the information content of a 
probability distribution be estimated? 
 
Shannon (1948) developed a consistent measure of the "amount of uncertainty" represented by a 
probability distribution.  He suggests several principles for developing such a quantitative index of a 
probability distribution's information content:  
 
1) Assume some numerical measure Hn(p1, ..., pn) exists describing the amount of uncertainty contained 

in the probability distribution pi. 
2) Assume Hn is a continuous function of pi.  If Hn were not continuous, then a small change in pi would 

lead to a great change in information or uncertainty content.  This would be unreasonable. 
3) Having more possibilities (larger n) should increase uncertainty.  Where all pi are equal, H(n) = 

Hn(1/n, 1/n, ..., 1/n).  So H(n) should always increase with n. 
4) If there is more than one way to calculate the value of Hn, then all ways must give the same value. 
 
Shannon proposes the following measure of the amount of uncertainty in a probability distribution, often 
called its "information entropy" as: 

(1)    H(p1, ..., pn) = - 
1

( )
n

i i
i

p ln p
=
∑ . 

Using Shannon's approach, we would like to assign probabilities to events so that we maximize this 
information entropy, subject to constraints representing the things we feel we know.  Such a distribution 
contains the minimum amount of information consistent with what we know. 
 
What might we know as constraints in assigning probabilities?  We might feel we know the mean of the 
distribution, its variance, skew, or upper or lower limits of the distribution.  Such an approach can be used 
to develop probability distributions for treatment effectiveness, Manning's n, or various environmental 
outcomes.  The solution for the probabilities is by mathematical optimization, maximizing information 
entropy (1), subject to constraints.   
 
Solution Approach for Maximum Entropy Probability Distributions 
Several kinds of knowledge constrain the assignment of probabilities to events.  First, for all cases the 
sum of probabilities over collectively exhaustive events must equal one: 

(2) 
1

n

i
i

p
=
∑ = 1. 

If we solve the maximum entropy problem, subject to this constraint only, we find a uniform probability 
distribution; Laplace's Principle of Insufficient Reason rules. 
 
We often also feel we know the mean, variance, or other statistical moments of a probability distribution.   
For each statistical moment we have a constraint 
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(3) 
1

( )
n

r i i
i

g x p
=
∑  = E(gr) ,  for all functions r, 

where E(gr) is the expected value of function gr.  For example, gr(xi) = xi for the mean, gr(xi) = xi2 for 
the variance, etc. 
 
The mathematical programming formulation is then to Maximize Equation 1, subject to Equation 2 and 
Equations 3, with the pi as decision variables.  To solve, the Lagrangian can be formed and differentiated: 

(4) 
L
pι

∂
∂

= 0 = -1 - ln pi + λ0 + λ1 g1(xi) + λ2 g2(xi) + λ3 g3(xi) + ... , for all i.   

Then, including the constant -1 in  λ0, we find; 

(5) pi = exp 0 ( )r r i
r

g xλ λ + 
 

∑  for all pi . 

Noting that the pi sum to one, leading to the following expression for λ0: 

(6) λ0 = - ln ( )r r i
i r

exp g xλ∑ ∑ . 

Then, following Tribus (1969): 

(7) exp (-λ0) = ( )r r i
i r

exp g xλ∑ ∑  

and differentiating with respect to λk ; 

(8) - exp (-λ0) 0

k

λ
λ

∂
∂

= ( ) ( )r r i k i
i r

exp g x g xλ 
 
 

∑ ∑ ; 

or; 

(9) - 0

k

λ
λ

∂
∂

= 0 ( ) ( )r r i k i
i r

exp g x g xλ λ + 
 

∑ ∑  

Putting equation 5 into 9 gives the following result;  

(10) 0

k

λ
λ

∂
∂

 = - E(gk) . 

Equation 6 can be differentiated, then, to give a useful version of (10): 

(11)  
( ) exp ( )

exp ( )

r i r r i
i r

r r i
i r

g X g X

g X

λ

λ

 
 
 

 
 
 

∑ ∑

∑ ∑
= E(gk) , for all k. 

Hence the Lagrange multipliers can be determined by the mean values of arbitrary functions gr(X) using 
equations 6 and 11. 
 
Where only the mean of X is known, gr(xi) = g1(xi) = xi, λr = λ1, and equations 5, 6, and 11 reduce to; 
(12) pi = exp ( )0 1 ixλ λ+ , for all pi ; 

(13) λ0 = - ln 1( )i
i

exp xλ∑ , and; 
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(14) 
1

1

( )

( )

i i
i

i
i

x exp x

exp x

λ

λ

∑
∑

= E(X) . 

Equations 5, 6, and 11 can be used to find discrete distributions for uncertain variables in practical 
problems, where the range of X and/or the mean of any functions of X can be specified, by discretizing 
over the range of possible X. 
 
While this looks intimidating, the final results are fairly simple.  Where no statistical moments are known, 
a uniform distribution results.  With a mean constraint only, an exponential distribution results, and with 
mean and variance constraints a truncated Gaussian distribution results. The problem is analogous to that 
of finding the probability of each face of a possibly unfair die turning up, given the average of many rolls 
(Jaynes 1988).  For a fair die the average would be 3.5 and the probabilities would each be 1/6, 
representing a uniform distribution.  What if the average of many rolls is not 3.5? 
 
Maximum Entropy Example:  Annual Sediment Deposition in a Reservoir 
Tribus (1969), Englehardt and Lund (1992), and others use this approach for a variety of problems.  For a 
simple example, let's look at a maximum-entropy estimate of the annual sediment deposition rate in a 
reservoir (or detention pond).  For this problem, all we know is that over the last 20 years, the reservoir 
has lost 40,000 acre-ft of storage capacity.  What is the annual probability distribution of sedimentation 
volume? 
 
The mean is a relatively robust statistic.  An accumulation over 20 years is a fairly averaged process.  
Therefore, we will assume we know the mean of the annual sediment volume distribution is 2,000 acre-
ft/year = s.  We can also feel fairly confident that negative sedimentation rates do not occur, so the annual 
sedimentation rate, S ≥ 0.  What is the maximum sedimentation rate?  This is hard to fix, so let's start with 
no upper bound for S.  The mathematical program for assigning probabilities to annual sedimentation 
rates becomes: 

    Max z = - 
0

( ) ( ( ))P S ln P S dS
∞

∫  

Subject to: 

     
0

( )P S dS
∞

∫ = 1 

    
0

( )P S SdS
∞

∫ = s = 2,000 

Solving this problem by Lagrange multipliers gives the Lagrangian, 

 L = - 
0

( ) ( ( ))P S ln P S dS
∞

∫ + λ0 �∫ 𝑃𝑃(𝑆𝑆)𝑑𝑑𝑆𝑆∞
0 − 1� -+ λ1 

0

( )P S SdS s
∞ 

− 
 
∫  

 
The first-order conditions are, 
   ∂L/∂P(S) = 0 = -1 - ln(P(S)) + λ0 + λ1 S. 
This becomes, 
 
    P(S) = exp(λ0 -1 + λ1 S),  
 
an exponential probability distribution form.  This exponential distribution must have a mean of s = 2,000 
AF/year and an area of one, shown below.   
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Updating Prior Distributions with Data 1 
A new water treatment device is being considered.  The device has failed in 7 out of 28 tests.   What is the 
probability that it will work in a given application?   
 
Here is a Bayesian perspective on this question.  For prior information, before the tests, we know not 
what the device’s failure probability is.  We might judge, as a prior, that the probability distribution of the 
failure probability is uniformly distributed between zero and one, a uniform probability density of P(pf) = 
1.  The probability of 7 failures of 28 tests is a binomial probability process, so the likelihood function is 
binomial: 

   P(x|pf,n) = 
!

!( )!
n

x n x−
pfx (1-pf)n-x,  

where x is the number of failures in n trials, and pf is the probability that a single trial will end in failure. 
Bayes Theorem is: 

    P(pf|x,n) = 
( ) ( | , )

( | )
f fP p P x p n
P x n

, where 

    P(x|n) = 
1

0

( | , ) ( )f f fP x p n P p dp∫  

For this case, Bayes Theorem becomes: 

   P(pf|x,n) = 1

0

!1 (1- )
!( )!

( | , ) ( )

x n x
f f

f f f

n p p
x n x

P x p n P p dp

−

−

∫
, 

which is a Beta Distribution: 

    fB(pf|a,b) = 
1

( , )B a b
pfa-1 (1-pf)b-1,  

where a = x+1 and b = n-x+1, for an initial uniform prior.  For this case, the prior and posterior 
distributions can be compared in the figure below.  Note how the posterior distribution tightens much less 
if only 1 test fails out of four (the same proportion of failures, but much less information). 
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The uniform distribution is a special case of Beta Distribution, a very general form of distribution when 
the independent variable varies only between 0 and 1.  Where a Beta Distribution is a prior, and the 
likelihood function Binomial, the posterior distribution is also a Beta Distribution, with somewhat 
different parameter values updated to reflect the new data (Pratt, et al. 1996). 
 
Updating Prior Distributions with Data 2 
Given some prior probability distribution, how can we update this information with new observations or 
data?  Prior probability distributions can have several origins.  Jaynes (1968) suggests the use of such 
"maximum entropy" distributions as priors for updating with data using Bayes Theorem.   

P(A|data) = 
( ) ( | )

( )
P A P data A

P data
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10. Simulation Modeling with Uncertainty 
 
Why do simulation models work? 
Models are a quantitative representation of our understanding of a real or proposed system.  They 
represent an integrated assembly of our knowledge of a system, developed for some scientific or 
engineering purpose.  This knowledge can come from derived application of fundamental theoretical 
principles (conservation of mass, energy, momentum, geometry, mathematics, etc.) and empirical 
relationships (such as regressions) and measurements.  Klemes (1982) and Beven (1993) have some 
interesting thoughts on this, including the many ways that models can work when their fundamental 
representation of the system is physically wrong.  
 
Gass (1983) and Beck (2002), and USEPA (2003) review the literature on the development and testing of 
models for policy and operational applications.  An appendix to these notes presents more (NRC 2007). 
 
Sources of Model Error and Uncertainty 
"All models are wrong, but some are useful."  G.E.P. Box (1979) 
 
Output of all models contains conceptual and factual errors.  Four general sources of model error are: 
 1.  Error in Model Equation Form.  Errors in the form of model equations arise from model 
mathematics not fully representing the actual phenomenon under study.  Such errors are common, even 
unavoidable, and arise from simplifications required in model development.  All empirical equations 
(Manning’s formula, etc.) necessarily include some error in model form.  While common, these errors are 
not always significant for engineering uses of models. 
 2.  Error in Parameter Values.  Most model equations include some parameter values that are 
largely held constant throughout each simulation run.  Examples include Manning’s "n" values, kinetic 
rate constants, unit cost values, etc.  These values are often empirical in nature, having no "real" existence 
- as with Manning’s "n", or rely on being set by empirical observations, such as the use of recent bid 
information to estimate unit costs.  In all these cases, there is likely to be some error in the value of each 
parameter value in a model.  Sometimes these errors are important. 
 3.  Error in Input Data Values.  Input streamflow, precipitation, water demand, or other data are 
typically somewhat in err, although these errors are not always important for engineering.  Even field data 
have errors. 
 4.  Numerical Solution Error.  Numerical error is error introduced in the solution of model 
equations by numerical or approximate analytical methods.  Numerical integration is a common 
requirement for solving the equations of a model.  Numerical solution schemes are varied in form and 
implementation (convergence tolerances and discretization coarseness) and commonly introduce some 
error.  Much work has been done in estimating and controlling these errors. 
 
Levels of Simulation Uncertainty Analysis 
A wide variety of approaches have been developed to examine and evaluate model errors or uncertainties.  
These range from simple identification of variable of concern to various forms of analysis of the effects of 
uncertainty on model results, as categorized below:  

1. Identification of outputs of concern 
2. Identification of inputs of concern 
3. Identify, discuss, and document ranges of inputs of concern 
4. Sensitivity analysis of such inputs (independent) 
5. Error analysis of such inputs (independent) (analytical or numerical) 
6. Probabilistic error analysis, with pdfs of independent inputs (analytical or numerical) 
7. Cross-correlation of inputs of concern 
8. Scenario-based sensitivity analysis 
9. Monte Carlo probabilistic error analysis (for correlated inputs) 
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Under each category, there are many specific techniques.  Frey and Patil (2002) discuss some of these. 
 
Sensitivity Analysis 
 Sensitivity analysis is a simple approach to examining model uncertainty.  In general, sensitivity 
analysis perturbs one or more assumptions of a model and compares the resulting model outputs with 
those of some "base" case.  While conceptually simple, sensitivity analysis can be a computationally 
burdensome and pose difficult interpretation problems.  The major benefits of sensitivity analysis is the 
lack of need to estimate probability distributions of for each source of model uncertainty/error, its 
relatively low computational requirements, and usual lack of prolonged 
analysis/formulation/interpretation time.  Three types of sensitivity analysis are available to the engineer.  
Each of these approaches can be implemented in many ways. 
 
 1. Sensitivity Analysis Based on Approximated First Derivatives.  This type of sensitivity analysis 
examines the effects of "small" changes in model assumptions, approximating the first derivative of 
model outputs with respect to model parameter or input values.  Such sensitivity results can be estimated 
for selected parameters or input variables, for all parameter and input variables, or for many combinations 
of parameter or input variables that may co-vary.  These forms of sensitivity analysis respectively incur 
increasing computational requirements and interpretation difficulties.  A major problem with sensitivity 
analysis based on approximated first derivatives is that it does not include any notions of the magnitude of 
error plausible for each parameter or input value.  Thus a parameter with a relatively small first derivative 
might actually be quite important if its variance is large.  
 Given some model output variable y which is a function of a vector of input variables x and 
parameter values a, y = f(x, a).  Some first-derivative-based measures of sensitivity analysis could 
include: 
a. Scalar values of ∂y/∂ai for selected of single parameters.   
b. A vector of values for ∂y/∂ai for all parameters. 
c. For bi-variate changes in parameter values, a matrix of sensitivities can be found for small changes in 
combinations of parameter values.  For any two parameters in the matrix, ai and aj: 

   
y∆

∆
= 

( , , , ) ( , )i jf x a a a f x a+ ∆ + ∆ −
∆

. 

 
This provides a matrix of sensitivity information to identify particularly pathological or promising co-
variations in parameter values.  The same approach can be extended to model input variables.   
 A common variation of sensitivity analysis using first derivatives is to range of some set of 
parameter values by ± 10% from a base case.   
 
 2. Error Analysis, Range-based Sensitivity Analysis.  Responding to this deficiency, range-based 
sensitivity analysis estimates the change in model output values over some range of plausible values for 
selected parameter or input values.  As with earlier forms of sensitivity analysis, this can be performed for 
single or multiplely-varied parameter and input values.  However, this approach requires some 
quantifications of a range of "plausible" or "representative" errors in each parameter or input variable of 
concern.    
 Range-based sensitivity analysis requires specification of some upper and lower bounds for 
selected or all parameters a or input variables x in the model, y = f(x, a).  These upper and lower bounds 
can be the most extreme values possible, less extreme percentiles (at the 99%, 90%, or 75% levels for 
example), or, more qualitatively, at the extremes of a "reasonable" range of values expected by the 
engineer.  For mathematical illustration, let these bounds be defined as aimin and aimax.  Using these 
values, changes in y can be found for different parameter or input variables.  These changes in y can be 
found and arranged in ways similar to the first derivatives found above, replacing the first derivatives 
with ∆yi = f(x, a, aimax) - f(x, a, aimin).  This approach creates an indicator of sensitivity which is more 
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standardized in terms of the likely uncertainty in output y arising some similar amounts of uncertainty in 
each parameter ai.   
 
 3. Selected Scenarios.  This form of sensitivity analysis judiciously selects particularly worrisome 
or hoped-for cases of parameter and input values and examines their relative effects on model results.  
"Worst-case" and "best-case" scenario analyses are so common they have made it into the lay vernacular. 
 
 4. Sensitivity output from optimization algorithms.  Some optimization methods, particularly 
linear programming, can produce a great deal of sensitivity analysis output as a by-product of their 
solution algorithm.  [Add David Rheinheimer’s CALSIM sensitivity screening work] 
 

5. Working backwards to find critical levels of inputs which cause failures, and then back-
calculate their probabilities. 
 
In all cases, the purposes of sensitivity analysis are to a) identify the likely uncertainty in model outputs, 
b) assess which parameter values deserve the greatest attention for reducing the uncertainty in model 
outputs, and c) assessing if the model results are stable and insensitive enough for use and application. 
[Expand this section, adding work from the Klamath NRC report.] 
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11. Analytical Propagation of Uncertainty  
Analytical propagation of uncertainty combines the uncertainties in input and parameter estimates and the 
model equations to produce analytically derived probability distributions for model output variables, as 
depicted below. 

 
Process Model  
Equations, y=f(x) 

Input  
Variable (x) 

P P 

Output  
Variable (y)  

For probabilistic design, we are interested in using probability distributions for model inputs to find 
probability distributions for design performance measures.  An example might be incorporating a 
probability distribution for annual flood flows through a flood damage model to obtain a probability 
distribution for flood damage.  It is more common to do these things numerically, but it is probably best 
to with some analytical cases.  
 
Case of One Input Variable and One Output Variable with 1-to-1 Mapping 
For this case, there is a single output value that comes from each uncertain input variable and for each 
output value there is only one input value.  Let's look at probabilistic input variable x and output variable 
y.  We know P(x) and we want to know P(y). 
 
Discrete Case:  If y and x are discrete variables with a one-to-one mapping between them, then P(y) = 
P(f(x)) = P(x| y=f(x)). 
 
Continuous Case:  If x and y are continuous and f(x) is a one-to-one mapping, f(x) is monotonic.  This 
implies that:  

(1)     
( )

( )
y f x

P y dy
=

−∞
∫ =  ( )

x

P x dx
−∞
∫ . 

Taking the derivative of this gives the probability density function, P(y)dy = P(x)dx, or  

(2)    P(y) = ABS
dx
dy

 
 
 

P(x). 
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Case Where Each Output Value Can be Caused by Several Input Values 
Where both x and y are continuous: 

(3)   P(y)dy = ( | ( ))P x y f x dx
∞

−∞

=∫ . 

Where both x and y are discrete: 
(4)   P(y) = ( | ( )).

x
P x y f x=∑  

 
Example:  Probabilistic Present Value Cost from Probabilistic Time-to-Failure 
Consider the probabilistic landfill failure in the first homework.  If t was the time of the first landfill 
failure and Pf is the probability of landfill failure in a given year if it has not failed previously, P(t) = 
Pf(1-Pf)t-1 (a geometric distribution).  This is the input probability function for the present value cost 
model.  It is a discrete probability distribution for positive integer values of t. 
 
The present value cost equation is PVCf(t) = Cf e-rt, where r is the real continuous discount rate, Cf is the 
cost of failure in the year of failure, and t is the time of failure.  The function is monotonic. 

(5)   P(PVCf(t)) = P(t) 
( )f

dt
dPVC t

, for continuous distributions of PVCf and t. 

Since 
( )f

dt
dPVC t

= Cf r e-rt,    P(PVCf(t)) = 
( )

rt
f

P t
rC e− , or 

 
(6)   P(PVCf(t)) = P(t), if given a discrete distribution of t. 
 
Example:  Probabilistic Present Value Cost from Probabilistic Discount Rates 
The real discount rate r is a continuous parameter in the present value cost equation, PVCf = Cf e-rt.  It is 
always hard to know exactly what value should be used for r, so let r have a uniform probability 
distribution between 0.01 and 0.05.  If the failure occurs in year 10, what is the probability distribution of 
the present value cost of this failure? 
 
Using Equation 2, and noting that dPVCf/dr = -t Cf e-rt, 
 

(7)  P(PVCf(r)) = ABS
rt

f

e
tC

 
  − 

P(r) = 
rt

f

e
tC

 
  
 

P(r). 

 
For a uniformly distributed r between 0.01 and 0.05, P(r) = 25.   Solving the present value cost equation 
for r yields r = ln(Cf/PVCf)/t.  Substituting these into Equation 7 gives: 
 

(8)  P(PVCf) = 
/f f

f

C PVC
tC

 
  
 

P(r) = 25

ftPVC
 
  
 

, 

 
for the range of Cf e-0.01t ≤ PVCf ≤ Cf e-0.05t, or $6065 ≤ PVCf ≤ $9048, for t = 10 and Cf = $10,000.  
Outside this range, P(PVCf) = 0.  This result is plotted roughly below. 
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Note:  

EV(PVCf) = 
9049

9049

6065
6065

25( ) $7,460|f f f fPVC P PVC dPVC PVC
t

= =∫  

PVCf(r-average) = PVCf(0.03) = 10,000 e-0.03(10) = $7,408.182 
So for this case, there is not such a big difference. 
 
Water Conservation Effectiveness 
Rosenberg (2007), in an expansion of a term paper for this class, estimates the probability density of 
water conservation effectiveness where water use is the product of several factors.  If each factor is 
normally distributed, then water use will therefore be log-normally distributed.  [add more from this 
example] 
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12. Approximating the Mean and Variance of Model Outputs   
Sometimes the mean and variance of model outputs or design performance are of special interest, and the 
model of design performance and the model uncertainties are too complex for analytical propagation of 
uncertainty.  One approach is to approximate the mean and variance of the model outputs by a truncated 
Taylor series, from the mathematical definitions of mean, standard deviation, skew, and covariance. 
 
Definitions of Mean, Variance, Skew, and Covariance 
The moment definitions of mean, standard deviation, and skew are: 

  µy = ( )yp y dy
∞

−∞
∫ , 

where µy is the mean of y and p(y) is its probability density function. 

  µy2 + σy2 = 2 ( )y p y dy
∞

−∞
∫ , or σy2 =  ( )yy µ

∞

−∞

−∫ 2 p(y) dy, 

where σy is the standard deviation of y. 

  γy σy3 + 3 µy σy2 + µy3 =  3 ( )y p y dy
∞

−∞
∫ , or  γy σy3 =  ( )yy µ

∞

−∞

−∫ 3 p(y) dy, 

where γy is the coefficient of skew.  And the covariance of x and y is: 

  covxy =   ( )( ) ( , )y xy x p x yµ µ
∞ ∞

−∞ −∞

− −∫ ∫ dxdy, 

Model z = f(x,y) and its Taylor Series 
Let z = f(x,y) be the functional representation of the model of our design performance, with z being some 
measure of performance and x and y being some uncertain parameters or input variables described by 
their means, variances, and skews.  The complete 3rd-order Taylor series expansion of f(x,y) in two 
dimensions about the mean values of the parameters follows.  This is as accurate in two dimensions as the 
more typical 3rd-order expansion is in one dimension. 

f̂(x,y) =3  f(µx, µy) + 
∂f(µx, µy)

∂y  (y - µy)  +  
∂f2(µx, µy)

∂y2    
(y - µy)2

2!   + 
∂f3(µx, µy)

∂y3    
(y - µy)3

3!    

 +  
∂f(µx, µy)

∂x  (x - µx)   +  
∂f2(µx, µy)

∂x∂y  (x - µx)(y - µy)   +  
∂f3(µx, µy)

∂x∂y2    
(x - µx)(y - µy)2

2!      

  + 
∂f4(µx, µy)

∂x∂y3    
(x - µx)(y - µy)3

3!     

 +   
∂f2(µx, µy)

∂x2    
(x - µx)2

2!     + 
∂f3(µx, µy)

∂x2∂y
   

(x - µx)2(y - µy)
2!      

  + 
∂f4(µx, µy)

∂x2∂y2    
(x - µx)2(y - µy)2

2! 2!     +  
𝜕𝜕f5(𝜇𝜇𝑥𝑥,𝜇𝜇𝑦𝑦)
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕3

(𝜕𝜕−𝜇𝜇𝑥𝑥)2(𝜕𝜕−𝜇𝜇𝑦𝑦)3

2!3!
 

 +   
∂f3(µx, µy)

∂x3    
(x - µx)3

3!     + 
∂f4(µx, µy)

∂x3∂y
   

(x - µx)3(y - µy)
3!     

  +  
∂f5(µx, µy)

∂x3∂y2    
(x - µx)3(y - µy)2

3! 2!     +   
∂f6(µx, µy)

∂x3∂y3    
(x - µx)3(y - µy)3

3! 3!   . 

To estimate the mean and variance of z = f(x,y) we integrate the parts of the Taylor series over the range 
from -∞ to +∞ with f̂ (x,y)  within the integral sign for the mean and f̂(x,y) 2 for the variance or standard 
deviation. 
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Approximate Mean of f(x,y) 
We can estimate the mean of the output/performance values as: 

  µz  ≈ 
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
f̂(x,y) p(x,y) dx dy . 

 =3   f(µx, µy) +  0  +  
∂y2   

σy2

2!    
∂f2(µx, µy)

 + 
∂y3    

γy σy3

3!  
∂f3(µx, µy)

  

  +  0  +  
∂f2(µx, µy)

∂x∂y     covxy  +  
∂f3(µx, µy)
∂x∂y2 2!

   
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
((x - µx)(y - µy)2p(x,y)dxdy)     

  + 
∂f4(µx, µy)
∂x∂y3 3!

   
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
(x - µx)(y - µy)3p(x,y) dxdy   

 +   
∂f2(µx, µy)

∂x2    
σx2

2!     + 
∂f3(µx, µy)
2! ∂x2∂y

 
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
(x - µx)2(y - µy)p(x,y)dxdy     

  + 
∂f4(µx, µy)

2! 2! ∂x2∂y2 
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
(x - µx)2(y - µy)2p(x,y)dxdy    

  +  
𝜕𝜕f5�𝜇𝜇𝑥𝑥,𝜇𝜇𝑦𝑦�
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕3 ∫ ∫ (𝑥𝑥 − 𝜇𝜇𝜕𝜕)2�𝑦𝑦 − 𝜇𝜇𝜕𝜕�

3∞
−∞

∞
−∞ 𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

 +   
∂f3(µx, µy)

∂x3    
γxσx3

3!     + 
∂f4(µx, µy)
3! ∂x3∂y

 
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
(x - µx)3(y - µy)p(x,y)dxdy    

+  
∂f5(µx, µy)

3! 2! ∂x3∂y2 
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
(x - µx)3(y - µy)2p(x,y)dxdy    +   

∂f6(µx, µy)
3! 3! ∂x3∂y3 

⌡


⌠

-∞

∞

⌡⌠
-∞

∞
(x - µx)3(y - µy)3p(x,y)dxdy  . 
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Fortunately, this simplifies for some common special cases where: 
1. Input variables x and y are independent. 

  µz  =3   f(µx, µy) +   
∂x2    

σx2

2!    
∂f2(µx, µy)

 +   
∂x3    

γx σx3

3!   
∂f3(µx, µy)

  

     +  
∂f2(µx, µy)

∂y2   
σy2

2!      +   
∂f3(µx, µy)

∂y3    
γy σy3

3!     

2. There is only one uncertain input variable. 

 µz  =3    f( µx) +  
∂x2   

σx2

2!    
∂f2(µx)

 + 
∂x3    

γx σx3

3!  
∂f3(µx)

  

3. Only first order estimates are desired. 

   µz  =1   f(µx, µy) +  ∂x∂y    
∂f2(µx, µy)

 covxy   

Approximate Variance of f(x,y) 
We can estimate the variance of the output/performance values from the definition of variance as: 

σz2 ≈ 2ˆ[ ( , ) ( , )] ( , )x yf x y f p x y dxdyµ µ
∞ ∞

−∞ −∞

−∫ ∫ . 

The same approach can be taken to derive the third-order approximation as was taken above, except it is 
just a little messier.  The proof for the following results is "left to the interested reader." 
 
For cases where input variables are not independent, only first-order approximation seems reasonable, 

   σz2  =1  
∂f(µx, µy)2

∂x    σx2  +  
∂f(µx, µy)2

∂y    σy2  +  2 
∂f(µx, µy)

∂x   
∂f(µx, µy)

∂y   covxy. 

For independent input variables, a second-order approximation is available: 

  σz2  =2    
∂f(µx, µy)2

∂y   σy2 + 
∂f(µx, µy)

∂y   
∂f2(µx, µy)

∂y2    γy σy3   

   +  
∂f(µx, µy)2

∂x   σx2 + 
∂f(µx, µy)

∂x   
∂f2(µx, µy)

∂x2    γx σx3   

Mays and Tung (1992) review a bunch of problems that this approach has been applied to. 
 
Application to Manning’s Equation 
Consider the error in the flow estimate from application of Manning’s equation, Q = (A/n) (A/P)2/3 S1/2, in 
metric, where there is a mean and variance for the Manning’s roughness n, the slope s, the wetted 
perimeter P, and the cross-sectional area A. 

If there is no covariance among the independent variables, and since 
2 5/3 1/ 2

2 2/3 3
2Q A S

n P n
∂

=
∂

, 

2 1/ 2

2 1/3 2/3
10

9
Q S

A A P n
∂

=
∂

, 
2 5/3 1/ 2

2 8/3
10

9
Q A S

P P n
∂

=
∂

, and 
2 5/3

2 2/3 3/ 24
Q A

S P S n
∂

= −
∂

, 

 

 µQ  =3   (A/n) (A/P)2/3 S1/2 +  
5/3 1/ 2

2 /3 3
2A S

P n

2

2!
nσ

+
1/ 2

1/3 2/3
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9
S

A P n

2

2!
Aσ

+ 
5/3 1/ 2

8/3
10

9
A S
P n

2

2!
Pσ 5/3

2/3 3/ 24
A

P S n
−

2

2!
Sσ

 

If the skews of the independent variables were known then a further refinement could be made. 
 
For an estimate of the variance, without knowing the skew of each independent variable, 
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 σQ2  
1
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Appendix: Some derivations regarding approximations to the variance: 

σz2 ≈ 
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
[f̂(x,y) - f(µx, µy)]2 p(x,y) dx dy   

σz2  =3   
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
[f(µx, µy)2 - 2f(µx, µy)f̂(x,y) + f̂(x,y)2] p(x,y) dx dy   

=  f(µx, µy)2  -  2f(µx, µy)
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
f̂(x,y)p(x,y) dx dy   + 

⌡


⌠

-∞

∞

⌡⌠
-∞

∞
f̂(x,y)2 p(x,y) dx dy    

= f(µx, µy)2  -  2f(µx, µy)µẑ    +  y)2 p(x,y) dx dy 
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
f̂(x,   

The last of the three terms above becomes ugly.  There are 16 terms in the 3rd-order Taylor-series 
expansion of f(x,y); thus, there are 162 = 256 terms in the 3rd-order Taylor series expansion f̂(x,y) 2.  
This would be too much.  Instead, let's look at a 1st-order expansion for the case where the input variables 
are not independent. 
σz2  =1    f(µx, µy)2  -  2f(µx, µy)   µẑ   

+ 

⌡

⌠

-∞

∞

⌡
⌠

-∞

∞







f(µx, µy)+
∂f(µx, µy)

∂y (y-µy)+
∂f(µx, µy)

∂x (x-µx)+
∂f2(µx, µy)

∂x∂y  (x-µx)(y-µy)
2
 p(x,y) dx dy  

σz2 =1    f(µx, µy)2  -  2f(µx, µy)  µẑ   + f(µx, µy)2   

+  

⌡


⌠

-∞

∞

⌡⌠
-∞

∞
 {2f(µx, µy) ∂y (y - µy) 

∂f(µx, µy)
 + 2f(µx, µy) ∂x (x-µx)

∂f(µx, µy)
  

+ 2 f(µx, µy)
∂f2(µx, µy)

∂x∂y  (x - µx)(y - µy)  + 
∂f(µx, µy)2

∂y (y - µy) 2 +
∂f(µx, µy)2

∂x (x-µx) 2  

+ 2
∂f(µx, µy)

∂y   
∂f(µx, µy)

∂x (x-µx)(y - µy)  + 2 
∂f(µx, µy)

∂y   
∂f2(µx, µy)

∂x∂y  (x - µx)(y - µy) 2   

+ 2
∂f(µx, µy)

∂x   
∂f2(µx, µy)

∂x∂y  (x - µx) 2(y - µy) + 
∂f2(µx, µy)2

∂x∂y   (x - µx) 2(y - µy)2  }p(x,y) dx dy 
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σz2  =1    
∂f(µx, µy)2

∂y  σy2 + 
∂f(µx, µy)2

∂x   σx2 + 2
∂f(µx, µy)

∂y   
∂f(µx, µy)

∂x (covxy)   

+  

⌡


⌠

-∞

∞

⌡⌠
-∞

∞
 {2 

∂f(µx, µy)
∂y   

∂f2(µx, µy)
∂x∂y  (x - µx)(y - µy) 2  + 2

∂f(µx, µy)
∂x   

∂f2(µx, µy)
∂x∂y  (x - µx) 2(y - µy) 

+ 
∂f2(µx, µy)2

∂x∂y   (x - µx) 2(y - µy)2  }p(x,y) dx dy 

The first line of this is usually used as the first-order approximation, with other terms assumed to be 
insignificant.  To add a bit of challenge, here's the 2nd-order expansion for the case where the input 
variables are independent. 

σz2  =2     f(µx, µy)2  -  2f(µx, µy)  µẑ   +  
⌡


⌠

-∞

∞

⌡⌠
-∞

∞
f̂(x,y)2 p(x,y) dx dy   

= f(µx, µy)2  -  2f(µx, µy)µẑ     

+  

⌡


⌠

-∞

∞

⌡⌠
-∞

∞
 {f(µx, µy) + ∂y  (y - µy) 

∂f(µx, µy)
 +  

∂y2    
(y - µy)2

2!  
∂f2(µx, µy)

   

 +  
∂f(µx, µy)

∂x  (x - µx)   +  
∂f2(µx, µy)

∂x∂y  (x - µx)(y - µy)   +  
∂f3(µx, µy)

∂x∂y2    
(x - µx)(y - µy)2

2!      

 +   
∂f2(µx, µy)

∂x2    
(x - µx)2

2!     + 
∂f3(µx, µy)

∂x2∂y
   

(x - µx)2(y - µy)
2!      

  + 
∂f4(µx, µy)

∂x2∂y2    
(x - µx)2(y - µy)2

2! 2!     }2 p(x,y)dxdy. 

Assuming the input variables are independent implies that all the co-varying terms have a value of zero.  
Thus, 
σz2  =2     f(µx, µy)2  -  2f(µx, µy)   µẑ   

+  

⌡


⌠

-∞

∞

⌡⌠
-∞

∞
 {f(µx, µy) + ∂y  (y - µy) 

∂f(µx, µy)
 +  

∂y2    
(y - µy)2

2!  
∂f2(µx, µy)

  

       +  
∂f(µx, µy)

∂x  (x - µx)   +   
∂f2(µx, µy)

∂x2    
(x - µx)2

2!     }2 p(x,y)dxdy. 

 
The elimination of the co-varying terms also simplifies the elimination of the square. 
σz2  =2     f(µx, µy)2  -  2f(µx, µy)   µẑ   
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+  

⌡


⌠

-∞

∞

⌡⌠
-∞

∞
 {f(µx, µy)2 + 2f(µx, µy) ∂y  (y - µy) 

∂f(µx, µy)
 + 2f(µx, µy)

∂y2    
(y - µy)2

2!   
∂f2(µx, µy)

  

 

+ 
∂f(µx, µy)2

∂y  (y - µy) 2 + 2
∂f(µx, µy)

∂y   
∂f2(µx, µy)

∂y2    
(y - µy)3

2!    +  
∂f2(µx, µy)2

∂y2    
(y - µy)4

2!    

 
 

+ 2f(µx, µy) 
∂f(µx, µy)

∂x  (x - µx)  + 2f(µx, µy) 
∂f2(µx, µy)

∂x2    
(x - µx)2

2!      

 

+  
∂f(µx, µy)2

∂x  (x - µx) 2 +2 
∂f(µx, µy)

∂x   
∂f2(µx, µy)

∂x2    
(x - µx)3

2!    +  
∂f2(µx, µy)2

∂x2    
(x - µx)4

2!   } p(x,y)dxdy. 

 
 
σz2  =2     -  2f(µx, µy)   µẑ   

+2f(µx, µy)2 + 0 + 2f(µx, µy)
∂f2(µx, µy)

∂y2    
σy2

2!     

 

+ 
∂f(µx, µy)2

∂y   σy2 + 2
∂f(µx, µy)

∂y   
∂f2(µx, µy)

∂y2    
γy σy3

2!     

 

+ 0 + 2f(µx, µy) 
∂f2(µx, µy)

∂x2    
σx2

2!     +  
∂f(µx, µy)2

∂x   σx2 +2 
∂f(µx, µy)

∂x   
∂f2(µx, µy)

∂x2    
γx σx3

2!     

+  

⌡


⌠

-∞

∞

⌡⌠
-∞

∞
 {  

∂y2    
(y - µy)4

2!  
∂f2(µx, µy)2

 +  
∂x2    

(x - µx)4
2!  

∂f2(µx, µy)2
 } p(x,y)dxdy. 

 

σz2  =2    
∂f(µx, µy)2

∂y   σy2 + 2
∂f(µx, µy)

∂y   
∂f2(µx, µy)

∂y2    
γy σy3

2!     

 

 +  
∂f(µx, µy)2

∂x   σx2 +2 
∂f(µx, µy)

∂x   
∂f2(µx, µy)

∂x2    
γx σx3

2!     

 +  

⌡


⌠

-∞

∞

⌡⌠
-∞

∞
 {  

∂y2    
(y - µy)4

2!  
∂f2(µx, µy)2

 +  
∂x2    

(x - µx)4
2!  

∂f2(µx, µy)2
 } p(x,y)dxdy. 

 
We neglect the higher ordered terms remaining within the integral to get the earlier result.
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13. Monte Carlo Modeling   
Monte Carlo modeling is a numerical approach to estimating the probability distribution of model 
outputs.  It consists of three steps: 

1. Create a large number of statistically representative input data sets.  Usually between 100 and 
several thousand separate data sets are needed, with each data set considered equally probable. 

2. Run each input data set through the simulation model, independently. 
3. From the resulting large number of statistically representative output data sets, infer a 

probability distribution for the output variables. 
 
Random Number Generation 
To implement the Monte Carlo approach, there must be an ability to generate random numbers on a 
computer that represent our understanding of the uncertainty in the problem.  The handout reviews some 
methods for generating random numbers for specific distributions.  Numerical methods for generating 
random numbers for many common named distributions can be found at http://en.wikipedia.org, along 
with other useful information.   
 
Example: Synthetic Streamflow Modeling 
The study of reservoir operations is usually hampered by short streamflow records.  A 40-year streamflow 
record is unlikely to contain a 100-year flood or a 100-year drought.  This makes it difficult to 
characterize the probabilistic performance of proposed reservoir construction and operation decisions, 
particularly where performance under extreme conditions is important.  The generation of synthetic 
streamflows, based on Monte Carlo analysis, is sometimes proposed to overcome this problem. 
 
A typical problem consists of a simple reservoir model (conservation of mass), with a release rule, and a 
fixed rate of water demand.  The streamflow input is generated by a Monte Carlo method.  Since 
streamflows are correlated in time (temporal autocorrelation), a time series model is used.  The Thomas-
Fiering or Lag-1 Markov model is one such model. 
    Qt = µ + ρ(Qt-1 - µ) + zt σ(1-ρ2)0.5,  
where Qt is the streamflow in time t, µ is the mean streamflow, ρ is the lag-1 correlation between 
streamflows in time, σ is the variance of streamflows, and zt is a "standard normal deviate" generated 
randomly for each time period.  A standard normal deviate is a random number, normally distributed with 
a mean of zero and a standard deviation of one.  The parameters µ, ρ, and σ can be constants whose values 
are selected before the numerical study, can themselves be part of a larger Monte Carlo study (where the 
parameter values are also considered to be uncertain). 
 
This model can then be used to generate an arbitrary number of arbitrarily long "synthetic" streamflow 
records.  These synthetic records are then run through the reservoir model to generate a distribution of 
estimated reservoir performances (costs, benefits, failures to supply fixed levels of water demand, etc.). 
 
Example: Numerical Integration Using Monte Carlo 
Another common use of Monte Carlo analysis is to integrate difficult functions.  The Monte Carlo method 
of integrating a function is to evaluate the value of the function at a large number of randomly-selected 
points in the range of its independent variables.  The integral of the function is then approximately the 
average value of the function found for the randomly-selected points, multiplied by the range or area of 
the independent variables of the integration. 
 
Tail Behavior and Sample Size 
With a small sample size, Monte Carlo experiments may not "see" important extreme events.  Thus, if 
performance under extreme events is important, a large sample size is often needed. 
 
Reference Law, A.M. and W.D. Kelton (1991), Simulation Modeling and Analysis, McGraw Hill, N.Y 

http://en.wikipedia.org/
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Rugen, Pamela and Callahan, Barbara(1996), “An overview of Monte Carlo, a fifty year perspective”, 
Human and Ecological Risk Assessment: An International Journal, 2: 4, 671 — 680. 
 
Fault Tree Analysis 
Fault tree analysis is used to depict the range of ways that a failure or other desirable outcome can occur 
and calculate the probabilities of failure and particular failure mechanisms.  For example, a levee can fail 
by several mechanisms, such as overtopping, slump failure, piping, wave erosion, toe scour, etc.  Such 
analyses are commonly applied in aerospace, nuclear, military, and industrial systems.   
 
Typically, a fault tree diagram has a particular “top event” failure, and “bottom” initiating events, with a 
logic of failure mechanisms in between, with a particular nomenclature.  By assigning probabilities to the 
initiating events, the probability of overall failure can be calculated, and means can be identified to reduce 
the overall probability of failure. 
 
There are many web tutorials on this topic. 

 
 
 
 

xkcd.com/1210/
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14. Markov Chains 
 
We are often interested in how the probability distribution of the condition or state of a system will evolve 
over time.  Markov chains can help us do this in some cases. 
 
Markov processes have the probability of a state occurring in the next time period depend only on the 
present state of the system.  The particular path by which the current state came about is unimportant in 
determining the probability of what happens next.  Stated more mathematically, 
 
 
(1)      P(Xt+1= sj |Xt, Xt-1, Xt-2, ...) = P(Xt+1= sj |Xt), for all states sj and periods t. 
 
If the transition probabilities do not change over time, then the process is called stationary, 
(2) P(Xt+1= sj |Xt = si) = P(Xt=1= sj |Xt=0 = si),  for all states i and j and periods t. 
 
An Example:  Sedimentation in a Ship Channel 
Given a probability distribution for the annual amount of sedimentation in a shipping channel, what is the 
probability distribution of accumulated sediment in each future year?  Also, how many years are likely to 
elapse until accumulated deposition encroaches to a depth that would hinder navigation?   
 
Let S(t) be the amount of sediment that has accumulates in the channel over t years and si be the amount 
of sediment deposited in a particular year i, 
(3)   S(t) = s1 + s2 + s3 + ... + st  
 
Let P1(s) be the probability that amount s is deposited in a particular year.  This probability distribution is 
assumed not to vary in time.  The probability distribution of the accumulation of sediment after one year 
would therefore be P1(S1 = s) = P1(s). 
 
For the second year, t=2, the probability distribution for the 2-year accumulation becomes more complex.  
There are a number of ways for each amount of accumulation to occur, 

(4)   P2(S) = ⌡⌠
0

S
 P1(s) P1(S - s) ds . 

 

This represents the accumulation of the probabilities for all the ways that amount S can accumulate over 
two years. 
 
The nice trait of Markov chains is that, once the probability distribution for states at one time period are 
calculated, it is simple to calculate the probability distribution for the next time period.  For the third year, 
t=3, we can adapt the previous equation to find P3(S), 

(5)   P3(S) = ⌡⌠
0

S
 P1(s) P2(S - s) ds . 

We can then step blithely on for as many time periods as we like with relative computational efficiency 
using the general formula: 

(6)   Pt(S) = ⌡⌠
0

S
 P1(s) Pt-1(S - s) ds . 
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Generalization 
This last equation is a specific case of the more general Chapman-Kolmogorov equations (Hillier and 
Lieberman 1995).  Let  pij(n) be the probability of the process going from state i to state j in n steps.  
Then,  

(7)   pij(n) = ∑
k=0

m
 pik(v) pkj(n-v)  ,  

for all i, j, and n where 0 ≤ v ≤ n, m is the number of possible states, and v is some arbitrary intermediate 
number of steps.  In words, the probability of going from state i to state j in n steps is the sum of the joint 
probabilities of going from i to k in v steps and then from k to j in the remaining n-v steps.  For v = 1, the 
equation reduces to Equation 8 below, which is just a discrete version of Equation 6: 

(8)   pij(n) = ∑
k=0

m
 pik pkj(n-1)  . 

 
Example Continued: Time to First Passage 
For the sedimentation problem above, it is useful to have estimates of the probability distribution of the 
time when sediment accumulation will first exceed some volume V, P(t|V).  Lund (1990) represents the 
probability distribution of time of channel encroachment, given that volume V had just been dredged 
beyond the navigation depth for the channel.  Mathematically P(t|V) is, 
  
(9)   P(t|V) = P(S(t) > V| S(t-1) < V). 
 
This is equivalent to: 

(10)   P(t|V) = ⌡⌠
V

∞
Pt(S)dS  -  ⌡⌠

V

∞
Pt-1(S)dS ,  or 

(11)   P(t|V) = 










1 - ⌡⌠
0

V
Pt(S)dS   -  











1 - ⌡⌠
0

V
Pt-1(S)dS ,  

 
the probability that V will be exceeded by year t, minus the probability that V would be exceeded before 
t.  Combining terms and simplifying gives, 

(12)   P(t|V) = ⌡⌠
0

V
 [Pt-1(S) - Pt(S)]dS , 

which can be resolved using Equation 6. 
 
Other Applications 
Similar formulations can be used for beach erosion, sedimentation in a reservoir or detention basin, or 
growth in population, water demand, or waste loads. 
 
We have a host of problems where we are interested in the probability distributions of demands or loads 
on our systems and the probability distributions of when a demand or load will first exceed some system 
capacity. 
 
Markov chains work well where there is little or no long-term persistence or memory in the transition 
probabilities.  (This makes it difficult to use Markov chains for droughts.)  In the example case above, 
sedimentation was assumed to be independently distributed between years and unaffected by the amount 
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of sediment that had already accumulated.  These assumptions limit the range of cases that the method 
would apply to. 
 
Much else can be said of Markov chains.  There is a huge literature on the subject.  It is probably more 
important to get a feel for their application and fundamentals, and leave you to read the literature as you 
see problems arise. 
 
A Discrete Example: Valve Failure and Replacement Rates 
A city has many thousands of valves in its water distribution system.  Generally, these valves are 
"exercised" and inspected each year.  Upon inspection, valves are classified as OK, Stiff (hard to turn), or 
Failed (cannot be turned).  From years of experience, the state transition probability matrix T is as 
follows: 

  State at t+1  
State at t OK Stiff Failed 
OK 0.90 0.08 0.02 
Stiff 0.20 0.60 0.20 
Failed 0 0 1 

 
If only failed valves are replaced, what is the expected proportion of OK, Stiff, and Failed values each 
year?  Assume an initial installation of all new valves (in OK condition).  What is the probability 
distribution of valve lifetime?  For inventory and budget purposes, what is the proportion of valves 
needing replacement in each year? 
 
Probabilities for each year, without replacement of failed valves: 

t= 0 1 2 t+1 
OK 1 0.90 0.90(0.9) + 0.08(0.2) OKt (0.9) + Stifft(0.2) 
Stiff 0 0.08 0.90(0.08) + 0.08(0.6) OKt (0.08) + Stifft(0.6) 
Failed 0 0.02 0.90(0.02) + 0.08(0.2) + 0.02 OKt (0.02) + Stifft(0.2) + Failt 

     
 
These are plotted in the adjacent 
figure.   
 
 
 
Without replacing any valves, 
the number of OK valves in the 
system gradually decays, until 
by about the year 180, all valves 
have failed. 
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Examining Replacement Policies 
If failed valves are replaced with new valves in OK condition, the “sticky” failure state is eliminated.  The 
probabilities for each year, then change: 

t= 0 1 2 t+1 
OK 1 0.90 (0.90+0.02)(0.9) + 0.08(0.2) (OKt+Failt)(0.9) + Stifft(0.2) 
Stiff 0 0.08 (0.90+0.02)(0.08) + 0.08(0.6) (OKt+Failt)(0.08) + Stifft(0.6) 
Failed 0 0.02 (0.90+0.02)(0.02) + 0.08(0.2)  (OKt+Failt)(0.02) + Stifft(0.2) 

        Replace only Failed Valves           Replace both Failed and Stiff Valves 

 
Transition probability matrix with Failed 

Valves Replaced  
 Transition probability matrix with Failed 

and Stiff Valves Replaced  
 State at t+1   State at t+1 
State at t OK Stiff Failed  State at t OK Stiff Failed 
OK 0.9 0.08 0.02  OK 0.9 0.08 0.02 
Stiff 0.2 0.6 0.2  Stiff 0.9 0.08 0.02 
Failed 0.9 0.08 0.02  Failed 0.9 0.08 0.02 

[Perhaps replace failed and stiff valves with {0.9, 0.08, 0.02}states, the characteristics of OK valves.] 
 
With failed valves being replaced, we have essentially changed the state transition probability matrix so 
that Failed states transition to OK states in the next time-step.  Similarly for a strategy of replacing both 
failed and stiff valves.  The plots above both include annual costs, where the cost of a failed valve is 
$50/year and the cost of replacing a valve is $300. 
 
To find the equilibrium condition (for large t), we set OKt = OKt+1, Stifft = Stifft+1, and Failt = Failt+1.  
(This is, after all, the definition of an equilibrium condition.)  These would be known as the stationary 
probabilities for this process.  Where all failed valves are replaced by OK valves, this provides a solution 
by three simultaneous linear equations: 
  OKt = (OKt+Failt)(0.9) + Stifft(0.2) 
  Stifft = (OKt+Failt)(0.08) + Stifft(0.6) 
  Failt = (OKt+Failt)(0.02) + Stifft(0.2) 
This is the same as using the state transition probability matrix as:    X = XT T   
 
For this particular example, noting that the state transition probability matrix has been changed to reflect 
failed states transitioning to OK states, P(OK) = 0.794, P(Stiff) = 0.159, P(Fail) = 0.047. 
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To find the optimal equilibrium replacement policy, XT T - X = R, where R is a vector of replacements, 
ROK = the additional OK valves installed, and Rstiff and Rfailed are the number of failed and stiff valves 
replaced.  The sum of R elements must equal zero.  The sum of X must equal the number of valves in the 
system.  And of course Rstiff and Rfailed are limited by the number of failed and stiff valves (X).  X and R 
are decision variables in a linear program with an objective function of minimizing the costs from failed 
valves plus the cost of valve replacements. 
 
How many replacement valves should be ordered? 
How would you estimate the probability distribution of the number of valves that need replacement each 
year?  This would be a Binomial distribution with n as the number of valves in the system, and Pfail = 
P(Fail) above.   

   B(x|n, Pfail) = 
n!

x! (n-x)!  Pfailx (1-Pfail)n-x. 

 
Where n = 1,000 this distribution is plotted below, for the stationary long-term probabilities. 

 

Long-term Probability Distribution of Number of Failed Valves 
(n=1,000) 
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Example:  Markov Chains Applied to Inventory Stocks 
[Gosh!  This pdf of the number of replacement valves needed each year, is a nice start for an example of 
an inventory problem.  Given this pdf for removal of valves from inventory, how many years will a given 
stock of, say 150 valves last?  Given an ordering cost and unit cost/valve, what is the optimal inventory of 
valves to order?  Have to make assumptions about how fast valves can be delivered.] 
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Benjamin, Jack R. and C. Allin Cornell (1970), Probability, Statistics, and Decision for Civil Engineers, 

McGraw-Hill Book. Co., N.Y.  
Hillier, F.S. and G.J. Lieberman (1995), Introduction to Operations Research, McGraw-Hill, N.Y.  
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15. Stochastic Dynamic Programming     (2 lectures) 
Bellman, the major originator of dynamic programming, is said to have referred to dynamic programming 
as a process for multi-stage decision-making.  This is the approach taken here. 
 
Review of Deterministic Dynamic Programming 
Recall that dynamic programming can be used where the problem can be structured to consist of a series 
of staged decisions, where the decisions at each stage of the problem are contingent on the state of the 
system.  Thus, for reservoir operations problems, the problem is divided into release decisions at each 
time period, with the state of the system being the amount of reservoir storage at each time period.  For a 
single-reservoir system with three time periods, the problem is schematically, 

Inflow t Release t Inflow t+1 Release t+1 Inflow t+2 Release t+2

Entering 
Storage t

Entering 
Storage t+1

Entering 
Storage t+2

Entering 
Storage t+3Cons. of 

Mass t
Cons. of 
Mass t+1

Cons. of 
Mass t+2

 
 
Each time period is a stage.  At each stage, a decision must be made, in this case the volume of water to 
be released.  The decision at each stage will have some effect on the condition of the system, described by 
a state variable, in this case a reservoir storage volume.  In this case the state of the system is governed by 
conservation of mass. 
 
The decisions and states also have economic consequences, described by an objective function.  In this 
case, let Bt(Qt,St) be the economic value of releasing Qt from the reservoir and having storage St at time 
period t.  The overall objective is to: 

     Maximize ∑
t=0

T
 Bt(Qt,St) , 

over a operating horizon of T. 
 
Decisions are linked between stages using a recursive formula, really an accumulated objective function.  
This accumulation can proceed either forward or backward.  Oddly, backward is often easier.  For this 
case the backward recursion is: 
   ft(Qt,St) = Bt(Qt,St) + ft+1*(St+1=St+It-Qt). 
This recursion consists of two parts.  The first term Bt(Qt,St) contains the direct benefits of the decision in 
stage t, Qt, given the state, St.  The second term is the accumulation of the best decisions from all later 
stages (remember we're going backwards). 
 
    ft*(St) = MAX 

Qt
    ft(Qt,St). 

This ft*(St) is stored, along with the accompanying decision, to facilitate calculations for other stages.  
Only the best decision for each state at each stage is stored. 
 
The forward recursion would be: 
   ft(Qt,St) = Bt(Qt,St) + ft-1*(St-1=St-It+Qt). 
 
For the forward formulation, the state variable is the outgoing state from stage t, St = St-1 + It - Qt.  The 
ft*(St) is found in the same way as in the backward formulation. 
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The solution of the problem typically involves setting up a computational table for each stage.  In the 
backward formulation, the solution starts with stage t = T and moves backwards until t = 1.  Both storage 
and release decisions must be discretized.  Here Release has m discrete values and Storage has p discrete 
values.  The tables below are for the solution by a backwards formulation. 
 
Stage T       
n = T  fT(ST, QT)= B(ST, QT)    
 State ST QT:  0 - - - - - - - - - - - - - - - - - - - -  Qm f*(ST) Q*T 
 0    
 |               - - - - - - - - - - - - - - - - - -   
 |    
Reservoir Capacity = sp    
... 
 
Stage t     
n = t  ft(St, Qt)= B(St, Qt) + f*t+1 (St - Qt + It)   
 State St Qt:  0 - - - - - - - - - - - - - - - - - - - -  Qm f*(St) Q*t 
 0    
 |               - - - - - - - - - - - - - - - - - -   
 |    
Reservoir Capacity = sp    
... 
 
Stage t = 1     
n = 1  f1(S1, Q1)= B(S1, Q1) + f*2 (S1 - Q1 + I1)   
 S1 Q1:  0 - - - - - - - - - - - - - - - - - - - - - - - Qm f*(S1) Q*1 
 S1 = initial             - - - - - - - - - - - - - - - - - - - - - -    
 storage value   
There is only one reservoir state in the present, S1. 
 
Once the tables are filled up to the present state (stage t=1), the optimal objective function value (f*(S1)) 
and optimal initial decision (Q1*) can be found.  The initial decision and state are then used to find the 
optimal state in the next stage, with the table identifying the optimal decision for that state.  By chaining 
forward in this way, the optimal solutions (and states) can be found for all stages. 
 
While this method seems complex, it compares very favorably with enumeration, and is a form of implicit 
enumeration.  The number of cost calculations grow with the number and discretization of state variables. 
 
Stochastic Dynamic Programming without Temporal Autocorrelation 
A dynamic program can incorporate several forms of uncertainty without temporal autocorrelation.   
 
Uncertainty in the Direct Benefit Function 
The easiest form of uncertainty to incorporate into dynamic programming is uncertainty in the benefit 
function.  In the reservoir case above, the benefits from operation in a particular time step may be 
uncertain.  Bt(St, Qt) may not be a single number, but may really be a probability distribution, P(Bt(St, 
Qt)).  In this case, the recursive equation would be modified to: 
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   ft(Qt,St) = ∑
k=0

n
 [P(Btk(Qt,St)) Bk]  + ft+1*(St+1=St+It-Qt), 

where the range of direct benefits has been divided into n increments with values Bk and a probability 
P(Btk(Qt,St)), conditioned on the state of the system (St), the stage (t), and the decision (Qt).  For this 
case, this is the only change in the dynamic program and its solution from the deterministic case. 
 
Uncertainty in the State Transition 
For reservoirs, there is usually uncertainty in future inflows (It) and relative certainty in the benefits of 
operations Bt(Qt,St).  Uncertainty in the inflows affects only the state transition part of the recursive 
equation.  Thus, we are not certain of the future state of the system resulting from a given decision made 
at an incoming state.  To accommodate this uncertainty, the recursion can be modified to: 

 ft(Qt,St) = Bt(Qt,St) + ∑
k=0

n
 [P(Itk) ft+1*(St+1=St+Itk-Qt)] , for a backward formulation 

or 

 ft(Qt,St) = Bt(Qt,St) + ∑
k=0

n
 [P(Itk) ft-1*(St-1=St-Itk+Qt)] , for a forward formulation. 

Again, the change in the recursive equation is the only change in the dynamic program and solution 
method from the deterministic case. 
 
The nice thing about the incorporation of these types of uncertainty into dynamic programming is that the 
computational size of the problem does not change greatly from the deterministic case. 
 
Stochastic Dynamic Programming with Markov Processes 
In many cases the state transition probabilities are conditioned on the previous period’s events.  For 
example, the probability of a streamflow in one period is assumed to be affected by the streamflow in the 
previous period.  This makes the state transition a Markov process, and requires a little different change in 
the dynamic programming recursive equation. 
 
Uncertainty in the State Transition 
For the reservoir operation problem, where the probabilities of reservoir inflows It are conditioned on the 
previous periods flow, the dynamic programming recursion becomes, for a backward formulation: 

  ft(Qt,St, It-1) = Bt(Qt,St) + ∑
k=0

n
 [P(Itk|It-1) ft+1*(St+1=St+Itk-Qt, Itk)] ,  

This addition of Markov uncertainty adds another state variable to the formulation (It), and can greatly 
increase the computational effort needed to solve the problem.  Because the present inflows are 
conditioned on those of the immediate past, each possible past flow must be represented as a possible 
state in the recursive equation, 
   ft+1*(St+1, It) =  MAX 

Qt+1
    ft+1(Qt+1,St+1, It). 

The optimal decision here is conditioned on both states: reservoir storage and recent inflow. 
 
A forward recursion for this problem would be: 

  ft(Qt,St, It) = Bt(Qt,St) + ∑
k=0

n
 [P(It-1,k|It) ft-1*(St-1=St-It+Qt, It-1,k)] ,  
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where St-1 is the outgoing storage from stage t-1.  Note the reversal of the conditional probability for this 
formulation. (Bayes' theorem?) (There might be a better forward recursion.) 
 
Uncertainty in the Direct Benefit Function  
Sometimes the probability distribution for the direct benefits portion of the recursive equation are 
conditioned on events in the previous period/stage.  For the case of the reservoir, if growth in 
recreation/fishing potential changes in a Markovian way with reservoir storage in the previous period, 
there would be consequent changes in the probabilities of how storage and releases would be valued.  The 
following backward recursion reflects this: 

 ft(Qt,St,St-1) = ∑
k=0

n
 P(Rkt|St-1)[Bt(Qt,St,Rkt) ] + ft+1*(St+1=St+It-Qt,St). 

Again, this adds another state variable to the formulation.  Also, both parts of the recursion become 
probabilistic. 
 
Another potential application of time-correlated uncertainty in the direct benefit function might be where 
hydropower value (price) is correlated in time, due to weather (e.g., air conditioning peaking) or 
hydrologic conditions.  This might be formulated as in the following backward recursion: 

 ft(Qt,St,Ht-1) = ∑
k=0

n
 P(Hkt|Ht-1)[Bt(Qt,St,Hkt)  + ft+1*(St+1=St+It-Qt,Hkt)]. 

Applications 
Stochastic dynamic programming (SDP) has been applied to a variety of problems.  Some major 
examples include:  reservoir problems, capacity expansion problems, inventory problems, and optimal 
maintenance and replacement problems.  Kelman, et al. (1990), Faber and Stedinger (2001), and 
Stedinger et al (2013) have another variant of SDP, Sampling SDP. 
 
[Would be good to add Sampling SDP and SDP with climatic change uncertainty – expanding on Vicuna 
2007 dissertation.  Ideally, expand Zhu et al 2007 DP to include uncertainty in future change in flood 
frequency.] 
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16. Probabilistic Linear Programming  
While many probabilistic optimization problems can be formulated as stochastic dynamic programs, 
several special classes of probabilistic optimization problems can be formulated and solved more quickly 
using linear programming methods.  We examine two major special cases: chance-constrained linear 
programming and two-stage linear programming. 
 
Brief Review of Linear Programming  
A linear program is any optimization problem that is formulated as: 
 
 Max or Min     z = cT X 
 
 Subject to:  A X ≤ b, 
where the vector c represents the unit cost or benefit of each unit of each decision variable in X.  The 
linear equations in the matrix equation A X ≤ b each represent a constraint on the solution.  Together, the 
constraints define the feasible region of solutions. 
 
The defining aspect of linear programming is the objective function and all the constraints are linear. 
 
Linear Programming with Probabilistic Objective Function Coefficients 
Let the elements of the objective function coefficient vector ci be probabilistic and independent, drawn 
from a known probability distribution, Pi(ci), and the true value of ci is not known until after the decisions 
Xi are made.  If expected value decision-making is to be used, the objective function becomes, 
 

 Max or Min     z = 
1

( )
n

i i i i i
i

P c c X dc
∞

= −∞
∑ ∫  

 = 
1

( )
n

i i i i i
i

X P c c dc
∞

= −∞
∑ ∫  = 

1
( )

n

i i
i

EV c X
=
∑ =  

1

n

i i
i

c X
=
∑ , 

where ic is the average value of ci. 
 
The result is simple.  If the coefficients in the objective function of a linear program are probabilistic (and 
not correlated) until after the decisions are made, and expected value decision-making is to be used, 
replace the coefficients with their expected values. (Wagner, 1975, p. 668) 
 
Chance-Constraints 
Chance-constrained linear programming considers problems where a specific reliability is desired for 
satisfying individual constraints in a linear program (Charnes and Cooper 1963; nicely developed by Taha 
1992).  Two types of uncertainty can be expressed this way, uncertainty in the coefficients in the A matrix 
and uncertainty in the vector b. 
 
The basic form of a chance constraint is: 
 
    P( )ajT X ≥ bj   ≤ αj, 
 
the probability that constraint j is violated must be less than or equal to αj.  Chance-constraint linear 
programming typically relies on being able to formulate a deterministic equivalent to this type of 
constraint. 
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Uncertainty in the RHS Coefficient bj  
Let bj have a probability distribution, but other constants in the constraint (aj) are known exactly.  The 
chance constraint P( )ajT X ≥ bj   ≤ αj, is represented in the figure below.  From this figure, the 
deterministic equivalent of the chance constraint would be ajT X ≤ b'j, where b'j is set at the αj probability 
level.   

   
          ajT X = b 
 

Often, this is expressed as: b'j = EV(bj) + Kαj var(bj) .  The derivation of this form is simple for the 
normal distribution.  The chance constraint is P( )ajT X ≥ bj   ≤ αj.  Let bj have a mean EV(bj) and a 
variance var(bj). 
 
If we "normalize" the chance-constraint (subtracting the mean and dividing by the standard deviation), the 
chance constraint becomes: 
 

   P�
𝑎𝑎𝑗𝑗
𝑇𝑇𝑋𝑋−𝐸𝐸𝐸𝐸(𝑏𝑏𝑗𝑗)

�𝑣𝑣𝑎𝑎𝑣𝑣(𝑏𝑏𝑗𝑗)
=

𝑏𝑏𝑗𝑗−𝐸𝐸𝐸𝐸(𝑏𝑏𝑗𝑗)

�𝑣𝑣𝑎𝑎𝑣𝑣(𝑏𝑏𝑗𝑗)
� ≤ αj. 

 
This rephrases the chance-constraint in terms of the standard "z-scores" of the probability distribution.  
The deterministic equivalent would then be: 
 

    
𝑎𝑎𝑗𝑗
𝑇𝑇𝑋𝑋−𝐸𝐸𝐸𝐸(𝑏𝑏𝑗𝑗)

�𝑣𝑣𝑎𝑎𝑣𝑣(𝑏𝑏𝑗𝑗)
 ≤ Kαj, 

where Kαj, is the z-score of the normal distribution for a probability of αj of being exceeded.  A bit of 
algebra transforms this into the final equivalent deterministic constraint: 
 

 

 ajT X  ≤ EV(bj) + Kαj var(bj) . 
 

 

Note that for high values of αj, Kαj is negative.  This deterministic equivalent can be incorporated readily 
into the linear program. 
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Chance Constraint Example: Fish kills from effluent loads 
An urban stormwater and wastewater utility hopes to minimize the cost of a variety of control activities, 
with the objective function min z =  cT X, where X is the vector of control activities and c is the vector of 
unit costs.  There are constraints for effluent loads and flows.  
 
The effluent load for copper is a linear function of the control measures with the form a1T X, where a1 is 
the vector of load reduction effectiveness.  Fish in the stream are affected by copper concentration, but 
given uncertainties in the toxicity of copper concentrations and dilution flows entering the stream, there is 
a probability distribution of the effluent load which triggers a fish kill.  The utility can tolerate a 5% 
chance of a fish kill.  What should the chance-constraint look like?   Consider the fish kill probability 
distribution below. 

 
The fish kill chance constraint is P(a1T X ≥ b) ≤ 5% or P(a1T X ≤ b) ≤ 95%.  The deterministic-equivalent 
chance constraint would then be:  

a1T X ≤ b', 
where b' is the effluent load with a 95% chance of not causing a fish kill. 
 
Chance Constraint Example: Water availability for a cropping pattern 
Consider the problem of a farmer selecting a mix of crops for her irrigated farmland.  She hopes to 
maximize her profit from this year, with the objective function max z =  cT X, where X is the vector of 
crop acreages for various crops and c is the vector of unit profits for each crop.  Like all of us, she also 
has constraints, in this case limited land and water.  
 
The farmer receives water from the Central Valley Project (CVP), which provides a variable amount of 
water, depending on how wet the year has been.  Farm water consumption is given by a1T X, where a1 is 
the vector of water requirements per acre of each crop.  The farmer wants to solve this optimization 
problem using a linear program, with only a 20% chance of the crops planted requiring more water than is 
available.  (The cropping season requires that the planting be done before water availability is known.)  
What would this constraint look like?   
 
The non-exceedence probability (CDF) for various water allocations from the CVP is given below. 
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The farmer's risk constraint is P(a1T X ≥ b) ≤ 20% or P(a1T X ≤ b) ≤ 80%.  The deterministic-equivalent 
chance constraint would then be:  

a1T X ≤ b', 
where b' is the amount of water from the CVP with an 80% chance of being exceeded, or a 20% chance of 
not being met. 
 
Uncertainty in the Elements of Matrix A  
What if the elements in the A matrix have probabilistic values?  Let the elements of A, aij, have mean 
values E(aij), variance var(aij), and covariance cov(aij,akl).  Let the right-hand-side parameters bj be 
known exactly.  For the j-th constraint, the chance-constraint is: 

    P
1

n

ij i j
i

a X b
=

 ≥ 
 
∑ ≤ αj. 

Define a variable, hj = 
1

n

ij i
i

a X
=
∑ .  If the A matrix values are probabilistic, hj should be approximately 

normally distributed (by the Central Limit Theorem).  The mean of hj will be EV(hj) = ∑
i=1

n
EV(aij) Xi  , 

and its variance will be var(hj) = XT Dj X, where Dj is the j-th covariance matrix: 

   Dj  = 








var(a1j)  ... cov(a1j,anj)

 ...  ...  ...
 cov(anj,a1j) ...  var(anj)

  

 
Given the definition of hj, the chance-constraint becomes: 

   P(hj ≥ bj) = P
1

n

ij i j
i

a X b
=

 ≥ 
 
∑ ≤ αj. 

Normalizing the chance-constraint, yields: 

   P
( ) ( )

( ) ( )
j j j j

j j

h EV h b EV h
var h var h

 − −
 ≥
 
 

≤ αj. 

Using the same argument used above, the deterministic equivalent to this chance-constraint is: 
 

    
( )

( )
j j

j

b EV h
var h
−

≥ Kαj, 

where Kαj is the standard normal deviate with a probability αj of being exceeded.  Expanding this 
equation to eliminate reference to hj yields: 

    bj -  ∑
i=1

n
E(aij) Xi   ≥ Kαj    XT Dj X , 

or 

  ∑
i=1

n
E(aij) Xi   + Kαj  XT Dj X ≤ bj.  

Unfortunately, this is a non-linear deterministic equivalent constraint and would have to be solved using a 
non-linear programming method, that can incorporate non-linear constraints (yuk!). 
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For the special case without covariance between elements of A,  
   

1
( )

n

ij i
i

E a X
=
∑ + Kαj  ∑

i=1

n
var(aij) Xi2      ≤ bj. 

If only one aij is uncertain, then Var(aki) = 0, k ≠ i, and this case yields a linear constraint. 
 
Uncertainty in Both the A Matrix and b Vector 
If both the elements of the A matrix and vector b are uncertain and normally distributed, a similar 
approach can be taken to develop an equivalent deterministic set of constraints.  The chance-constraint is: 

    P
1

0
n

ij i j
i

a X b
=

 − ≥ 
 
∑ ≤ αj. 

Define a variable, hj = 
1

n

ij i j
i

a X b
=

−∑ , which is approximately normally distributed.  The mean of hj will 

be EV(hj) = ∑
i=1

n
EV(aij) Xi - EV(bj) , and its variance will be var(hj) = XT Dj X + var(bj), where Dj is the 

j-th covariance matrix defined above. 

   P(hj ≥ 0) = P










∑
i=1

n
aij Xi  - bj ≥ 0   ≤ αj. 

Normalizing the chance-constraint yields: 

    P
( )

0
( )

j j

j

h EV h
var h

 −
 ≥
 
 

≤ αj. 

This leads to the deterministic equivalent constraint: 

    
( )
( )

j

j

EV h
var h

−
≤ Kαj. 

Substituting to remove hj yields, 

 ∑
i=1

n
EV(aij) Xi   +  Kαj  XT Dj X + var(bj)   ≤  EV(bj). 

Unfortunately, this too is a non-linear constraint. 
Chance-Constraints Requiring Satisfaction of Several Constraints 
Sometimes several probabilistic constraints must be satisfied for a particular system reliability to be 
achieved.  This is the case in pipelines, where each pipe segment in a series must function for the entire 
pipeline to be functional.  It is also the case in ship channels, where all reaches must be navigable for the 
channel to be useful (Ratick, et al. 1992). 
 

This represents a limitation for conventional chance-constraint programming.  These are sometimes called 
joint chance-constraints (Wagner 1975, p. 676).  They must typically be solved by non-linear 
programming. 
 
Example:  Multi-Season Dredging of a Single Reach (Ratick, et al. 1992) 
Consider the problem of dredging a single reach over several periods where sedimentation in the reach is 
probabilistic.  If Ct(Vt) is the cost of dredging in each period, the objective function becomes: 
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     MIN z = ∑
t=0

n
 Ct(Vt) . 

The constraints would be: 

      P










∑
τ=0

t
 Vτ ≥ St   ≥ α, for all t,  

where α is the reliability of the channel for each time period and St is the probabilistic amount of 
sediment that accumulates in the reach from time τ=1 until time t. 
 
If the amount of sedimentation in each period s1 is log-normally distributed and independent in time, how 
would chance constraints be formulated for each period?  Let EV(s1) = 100,000 yd3 and SD(s1) = 
120,000 yd3.  Here's the lognormal distribution: 

   f(x) = 
( )

1
2 lnxxπ σ

exp








-0.5 






lnx - µlnx

σlnx

2
 . 

To transform these parameter values to the ln-scale for the log-normal distribution, we use: 

σlnx2 = ln






σx2

µx2 + 1   and µlnx = ln(µx) - (σlnx2)/2, so σlnx2 = 0.892 and µlnx = 11.067. 

 
For the first time period, t=1, the deterministic equivalent to the chance-constraint is easy.  If we want 
only a 5% chance of sedimentation exceeding dredging (95% chance of V0 + V1 ≥ S1), the z-score from 
the normal distribution is +1.645.  Thus the deterministic equivalent sediment deposition would be: 
 
ln(SD1)  - µlnx

σlnx
  = +1.645  or  ln(SD1) =  µlnx +1.645 σlnx  = 12.621, or SD1 = 302,740. 

 

The deterministic equivalent constraint for the first period then becomes:  
 

    V0 + V1 ≥ 302,740. 
 

For later periods, the probability distributions of accumulated deposition will not be lognormal, but can be 
found using a Markov process.  The resulting probability distribution can then be integrated to find the 
amount of accumulated sediment that represents the 95% extreme.  This amount would then appear as the 
right-hand-side constant in the equivalent deterministic constraint for each subsequent period. 
 
Joint Chance-Constraints Example 
Consider the dredging problem above, but with two reaches.  Assume the unlikely case where 
sedimentation rates in each reach are independent events.  The objective function becomes: 

     MIN z = 
2

0 1
( )

n

ti ti
t i

C V
= =
∑∑ , 

and the constraints become: 

     P










∑
τ=0

t
 Vτ1 ≥ St1 and ∑

τ=0

t
 Vτ2 ≥ St2   ≥ α, for each t, 

where α is the probability that both reaches are navigable for each time period (i.e., the channel 
reliability).   Both reaches must be navigable for the navigation channel to work. 
 

Assuming that St1 and St2 are independent events, let's break this constraint into pieces closer to a linear 
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program. 

(1)   ∑
τ=0

t
 Vτ1  ≥ St1D,   (2)   ∑

τ=0

t
 Vτ2  ≥ St2D, 

and 
(3) P(St1 ≤ St1D) P(St2 ≤ St2D) ≥ α. 
 

Unfortunately, this third constraint is not linear.  Here's one way to get around this, but it requires solving 
several linear programs. 
 

To satisfy constraint 3, only some values of St1D and St2D are feasible, as depicted below.  By solving 
several linear programs for the combinations of values that just satisfy the edge of this feasible region, 
and selecting the best of these solutions, the least-cost chance-constrained dredging schedule can be 
found.  Unfortunately, the number of linear programs which needs to be run increases greatly with the 
number of periods and reaches which have joint-chance constraints. 
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17. Two-Stage Linear Programming 
 
Two-stage and multi-stage linear programming is the second class of probabilistic linear programming 
methods that can represent a wide range of problems and often can be solved with relative ease (Birge and 
Louveaux 1997).  Multi-stage formulations of linear programming problems often allow for better and 
more decision-oriented analysis of uncertainties (Higle and Wallace 2003). 
 
Two-Stage Problems 
Many decision-making problems occur in two stages.  Some decision must be made, then something 
happens involving chance, and a follow-up decision/response is made which depends on the chance event 
and the first-stage decision.  A decision-tree for this situation appears below. 
 

 

 First-Stage  
  Decisions 

Second-Stage  
  Decisions 

A 

B 

p1 

p2 

p3 

p4 

C(A) + p1 C(D|A) 

C(A) + p2 C(D|A) 

C(B) + p3 C(D|B) 

C(B) + p4 C(C|B) 

C(A) + p1 C(C|A) 

C(A) + p2 C(C|A) 

C(A) + p3 C(C|B) 

C 

C 

C 

C 

D 

D 

D 

D 
 

 
The trick is to make the best first-stage decision, considering the best responses and recourses for a 
variety of later chance events.  These problems are similar, if not identical, to the problems we have 
solved using stochastic dynamic programming. 
 
Two-stage linear programming is especially attractive when the decisions have continuous values, as 
opposed to the discrete values shown in the decision-tree.  Where the problem can be formulated as a 
linear program, the linear programming solution sometimes has great computational advantages.  Linear 
programming solution also provides much more sensitivity analysis information and is less subject to 
discretization problems than dynamic programming solutions. 
 
Two-Stage Linear Programming Example: Floodplain Planning Decisions and Economic Values 
Two-stage optimization problems often can be formulated as a linear program, particularly where 
expected value is to be used to select an optimum.  Consider the following two-stage problem. 
 
For floodplain management, the overall objective is to minimize the sum of expected annual damages and 
annualized expected flood response costs (Lund 2002).  Increases in permanent and emergency flood 
responses will reduce flood damages, but there will come a point where additional flood mitigation 
actions are no longer economical.  The expected annualized cost equation for a combination of 
implemented floodplain options and resulting flood event damages is: 

C(B) + p4 C(D|B) 
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(1)   Min z2 = 
1

m

Pi Pi
i

c X
=
∑ + 

1 1

q n

s Ejs Ejs s
s j

p c X D
= =

 
+ 

 
∑ ∑  

where cPi and XPi are the unit cost and level of implementation of permanent response i (first-stage 
decisions), cEjs and XEjs are the unit cost and level of implementation of emergency response j in response 
to flood event s (second-stage decisions), Ds is the damage resulting from a managed event size (flow or 
stage) s.  Given a set of structural flood control options (implemented outside of the floodplain damage 
area) that provide a probability distribution of event sizes, ps, the floodplain management objective 
should be to minimize expected annual damages plus expected annual flood control costs.  The 
minimization of total expected cost is limited by several types of constraints.   
 
Flood damage calculation.  Overall damage reduction is assumed to be the sum of incremental damage 
reductions arising from implementation of management options, as in Equation 2.  Floodplain damage for 
each flood event (Ds) is calculated to prevent the impossible situation of reductions in damages exceeding 
base-case damages, ds.  The constraints distinguish calculated damages for each event (CDs) from 
corrected damages (Ds) that cannot be negative. 

(2)   ds - 
1

m

Pis Pi
i

b X
=
∑ - 

1

n

Ejs Ejs
j

b X
=

∑ = CDs, ∀ s 

(3)    Ds >= CDs,  ∀ s 
(4)    Ds >= 0,  ∀ s 
 
Limits on option implementation.  Limits exist for each decision variable (the X's), representing limits of 
implementation for each option.  Usually, 
(5)    XPi <= 1, ∀ i,  XEjs <= 1, ∀ j,s. 
Some options can only be implemented either completely or not at all, or in integer values.  For example, 
floodplain evacuation typically is implemented in discrete stages.  This can be accommodated using a 
limited number of integer variables in the formulation, Integer XPi.   
 
Interaction of implemented options.  To make the formulation more realistic, the interaction of floodplain 
management options can be specified in constraints, allowing representation of some forms of non-
additive costs and damage reduction.  This has been done for some similar water-supply applications 
(Lund 1995).  Cases where implementing a permanent option i precludes implementing an emergency 
option j during event s can be represented by the following constraint, 
(6)   XPi + XEjs ≤ 1, ∀ j, s precluded by implementing i. 
Such a case might be where a particular land use control precludes the relevance or benefits of evacuation 
measures.  Conversely, where a particular emergency option j for an event s requires prior establishment 
of a particular permanent option i, the following constraint can be used, 
(7)    XPi - XEjs ≥ 0, ∀ j, s requiring implementation of i. 
This might be the case where the closure of a floodwall gate (an emergency option) would require prior 
construction of a floodwall (a permanent option).  In such a case, the permanent option might confer no 
flood damage reduction benefits without implementation of the emergency option during flooding 
episodes. 
 
Multi-Stage Linear Programming 
The proposed approach has several limitations.  First, the implementation of emergency options presumes 
very good (ideally perfect) forecasting of flood events.  Emergency flood-response options are not 
implemented futilely or without necessity because the stage forecast for each flooding episode is assumed 
to be perfect.  Significantly imperfect flood forecasts might be represented by conditional probabilities 
and a third stage might be added to the linear program.  Adding a third stage allows contingencies for 
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outcomes in the second state, such as imperfect forecasts.  The resulting linearized objective function is 

(8) 
2

2

3 2 |
1 1 1 1

( | )
q qm n

Pi Pi s Ejs Ejs s s
i s j s

z c X p c X p s s D
= = = =

 
= + + 

 
∑ ∑ ∑ ∑ , 

and primary constraints 
(9) 2 22 2| s s

T T
P EsP Es s sD d b X b X= − −

   
, ∀ s, s2 

where s is the forecast flood stage, s2 is the actual flood stage, and p(s2|s) is the probability of flood stage 
s2 occurring if flood stage s is forecast.  Damage reduction parameters are also modified for the 
occurrence of the actual flood stage s2, rather than the forecast flood stage s.   
 
Expansion to a three-stage linear program greatly expands the computational and calibration effort needed 
for the model, requiring solution for m + qn + q2 decision variables and at least q2 constraints and 
calibration for at least 2m + q(1+2n) + q2 parameters.  Calibration of the additional parameters for a three-
stage model would require estimates of conditional flow probabilities for flood forecasts, perhaps not an 
easy estimation.   
 
Second, reductions in damage arising from implementation of permanent and emergency options are 
assumed to be additive.  This will often not be strictly the case.  Constraint Equations 2, 3, and 4 provide 
this additive model, limited to positive damages.  Some interactions of options, restricting additivity, can 
be handled as described above in Equations 6 and 7.   
 
Multi-stage optimization quickly becomes ugly and computationally burdensome for most problems.  But 
it might be useful for some problems.  Hollinshead found 3-stage linear programming useful for 
identifying optimal water purchase strategies for California’s Environmental Water Account (Hollinshead 
2005, 2006).  PG&E use a three-stage LP for long-term hydropower scheduling. 
 
Representing Multiple Uncertainties in the Second Stage with Scenarios 
At first glance, it appears that multi-stage linear programming can work with only one uncertain variable.  
(In the above case, only uncertain flood flow was considered, along with perfectly correlated response 
costs.)  However, if we consider each event-probability combination s to represent a scenario (consisting 
of a joint occurrence of many parameter values), then discrete representations of joint events can be 
incorporated easily into a two-stage formulation.  In this example, emergency response costs, flood levels, 
and damage potential also can be considered as uncertain.  Often these parameters are not only uncertain, 
but also correlated; for example severe flood events might correlate with higher response costs.  By 
defining a set of scenarios s over which all these parameters vary in a statistically representative way, the 
two-stage LP can be expanded to include all these uncertainties, and their correlations.  (Of course, this 
means there are more parameters and joint probabilities to calibrate.)   
 
Where the different variables are imperfectly correlated, many more scenarios must be generated to cover 
the range of likely combinations (m becomes larger) and the joint-probabilities must be estimated.  So 
while multiple uncertainties can often be represented as probability weighted discrete joint-event 
scenarios, where correlations are imperfect, the problem can become too large to solve.  Conceivably, 
scenarios could be generated by a Monte Carlo method to create a wide range of equally-probable 
scenarios, but this can easily create too many scenarios to be solved (m too large). 
 
Independent Continuous Uncertainties in Multiple Parameters 
Where each parameter in the formulation is uncertain and independent of other parameter values, it is 
often possible to separately solve for each second-stage decision with a resulting convex penalty function 
which can be incorporated into solution for the first-stage decisions (Birge & Louveaux 1997, pp.11-15). 
This separation of the problem into sub-problems can reduce the overall computation burden. 



ECI 249: Probabilistic Design and Optimization  January 2019 
Jay R. Lund 
 

 
 

 

77 

Decomposition of Multi-Stage Problems 
More generally, depending on the structure of the multiple-stage decision problem, the second stage 
decisions are often only loosely related to the first-stage decisions, say by only a few decision variables.  
In such cases, the solution of larger multiple-stage problems can often be accomplished using 
decomposition techniques.  Benders decomposition, the next topic, is one such technique. 
 
Examples 
Multi-stage linear programming and related techniques have been applied to a wide variety of problems.  
Birge and Louveaux (1997) offer a wide range of examples and a much more in-depth treatment of 
solution methods and mathematical interpretations.  Wilchfort (1997), Garcia (2002, 2006), and 
Rosenberg (2007, 2008, 2009) apply this technique to water demand management and Lund and Israel 
(1995) apply it to developing water market portfolios.  Sahinidis (2004) nicely reviews optimization with 
uncertainty.   
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18. Benders Decomposition  (skip this year) 
Benders Decomposition is an optimization method that solves a large, difficult problem by breaking it 
down into smaller, simpler problems, and solving and modifying these smaller problems iteratively until 
an optimal solution is found.  Was first developed by Benders (1962) and generalized by Geoffrion 
(1972).  Consider the general and difficult Problem 1 with two vectors of decision variables x and y.  For 
this general version, both the objective function f() and G() can be non-linear. 
 
Problem 1: 

Maximize f(x,y) subject to G(x,y)≥0 
     x,y 

This problem can often be simplified by solving only for the x vector of decision variables, for a fixed set 
of y values.  This is Problem (1-y). 
 
Problem (1-y): 

v(y) = Maximize f(x,y) subject to G(x,y)≥0 
           x 

Benders and Geoffrion found that Problem 1 could be restated into the following equivalent "master 
problem." 
 
Benders Equivalent Master Problem 1: 

Maximize [infimum[maximum f(x,y) + ut G(x,y)]] 
     y              u ≥ 0            x 

Subject to:  Maximum λt G(x,y) ≥ 0 for all λ ≥ 0 and ∑
i=1

m
λi = 1  

[infimum = greatest lower bound] 
 
This "master problem" can also be re-defined as: 
Benders Equivalent Master Problem 2: 

Maximize y0 
     y        
 
Subject to: 
y0 ≤ Maximum[f(x,y) + ut G(x,y)] for all u ≥ 0 
               x 

Maximum
  x

 [λt G(x,y)] ≥ 0 for all λ ≥ 0 and ∑
i=1

m
λi = 1  

Solution Method: (Geoffrion 1972) 
Step 1:  Fix a value of y = y'.  Solve the subproblem (1-y') and use this solution (x*,y') and the multiplier 
vector u' (u'≥0) to obtain the function L*(y';u').  Put p=1, q=0, u1=u', and LBD=v(y').  LBD is the lower 
bound of the optimal value of Problem A.  Select a convergence tolerance parameter ε > 0. 
 L*(y';u') = maximum[f(x,y') + u'G(x,y')] = f(x*,y') + u'G(x*,y') 
   x 
Step 2:  Solve the relaxed master problem, relaxed in the sense that not all constraints are included. 
maximize z   subject to:   z ≤ L*(y;uj), j=1, ..., p, 
     y, z    L*(y;λj) ≥ 0, j=1, ..., q. 
Let the optimal solution be (y",z").  The resulting value of z" is an upper bound on the optimal solution of 
Problem A. If LBD ≥ z" - ε, STOP. 
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Step 3:  Solve the revised problem (A-y").  One of the following cases must occur: 
 
Step 3A:  The quantity v(y") is finite.  If v(y") ≥ z" - ε, STOP.  Else, find the optimal multiplier vector u" 
and the function L*(y;u").  Increase p by 1 and put up = u".  If v(y") ≥ LBD, put LBD = v(y").  GO TO 
Step 2. 
 
Step 3B:  Problem (1-y") is infeasible.  Find λ" satisfying Maximum

  x
 [λt G(x,y)] < 0 and the function 

L*(y;λ").  Increase q by 1 and put λq = λ".  GO TO Step 2.  [What is Lamda here, really?  These Lamda 
represent which constraints force the problem to be infeasible, and, for linear programs, could be found 
from identifying constraints associated with "artificial variables" remaining in the basis.] 
 L*(y;λ") =  Maximum

  x
 [λt G(x,y)] , λ ≥ 0. 

 
Steps 1 and 3 provide lower bound estimates of the optimal value of the objective function by solving the 
Problem (1-y).  The lower bound increases with refined values of y.  Solutions to Problem (1-y) include 
all constraints, thereby testing the feasibility of proposed values of y, and defining the optimal solution of 
the x decision variables, given y. 
 
Step 2 solves a "relaxed" version of the problem for y, assuming away some constraints and decisions 
regarding the x decisions.  As constraints are found to be important, via infeasibilities in Step 3, they are 
included in this problem.  The solution to this problem refines the value of the y decision variables and 
provides an upper bound to the solution. 
 
When the upper and lower bounds get close, within ε, STOP. 
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Resources Planning for the 21st Century, ASCE, N.Y., pp. 828-831. 

Jacobs, J., G. Freeman, J. Grygier, D. Morton, G. Schultz, K. Staschus, and J. Stedinger (1995), 
"SOCRATES: A system for scheduling hydroelectric generation under uncertainty," Annals of 
Operations Research, Vol 59, pp. 99-133. 

Periera and Pinto (1985), … Water Resources Research, p. 790 has a nice appendix on Benders 
decomposition and a nice application to hydropower application. 

Ziari, H.A. and B.A. McCarl (1995), "A nonlinear mixed integer program model for evaluating runoff 
impoundments for supplemental irrigation," Water Resources Research, Vol. 31, No. 6, June, pp. 
1585-1594. [nice references to Benders' codes] 

Example:  Benders' Decomposition Applied to a Two-Stage Decision Problem 
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Consider the two-stage linear programming problem below.  (Underlined terms are vectors; bold terms 
are matrices.) 
 
Problem 1: 

Maximize
X1 X2

  z = c1 X1 +  ∑
j=1

m
 p2j(c2X2j)  

 
Subject to: 
 A1 X1 + A2 X2 - b ≥ 0 
 X1 ≥ 0 
 X2 ≥ 0 

This problem can be represented in the decision tree below: 

  

X   = α1

X   = m   1 1α

X   = β2j

X   = m   2j β

P2j

c  X   + c  X  1  1       2   2j

 
Problem 1 can be simplified for a given value of X1 to: 
 
Problem (1-X1): 

Maximize
X2

  z1 = c1 X1 +  ∑
j=1

m
 p2j(c2X2j)  

 
Subject to: 
 X1 = X1i 
 A1 X1 + A2 X2 - b ≥ 0 
 X1 ≥ 0 
 X2 ≥ 0 

where X1i is some feasible value for X1. 
 
Solution by Benders Decomposition: 
 
Step 1:  Solve Problem (1-X1) by linear programming for some value of X1 = X1i.  For the first run, let i 
= 1.  This provides both the optimal solution X2 = X*2, given X1i, and the Lagrange multipliers for the 
constraints, ui.  From this, 

  L*(X1i;ui) = c1 X1 +  ∑
j=1

m
 p2j(c2X*2j)  + ui (A1 X1 + A2 X*2 - b). 

Set p = 1, q = 0, and u1= ui.  LBD = z1(X1i).  Set error tolerance ε > 0. 
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Step 2:  Solve the relaxed master problem for X1: 

Maximize z2   
   X1, z2 
 
Subject to: 

z2 ≤ L*(X1;ui) = maximum
X1

(c1 X1+ ∑
j=1

m
 p2j(c2X*2j) + ui (A1 X1 + A2 X2* - b)) , j = 1,...p, 

L*(X1;λj) ≥ 0, j=1, ..., q. 
Let X1* = X1,i+1. If LBD ≥ z2 - ε, STOP. 
 
Step 3:  Solve the revised sub-problem (1-X1) for X1 = X1,i+1.   
 
Step 3A:   The revised sub-problem (1-X1) is feasible.  If z1(X1,i+1) ≥ z2 - ε, STOP. 
Otherwise, let i = i+1.  This provides both the optimal solution X2 = X*2, given X1i, and the Lagrange 
multipliers for the constraints, ui.  From this, 

  L*(X1i;ui) = c1 X1 +  ∑
j=1

m
 p2j(c2X*2j)  + ui (A1 X1 + A2 X2 - b). 

Set p = p+1, q = 0, and up= ui.  If z1(X1,i) ≥  z2 - ε, then LBD = z1(X1i).  GP TO Step 2. 
 
Step 3B:  The revised sub-problem (1-X1) is infeasible. Find .  Find λ" satisfying Maximum

  x
 [λt (A1 X1 + 

A2 X2 - b)] < 0 and the function L*(X1;λ").  Increase q by 1 and put λq = λ".  GO TO Step 2.  [What is 
Lamda here, really?] 
 L*(X1;λj) =  Maximum

  x
 [λt (A1 X1 + A2 X2 - b)] , λ ≥ 0. 

 
Note: As commercial linear programming solvers have become faster, several applications of Benders’ 
decomposition for multi-stage problems have found that direct linear programming solution has been 
easier and sufficiently rapid.  The PG&E application for hydropower operations, SOCRATES (Jacobs, et 
al. 1995) is one example. 
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19. Markov Decision Theory  
[This section needs improvement.] 
 
Markov Decision Process – Steady-State Linear Program 
Consider the problem of levee planning for a floodplain.  The problem also can be optimized as a 
Markov Decision Process (Olsen, et al. 2000).  This formulation is solved by linear programming 
(or can be solved by SDP).  The Markov decision process optimization minimizes the expected 
cost of the system being in various conditions (flooded, not flooded, flooded with a high levee, 
etc.).  For a steady-state condition of flood probabilities and net benefits (i.e., no change in 
climate or economic conditions) the formulation below applies. 
 

ijk ijk
i j k

Max b X∑ ∑ ∑                                                        (1) 

 Subject to: 
1ijk

i j k
X =∑ ∑ ∑                                                           (2) 

0, , ,ijkX i j k≥ ∀                                                               (3) 

        ( | ) , ,ijk ijk
j k k

X P j i X i j
 

= ∀ 
 
∑ ∑ ∑    (Prob. of flood state j given initial state i)                 (4) 

(Equation 4 reduces to Pi P(j|i) = Pij) 

,ijk kji
j k k j

X X i= ∀∑ ∑ ∑ ∑   (steady-state condition; reduces to Pi = Pi)                                   (5) 

In this formulation, the decision variables Xijk are the probability of the system being in a 
particular state ijk, where i is the levee state, j is the flooding state given levee state i, and k is the 
levee state in the next decision period (differences in i and k implying a decision).  The levee 
state index can include levee location, levee height, flood storage, and other options.  The 
constants bijk are the net benefits of being in state ijk (including the costs of actions taking the 
state from i to k, maintenance costs and land-use benefits from being in state i, and the costs of 
flooding that occurs in state i).  P(j|i) is the probability of flooding state j given previous decision 
i; this is derived from the flood frequency.  If climate or economic conditions are non-stationary, 
then an additional state variable (t for time) is added to the decision variable X, and probabilities 
P(j|i) and net benefits b have an added time subscript, respectively (Olsen et al. 2000). 
 
The objective function (Equation 1) is to maximize the expected value of net benefits from the 
system (averaging over all conditions ijk). This objective is limited by several constraints.  The 
first constraint, Equation 2, insists that the probabilities over all states sum to one, a standard 
requirement of probability.  The second constraint, Equation 3, insists that there be no negative 
probabilities, also a standard requirement of probabilities.  Equation 4 represents the transition 
probabilities of the systems, essentially the probability of flooding given various previous states 
of the system.  Equation 4 defines the flood state i, given the initial state j.  Verbally, Equation 4 
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states that the probability of being in state i times the probability of flooding state j in state i must 
equal the probability of flooding state j in state i, no matter what state k you go to from there.    
Equation 5 links the levee state and levee state decision, ensuring that for steady-state conditions 
the probability of beginning in state i is the same as the probability of ending in state i. 
 
The number of decision variables in this problem is given by the (number of levee locations and 
heights i)*(number of levee locations and heights in the next time period k)*(number of flood 
states j).  Since there are generally the same number of levee locations and heights in each time 
period, say n and generally two flooding states (yes and no), the number of decision variables is 
2n2.  The number of constraints in this problem would be 1+ 3n + 2n2.  For application with10 
levee locations and 10 levee heights (n=100), this would imply 20,000 decision variables and 
20,301 constraints, a large but not unsolvable linear program.   
 
Markov Decision Process – LP for Changing Climate and Economic Conditions 
With climate change and/or changes in floodplain net benefits, the above linear programming 
formulation can be expanded to become dynamic.   
 

rt
ijkt ijkt

t i j k
Max b e X−∑ ∑ ∑ ∑                                               (6) 

Subject to: 
1,ijkt

i j k
X t= ∀∑ ∑ ∑                                                     (7) 

0, , , ,ijktX i j k t≥ ∀                                                       (8) 

( | ) , , ,ijkt t ijkt
j k k

X P j i X i j t
 

= ∀ 
 
∑ ∑ ∑                                     (9) 

1, ,ijkt kjit
j i j i

X X k t+= ∀∑ ∑ ∑ ∑                                       (10) 

 
The formulation above is similar to the previous steady-state linear program (Equations 1-5), 
with the addition of time subscripts on parameters and decision variables.  Replacing the steady-
state constraint 5 in the previous formulation, constraint 10 ensures that the probability of ending 
state k in time t is the same as the probability of state k at the beginning of time t+1, for each 
stake k. 
 
A similar formulation is: 

rt
ikt ikt

t i k
Max B e X−∑ ∑ ∑                                               (11) 

Subject to: 
1,ikt

i k
X t= ∀∑ ∑                                                     (12) 

0, , ,iktX i k t≥ ∀                                                         (13) 

1, ,ikt kit
i i

X X k t+= ∀∑ ∑                                                (14) 

where Bikt = (LBit - BCikt) - FDikt(Pf|i,k,t), and LBit = land benefits, BCikt = levee building costs, 
and FDikt = flood damage.  In this formulation, Xikt is the decision to move from state i to k at 
time t. 
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This problem becomes somewhat more computationally demanding to solve with 2n2t decision 
variables and t + 3nt + 2n2t constraints.  For 3 time periods and 100 levee states (n=100) and 2 
flooding states, this problem has 60,000 decision variables and 60,903 constraints, rather on the 
largish size given that linear program solution times increase roughly with the square of the 
number of constraints and decision variables.  These numbers can probably be reduced 
considerably if many state transitions are precluded, such as reducing levee heights. 
 
Both solution methods (stochastic dynamic programming and linear programming) allow the 
probability of flooding and floodplain benefits to change with time, allowing the examination of 
optimal flood control decisions with various forms of climate and economic change.  The two 
solution methods are not difficult.  From the standpoint of computational requirements, it 
appears that the stochastic dynamic programming approach might allow a larger number of time 
periods, providing a smoother representation of climate and economic change.   
 
Hillier, F.S. and G.J. Lieberman (1995), Introduction to Operations Research, McGraw-Hill, N.Y., 

Chapter 19. 
Olsen, J.R., Beling, P.A. and, Lambert, J.H. (2000), “Dynamic Models for Floodplain Management,” 

Journal of Water Resources Planning and Management, Volume 126, No. 3, May/June, pp. 167-175. 
Berenguer, C., Chu, C., and Grall, A. Inspection and Maintenance Planning: An Application of Semi-

Markov Decision Processes. Journal of Intelligent Manufacturing, 1997, Vol. 8, No. 5, pp.467-476. 
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20. Probabilistic Optimal Search  
 
In deterministic optimization, a host of methods exist that attempt to solve optimization problems with 
non-linear objective functions and non-linear constraints.  The most general approaches are search 
methods, which find the gradient of the objective function at a starting point and then find a new trial 
solution in the direction of the steepest gradient.  Eventually, this approach will find a local optimum, 
which may or may not be bound by a constraint. 
 
This same approach can be applied to problems where the non-linear objective function and/or constraints 
are probabilistic.  Unfortunately, like most probabilistic problem solving, probabilistic non-linear 
programming is usually much more computationally intensive than deterministic non-linear 
programming.  Still, it is sometimes worthwhile. 
 
Adapting Deterministic Search Methods to Probabilistic Problems 
Several changes are frequently needed to adapt deterministic non-linear programming methodologies to 
probabilistic problems.  These adaptations can include: 
 • evaluation of probabilistic objective functions, 
 • handling probabilistic constraints, and 
 • incorporating penalties associated with violation of probabilistic constraints. 
Like deterministic non-linear search techniques, probabilistic non-linear search techniques guarantee only 
a local optimum solution.  There may be better solutions outside of the region searched. 
 
Probabilistic Objective Functions 
Non-linear objective functions with probabilistic outcomes can be difficult to handle.  Even expected 
value estimation requires some form of numerical integration of the objective function over the range of 
values with estimation of the probability of each value.   
 
One approach to abbreviating this calculation is through Monte Carlo evaluation of the objective function 
for each trial solution to the problem.  A few outcomes are chosen in proportion to their likelihood, and 
these results are used to estimate an expected value.  This approach is especially attractive where the 
evaluation of an outcome requires a great deal of calculation, such as the solution of a large groundwater 
model (Gates, et al. 1989). 
 
Where probabilistic constraints exist, penalties for violating these constraints should be included in the 
objective function evaluation. 
 
Probabilistic Constraints 
Most deterministic non-linear programming methods find constraints on an ad hoc basis and do not allow 
the solution search to extend beyond the feasible region.  Where probabilistic constraints are present, 
there will be some part of the "feasible region" that might not be feasible or might sometimes not be 
feasible.   
 
What happens if a probabilistic constraint is violated?  This can become a major problem.  If the 
consequence of violating a constraint is catastrophic, then the probabilistic constraint can be replaced by 
an equivalent deterministic constraint representing the most constraining possibility for the constraint 
(assuming some feasible region is left under this case). 
 
If violation of the probabilistic constraint is not catastrophic, then a penalty function for violation of the 
constraint needed to be incorporated into the problem.  The penalty for violation of a "constraint" 
generally increases with the magnitude of the violation and the probability that violation occurs.  This 
enlarges the "feasible region," but generally adds increasing penalties for approaching or going beyond 
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the probabilistic constraint. 

 
 
Ad Hoc Formulation and Solution Methods 
Like most non-linear searches for deterministic problems, probabilistic optimal search methods are sort of 
an ad hoc affair and there are frequent compromises in finding a computationally feasible solution method 
that provides results meaningful for solving the real problem.  There is much art to this and the most 
success seems to follow methodological flexibility. 
 
In solving these problems, some combination of search methods, Monte Carlo evaluation, and more 
traditional solutions by enumeration, analytical methods, linear and dynamic programming, and 
probabilistic linear and dynamic programming are common.  Selection of values for a few decision 
variables may require a probabilistic optimal search, but others might be better solved by some of these 
other methods. 
 
 
References 
Gates, T.K., R. R.J-B. Wets, and M.E. Grismer (1989), "Stochastic Approximation Applied to Optimal 

Irrigation and Drainage Planning," Journal of Irrigation and Drainage Engineering, ASCE, Vol. 115, 
No. 3, June, pp. 488-502. 
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21. Evolutionary Algorithms (Genetic Algorithms) 
 
Evolutionary algorithms (EA) (formerly known as genetic algorithms) operate by mimicking Darwinian 
selection and evolution of better-performing solutions.  A fun example: http://rednuht.org/genetic_cars_2/ 
 
1) Initialization of population of decision variable values.  

a. Initial values of decisions for each solution in the initial population. 
2) Fitness evaluation of population. 

a. Run simulation for each individual solution in the population. 
b. Assess performance and fitness of each individual solution. 

3) Stop or continue? 
a. Reached maximum number of iterations? 
b. Reached a convergent solution?  (No substantial improvement.) 
c. IF yes, THEN present the best solutions from this last population, ELSE continue. 

4) Selection. 
a. Select better-performing (fitter) solutions from population, with randomness 
b. Elitism (Keep best solutions from previous generation?) 

5) Breed pairs of solutions from the performance-weighted individuals in the population. 
a. Pairing – Select pairs to breed – various methods 
b. Cross-over method - Which decisions are taken from each individual? 
c. Elitism – Keeping high-performing individuals as they are, cloning. 

6) Mutation – Randomizing a few of the decisions in some of the population 
7) Go to step 2. 
 
EA is often applied to multi-objective problems to generate Pareto-optimal solution set (Deb 2001).  Use 
of crowding-based selection can help disperse the population along the Pareto-optimal frontier. 
 
Evolutionary algorithms are essentially a stochastic solution method for deterministic optimization 
problems.  The method can also be applied to stochastic optimization, for example, by using a Monte 
Carlo simulation model.  Most parts of EA are quite amenable to parallel computing, which can 
significantly decrease run-times. 
 
Applications 
Evolutionary algorithms require a very fast simulation model, which must be run many times, and are 
easier if the decision variables can have discrete values which are easier to code.  They are commonly 
applied in research and have been quite successful with water distribution system design and operations 
problems.   (Nicklow, et al. 2010; Wardlaw and Sharif 1999; Kalman 1999)  
 
References 
Deb, K. (2001), Multi-objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Ltd., 

N.Y., 508 pp. 
Kalman, Orit, “Stormwater Quality Management: Evaluation, Optimization, and Maintenance,” PhD 
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and management,” Journal of Water Resources Planning and Management, ASCE, Vol. 136, No. 4, 
pp. 412-432. 
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Operation,” Journal Water Resources Planning and Management, Volume 125, Issue 1, January/ 
February, pp. 25-33. 

Journal: Evolutionary Computation 
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22. Some Thoughts on Probabilities in Engineering Calculations 
 
Engineering in an Institutional Context 
Most engineering analysis, despite its fundamentally rational and scientific basis, occurs within a social 
and economic context involving institutions, laws, economic incentives, expectations, resources and 
expertise available to conduct analysis, and individual personalities.  Simple analysis can usually be more 
persuasive in such contexts, all else being equal.  But even the most sophisticated analysis will involve 
many uncertainties and there will be demands for our analysis to address these uncertainties.  In recent 
decades, probabilistic risk analysis has become more commonly accepted, at least in principle.  
Nevertheless, there remains a great deal of controversy regarding this approach, the many details of 
implementation, and its communication and use by policy makers and decision makers (Tracy 2008). 
 
Some experiences with bringing probabilistic risk analysis into the US Army Corps of Engineers have 
been described (Davis et al. 2008; Gravens et al. 2008), Langsdale 2008).  Dutch coastal and flood 
engineering has a longer tradition of probabilistic risk analysis, and has developed more comprehensive 
analysis methods (van Danzig 1956). 
 
Reliability of Probability Formulations and Calculations 
For a normal type of probability problem, what is the probability that each of the following will formulate 
the problem, mathematically solve, and then interpret the solution correctly? 
 
An engineering professor – perhaps 90% 
A practicing engineer who commonly works with probabilities – perhaps 75% 
A typical agency engineer – perhaps 10%  
A typical elected official or political appointee responsible for making a final decision – perhaps 1% 
 
While all of these people are very smart, this should be very sobering to those who would introduce 
probabilities into everyday problem solving.   
 
Some Roles for Probabilistic Thinking in Analysis 
What are proper professional roles of probabilistic thinking in engineering design? 
Some thoughts: 
 
Conceptual role – Even if we never do any probability calculations, thinking in terms of  

• relative probabilities of outcomes,  
• how outcome probabilities are shaped by decisions, and  
• how recourses can be arranged to respond to opportunities or problems 

might be of great value in thinking through design problems and how to structure such problems.  The 
“multiple-barrier” approach to sanitary engineering is a fine conceptual example of probabilistic thinking. 
 
Computational role – Since most people, including engineers, are terrible at doing probability problems, it 
is important that applications of probability to real engineering problems be very well structured and that 
the calculations be performed by computer programs which are well tested and have been checked several 
times.  If one engineering professor builds and tests the program, chances might be 90% that it works.  If 
a second engineering professor verifies this work, chances are 1-(0.12) = 99%, that it works. 
 
Professional role – As illustrated by the calculations immediately above, there is a role for probability 
thinking within a profession which is interested in product reliability.  By arranging how engineering 
work is developed, checked, and tested (with probabilities and reliabilities in mind), we can improve 
engineering products and productivity.   
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When to use probabilities in engineering? 
We should use probability a) only when we have lots of data for estimating probabilities or b) when we 
have no data and so have the greatest uncertainty.  These are two schools of thought.  Obviously, I 
cautiously subscribe to the second school of thought – it is more interesting and holds out hope for being 
able to better structure and advance on truly difficult problems.   
 
We should be careful.  Probability formulations are not necessarily reliable, but they can be more reliable 
than other forms of analysis or non-analysis. 
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Appendix -  Worked examples 
 
Worked probabilities from Tse fly decision problem with an imperfect test. 
  P(disease|test result) Test Result  
  SS NSS Probability 
 + 0.1915 0.8085 0.235 
 - 0.0065 0.9935 0.765 

 
For decision-making, the following table of results can be used: (again to be filled in by students) 
  Overall Probability of Death 
 Test Treated Untreated 
 No Test 0.05095 = 0.05 + 

0.95(0.05)(0.1)(0.2) 
0.01 

 + 0.0537 0.0383 
 - 0.05123 0.0013 

 
  Probability of Death 
 

Test 
0.01 = 

0.0383(0.235)+0.0013(0.765) 
 

No Test 
 

0.01 
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Appendix - Institutional Models for Integrating Knowledge and 
Management (adapted from NRC 2007) 
 
The purpose of applied quantitative modeling is to provide information and insights to individuals and 
groups with decision-making and management responsibilities (Geoffrion 1976).  These decision-makers 
exist within (sometimes competing) institutions which make and support decisions and operations.  The 
purpose of model results and insights is to improve decisions and provide decision-makers with greater 
confidence in the likely effectiveness of their decisions. 
 
Modeling and model results can enter decision-making in several ways.   
a) Directly determine a decision.  Direct adoption of solutions suggested by a model is rare.  In a few 
narrow cases, model results directly determine decisions, such as selecting the operation of particular 
hydropower turbines over short periods.  A few water distribution systems are also largely operated by 
model results over short periods, mostly as an aid to system operators.   
b) Provide technical support, along with monitoring data and experience, for operating decisions.  This is 
common for the operation of most large water systems.  One or more computer models will be tailored to 
provide specific information to system operators and managers for hourly, daily, monthly, and longer-
term operational decisions. 
c) Model is a major direct part of the negotiating/decision-making environment.  Especially for routine 
technical decision-making, model use is common.  Models can be tailored for such situations and provide 
results, which, while imperfect, provide consistent and insightful results for decision-makers experiences 
with a routine problem.  For non-routine decision-making, where conflicts are more common and the 
models are less well-tailored to the problem, models have less of a role.  The use of models in 
negotiations is discussed in more detail below, and has sometimes been successful.  
d) Model results inform the background of decision-making and decision issue.  More commonly, model 
results provide background information for decision-makers, much as any background technical study 
provides useful information. 
e) Decision makers, their staffs, and ultimately the public are educated in general through long use of 
model and model results.  For most major water systems, agency staff become educated through 
development and use of models as well as through direct experience with the system.  In the course of 
such exercises, staff develop an understanding of how the system would perform under a wider variety of 
circumstances than have been directly experienced.  Staff also become familiar with the models, as well 
as their strengths and weaknesses.  Modeling staff often are promoted to middle or senior management, 
where their reliance on models is less direct, but was foundational for their understanding of the system.   
 
The design and execution of modeling efforts should consider the decision-making environment which it 
is intended to inform.  Several sorts of decision-making environments are discussed below with their 
implications for modeling. 
 
Technical decision-making 
A basic difference exists in the use of models in technical versus adversarial approaches to discourse and 
decision-making.  Technical and scientific decision-making ideally examines a wide range of solutions, 
eliminating solutions with unpromising performance until a final small set of alternatives remains, from 
which one promising solution is chosen.  Among technical people, uncertainty always exists in all but the 
most fundamental knowledge (such as conservation of mass, energy, and momentum).  Because most 
applied models are based on assumptions beyond fundamental knowledge (empirical, and often 
professional judgment), almost all models are imperfect and will err somewhat.  There is no such thing as 
a “scientifically valid” model unless it is based on fundamental principles (Konikow and Bredehoeft 
1992).  Like other scientific hypotheses, one can only invalidate a model.  A model can never be 
completely validated.  In an applied context, all model results must be interpreted and judged.  
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Uncertainty always exists (Oreskes 2003).   
 
Where there is consensus on objectives, technical-scientific decision making is quite successful.  
Quantitative models are routinely used and trusted for major water and environmental decisions every 
day.  National Weather Service models of storms and floods have been tremendously effective for 
reducing loss of lives and property from storms, even though they are imperfect and their results have 
significant uncertainties.  Outside of environmental applications, quantitative models are relied on for 
making buildings and bridges more reliable, airlines run more on time, and countless other practical 
applications.  All of these models retain important uncertainties, but they do provide insights and a logical 
basis for conclusions which unaided humans cannot provide.   
 
Adversarial decision-making 
Where conflict on objectives exists, typical decision-making processes ask more of quantitative models.   
 
Adversarial decision-making, which dominates legal and political discourse, is a contest among 
alternatives or for and against a particular proposed alternative.  In such a contest, models and model 
results supporting an alternative are presented by proponents.  Proponents attack or discredit models and 
model results which do not support the proposition.  Adversaries to a proposal take the opposite view.  In 
such contests, an uncertain model or imperfect model results are often easily discredited.  Adversarial 
decision-making has trouble making use of models and model results without a preponderance of 
scientific support (Jackson 2005).  Communication of model results is especially important in an 
adversarial process. 
 
In adversarial environments, proponents of the status quo will often call for additional study, detailed 
modeling, or long periods of data collection, particularly if they are financed by others.  For status quo 
proponents, more studies and modeling are always needed.  One productive use of modeling in 
adversarial situations is to help re-shape understanding of a problem and solutions over a long period.  
This poses little urgent threat to the status quo, and allows improved understanding and solutions to be 
crafted for a future time when the political environment is more fluid, as in the aftermath of a major 
drought, flood, or lawsuit. 
 
Negotiations 
It is often proposed to use models and model results as part of negotiated solutions.  The original adaptive 
management (Hollings 1978), “shared vision modeling” (Palmer et al. 1999; Lund and Palmer 1997), and 
gaming approaches all have in common the use of computer models to represent trade-offs, certainties 
and uncertainties in negotiations among conflicting parties.  This decision-making environment lies 
between pure technical-scientific and adversarial decision-making.  Where broad motivation exists to 
come to a consensus agreement with realization that technical support is needed for such an agreement, 
models can have a useful, even central, role in negotiated decision-making.  
 
Quantitative models can have several roles in policy negotiations: 
A decision-support-system for negotiations.  Here, computer models form the central venue and technical 
arbiter for negotiations, constituting a substantially agreed-upon technical basis for discussions and 
comparison of performance for proposed or crafted alternatives.  This typically “neutral” technical-
scientific party creates the model support for negotiations or a process where technical representatives 
from major stakeholders come to an agreed model representation of the problem.   
 
Model results used directly in negotiations.  Here, model results are used in negotiations, as would any 
technical study or document.  This approach does not require as much consensus on the technical merits 
of the work, and allows the modeling to have a more peripheral role in the negotiation deliberations. 
 
Preparation for negotiations.  Models and modeling results are often used to prepare for negotiations.  
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Parties often perform internal modeling studies to investigate options from their perspective and those of 
other parties.  These studies can help form the basis of proposals and critiques offered during the 
negotiation process.  Sometimes such internal modeling studies are performed during the course of 
negotiations. 
 
Models used to train technical people who advise negotiations.  Actual negotiations often are on time-
frames short enough that new modeling studies might not be possible.  In such cases, past model studies, 
often accumulated over decades, provide negotiators or technical advisors to negotiators with 
considerable knowledge of promising and unpromising alternatives, as well as insights and concerns 
worthwhile during negotiations. 
 
An adversarial process often follows such a period of negotiation.  Even if a negotiation leads to a formal 
agreement, opportunities arise for further negotiation and adversarial decision-making in implementing 
any agreement.   
 
Regulatory environments 
Often agencies are tasked with enforcing environmental and water regulations, laws, and property rights.  
In an ideal world, field monitoring data would be abundant, precise, and accurate.  However, field data 
are imperfect, typically sparse, and unavailable for hypothetical future conditions.  Thus, for routine 
regulatory proceedings, field data are often unavailable or insufficient alone to make permitting or 
enforcement assessments.  Here, quantitative models can have two roles.  First, models can often 
effectively interpolate or extrapolate form existing field data (which are often used to calibrate the model 
and establish boundary conditions).  This saves the agency and the permittee considerable expense and 
delay for data collection.  Models are used to assess the likely environmental or resource effects and the 
effectiveness of any proposed mitigation actions.  These applications all employ model results as 
information to a human regulatory decision. 
 
Another role of modeling is for more formal accounting of environmental effects.  Here, the model is 
effectively designated as an accounting standard, eliminating human assessment.  For water rights 
allocations, models are almost the only practical means to assess water availability, however imperfect.  
Using quantitative models as a basis for TMDLs and TMDL allocations is a more modest example of the 
model developing into a standardized understanding of a system.  To some degree, the automation of 
model-based accounting can provide greater transparency and predictability of regulatory decisions, as 
any party can presumably run the model. 
 
The particular type of resource or environmental regulation also can affect the use of quantitative 
modeling.  Where environmental regulation is based on traditional command and control, including 
specification of required technology, such as specifying particular wastewater treatment processes or so-
called “best management practices”, routine model use is less important, although models might be useful 
for determining which technologies should be required.  Where regulations specify only a performance 
standard, those regulated have greater flexibility to use potentially more economical means achieve the 
standard, but monitoring or modeling requirements are increased, to make the regulations enforceable.  
For modeling to trade-off well against monitoring, monitoring must be expensive and/or models of 
performance relatively good.  For market-based regulations (such as water markets or markets for 
TMDL), the use of models as an accounting mechanism becomes attractive, as it often onerous to have 
enough density or accuracy of field monitoring to enforce property rights. 
 
Overall discussion 
Modeling can be used to support or attack a particular decision or it can be used in a technical way to 
broaden the range of solutions, improve currently-proposed solutions, eliminate solutions that perform 
poorly, and select more promising solutions.  Negotiated and regulatory decision environments lie 
somewhere between these extremes.  Each of these environments asks more or less of modeling, 
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particularly in terms of establishing credibility and communication of results. 
 
The Modeling Process  

“All models are wrong, but some are useful.”  G.E.P. Box 
 
Modeling is a fallible art of trying to quantitatively represent the complexity and processes of real 
systems.  Scientifically, such representations provide an ability to assemble more complex understandings 
of complex real systems than would be possible without such aids.  They can be used to develop 
hypotheses which integrate many aspects of complex phenomena.  Moreover, application of models 
commonly allows better predictions of the outcomes of proposed actions.  This use of models allows 
solutions to practical problems to be developed virtually, in a more rapid, less costly, and less risky 
manner than by direct experimentation with the real system.   
 
As such, models, and particularly computer models, have become indispensable for managing complex 
systems ranging from transportation systems (including most airline scheduling), large building 
structures, as well as routine wholesaling, retailing, and commercial systems by engineers, business 
managers, and economists.  Scientifically, mathematical and computer models have been central to the 
physical sciences, and have become increasingly used in all areas of scientific research. 
 
Historically, the scientific use of mathematical models began as early as Galileo’s time with engineering 
applications becoming established in France before the revolution.  Modeling now is the accepted 
approach for improving the efficiency and effectiveness of efforts to understand and solve complex 
problems.  To improve the likelihood that modeling will deliver on such promise, model development and 
use commonly follows a fairly standardized process, described in this section.  Scientific progress results 
when the hypothetical understanding of the system represented by the model diverges from field 
observations, leading to improvements in the model, our understanding of the modeled system, and the 
model’s predictive powers. 
 
The Modeling Process 
While many authors present somewhat different versions, most presentations support a process of 
developing and applying a model with elements and steps similar to those below (Gass 1983; Satkowski 
et al., 2000; USEPA 2003). 

1. Problem and purpose definition 
2. Model development 
3. Calibration and testing 
4. Sensitivity analysis 
5. Results interpretation and communication 

Like other problem-solving activities, the development and application of a model benefits greatly from 
having a planned approach (Polya 1957). 
 
1. Problem statement and purpose 

“A problem well posed is a problem half-solved.” Attributed to John Dewey 
 
Most models are developed for a particular scientific or problem-solving purpose.  Defining a purpose for 
the model provides a focus and rationale for including factors and processes which are more likely to be 
important and excluding others.  Modeling the world in its entirety is never an option.  A well-defined 
applied model not only describes the real system, but also contributes to the problem-solving situation 
and institutional framework as well. 
 
Defining the purpose of the model is the most important step in modeling.  For applied modeling, a 
common error is modeling the wrong problem.  Such errors can arise from adapting an older model – 
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developed for a different purpose – to a new purpose, from professional narrow-mindedness where an 
expert seeks to apply this specialty to unsuitable situations, from political concentration on one aspect of a 
problem when another dominates, and frequently when the nature of the problem changes in the years of 
model development (a lag between model development and use of model results).  Sometimes it is 
impossible to tailor a model to a particular purpose without important simplifications; a “simple but 
accurate” model of a real complex system is often an impossible modeling purpose.  Thus, it is common 
for models not to be perfectly suitable for the practical problems to which they are applied.  Such 
problems often can be mitigated by changes in the model (perhaps re-calibration) and careful 
interpretation and communication of model results and insights, described later. 
 
2. Model development 
Following a statement of the model’s purpose, knowledge believed to be relevant is assembled.  This 
knowledge can take the form of empirical relationships, observed locally or in similar circumstances, and 
relationships derived form fundamental and well-proven principles.  Conservation of mass, energy, and 
momentum are examples of fundamental principles from which relationships can be derived.  Empirical 
relationships are inferred from field data by regression or other types of fitting to equations.  Field data 
can be obtained locally or for situations deemed similar.  Examples of empirical relationships include 
several forms of hydraulic equations (such as the Manning of Chezy equation) as well as regression 
equations fit to field data.  Mathematical forms of these empirical and fundamental relationships are then 
organized into a coherent mathematical representation of the system for the purposes of the problem.  
Simplifications of the problem are often required to do this, neglecting or simplifying some parts of the 
problem. 
 
This simplified mathematical representation of the problem must sometimes be further simplified to allow 
solution of the mathematical problem, or approximate solution to the mathematical problem.  Numerical 
methods, such as finite element or finite difference techniques are often used to solve relatively complex 
mathematical representations.  Frequent checks on the stability and accuracy of the numerical solution are 
often required. 
 
At the end of this step, the model of the system is twice simplified from the original real problem, first to 
create a mathematical representation of the problem and then to create a solvable mathematical 
representation.  Nevertheless, the result is commonly a far more complex and transparent representation 
of the problem that would be possible without mathematical aid, and a representation which allows 
integration of diverse types of scientific knowledge and understandings of the system.   
 
3. Calibration  
A further empirical phase of model development is model calibration.  Calibration consists of adjusting 
some of the more empirical parameters in the mathematical model to fit data observed from the field.  
Sometimes parameters in component sub-models are adjusted against field data and sometimes 
parameters in several model components are adjusted together against field data.  Sometimes calibration 
is based on data observed in field conditions elsewhere, if local data is unavailable.  It is greatly preferred 
to have local field data under problem-relevant conditions to calibrate empirical parameters.  However, 
field data are rarely available to the extent desired within a time frame relevant for the problem. 
 
The adjustment of parameters is often done by experts in modeling the type of system being modeled.  
Such adjustments are sometimes aided by automated algorithms, particularly when calibration parameters 
are numerous.  Since there are often many possible sets of parameter values which “fit” field data, the 
background and understanding of the modeling experts has an important role in calibration.  Usually 
parameter calibration is limited within a “reasonable” range based on field and modeling experience for a 
range of similar conditions. 
 
The residual differences between observed field data and the calibrated model represents how well the 
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model “fits” the field data, and provides a form of model test.  Calibration residuals are a fairly weak 
form of model test as the modeler had an opportunity to “fit” or adjust the parameter values to these data.  
Thus, when the number of parameters in the model is large or similar to the number of field observations, 
the utility of calibration residuals for model testing can be small. 
 
4. Model testing and evaluation 
Model testing can consist of a wide variety of techniques intended to evaluate and demonstrate the 
strengths and limitations of a model for particular purposes (Gass 1983; Kleijnen 1995; Beck 2002; 
Parker et al. 2002).  Ideally, model testing procedures and protocols are established early in the modeling 
process (Kauffman, et al. 2001).  Some common forms of model testing include: 
 
Software tests 
Software tests can occur at several levels and by several means (Kauffman et al. 2001).  Parts or 
components of the model can be tested separately, in functional units, and then together as a modeling 
system.  These code tests are ideally done by people other than the authors and can be done by a 
designated “librarian”, a peer-review process, by parallel development teams, or formal individual or 
group “walk-throughs” of the code.  When programmers understand that others will inspect and test their 
code, coding tends to be more reliable.   
 
Numerical tests 
Numerical tests are used to ensure that the model’s calculations are stable and correct for some well-
known cases and solutions.  Complex models can be numerically unstable for some situations and 
numerical tests can help establish these limits (Sobey 2001).  Routine model applications of common 
software often rely on software and numerical tests done by the model developer and prior applications of 
the model. 
 
Empirical tests 
Comparisons with field data at the component or system scales are useful tests of a model.  Such tests are 
stronger if they are done with data sets different than those used for model calibration and over a wide 
range of field conditions (wet and dry years, for example).  Unfortunately, field data are often sparse and 
unavailable for complete empirical testing over a wide range of conditions.  Such empirical tests against 
independent field data are often called “model validation” studies, but the sparseness of field data usually 
means that such tests do not fully demonstrate the “validity” of the model for all relevant field conditions.  
Empirical model testing is never directly available for model applications for non-existing conditions, 
such as conditions in the future with alternative solutions (Gass 1983).  An additional problem is the 
quality of field data; difficulties and errors in field observations make empirical tests of a model less 
accurate. 
 
Model comparison tests 
Often a large system model must simplify components or the overall representation of a system relative to 
detailed models which might exist of the system or system components.  Where the detailed model or 
model components provide greater confidence in the representation (sometimes they don’t), then 
comparison between the complex and simplified models can provide some insights and understanding of 
the relative limitations of the two models.  Model comparisons can often be made over a wide range of 
virtual field conditions, and so avoids the limitations and expense of comparisons of model and field 
results.  However, model comparisons are weaker tests than good empirical tests.  Model comparison 
results also are often used to assess the numerical errors in the model solution method. 
 
Sensitivity analysis 
Sensitivity studies quantify the effects of small changes in model assumptions on model results.  Such 
sensitivity results provide insights as to the likely range of error in model results from such causes.  
Sensitivity results can be useful for interpreting model results and assessing the data quality needed or 
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desirable from field investigations.  (Frey and  Patil 2002).  Linear programming methods often produce 
some forms of sensitivity analysis as a by-product of their numerical solution algorithms. 
Expert evaluation 
Almost all model results are evaluated by experts in the problem being modeled.  This occurs in model 
development, calibration, and application.  Errors are frequent in modeling complex systems, and expert 
inspections are often the most readily-available and capable means to identify potential errors.   
 
Expert review is commonly done internally by the modeling team.  Sometimes this internal review is 
informal and sometimes it is quite structured.  Additional external review by local problem experts or 
distant academic, consulting, or agency experts on the general type of problem of modeling also can be 
employed. 
 
Overall, as noted by Quade (1980), “A particularly dangerous myth is the belief that a policy model can 
be fully validated – that is proved correct.  Such models can, at best, be invalidated.  … Thus the aim of 
the validation [testing] (or rather invalidation) attempts is to increase the degree of confidence that the 
events inferred from the model will, in fact, occur under the conditions assumed..  When you have tried 
all the reasonable invalidation procedures you can think of, you will not, of course, have a valid model 
(and you may not have a model at all).  You will, however, have a good understanding of the strengths 
and weaknesses of the model, and you are able to meet criticisms of omissions by being able to say why 
something was left out and what difference including it would have made.  Knowing the limits of the 
model’s predictive capabilities will enable you to express proper confidence in the results obtained from 
it.” 
 
Every decision maker has a mental model or understanding of the problem (Gass 1983).  However, these 
mental models are only tested very indirectly by political election or appointment processes which place 
an individual in a decision-making capacity.  It should be possible for quantitative models based on 
scientific and technical information to demonstrate greater levels of credibility to supplement, aid, or 
improve on decision-makers’ mental models, and ultimately improve the consideration and selection of 
decisions.   
 
5. Results interpretation and communication 
Even a perfect model will be useless if its results are not trusted and employed for understanding or 
solving a problem.  Model results and their implications must be interpreted and communicated for non-
modeling specialists in the context of the applied problem.  The communications of results must often 
address to issues: 1) communication and support of insights and results and 2) demonstration of the 
credibility and limitations of the model and its results. 
 
Documentation and External Review 
Documentation facilitates training of model users, supports the credibility and transparency of a model 
(allowing the work to be externally reviewed), and furthers the education of the water management and 
modeling community regarding the problem being modeled.  Documentation also has an important 
internal quality control function.  Documenting a model and the work and thought that goes into 
documentation helps ensure that a model works, its limitations are well understood and can be 
communicated, and future improvements are identified. 
 
Peer or external review can be useful for communicating and establishing model credibility.  However, a 
credible model review will almost always find some real or potential flaws, so in an adversarial 
environment, external reviews are risky.  … 
 
Establishing Model Credibility 
A primary aspect of model development, testing, and application is establishing the credibility of the 
modeling effort (Gass 1983).  Credibility can be established based on: 
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• model’s agreement with specialist or popular notions regarding the system (face validity),  
• credentials of the modeler or modeling organization,  
• technical procedures and protocols followed in model development,  
• model documentation produced,  
• tests conducted on the model and its results, 
• qualifications of advisers or reviewers of the effort,  
• a (long) period over which the model has been employed,  
• current model use,  
• diversity of situations for which the model has been employed, and  
• authoritative (agency) sponsorship of the model or modeling effort.   

Some of these factors which bolster the perceived credibility of a model may have little to do with its 
actual technical reliability.  But perception of credibility is credibility. 
 
Models developed for applications in an adversarial environment must be pursued with particular care.  
Where a model or its results can be expected to enter into legal or political proceedings, an especially 
systematic, tested, transparent, and articulate modeling effort is required. 
 
While no amount of effort can ensure that a model is perfect.  However, following the kind of systematic 
model development and application process described above can greatly increase the likelihood that a 
model will be useful for understanding or developing solutions for problems.   
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Appendix - Buckingham π theorem (adapted from Wikipedia, the free 
encyclopedia) 

More formally, the number of dimensionless terms that can be formed, p, is equal to the nullity of the 
dimensional matrix, and k is the rank. For the purposes of the experimenter, different systems which share 
the same description in terms of these dimensionless numbers are equivalent. 

In mathematical terms, if we have a physically meaningful equation such as 

 

where the qi  are the n  physical variables, and they are expressed in terms of k  independent physical 
units, then the above equation can be restated as 

 

where the πi are dimensionless parameters constructed from the qi  by p = n − k  equations of the form 

 

where the exponents mi  are rational numbers (they can always be taken to be integers: just raise it to a 
power to clear denominators). 

The use of the πi as the dimensionless parameters was introduced by Edgar Buckingham in his original 
1914 paper on the subject from which the theorem draws its name. 

See also examples on the Wikipedia web site. 
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